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Tomography Problem
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The Inverse Problem

Matrix H is typically almost singular
lll-conditioned problem
No fast inversion method

Direct Inversions are extremely time-
and memory-intensive

New Approach

Coded Aperture in Compressive
X-Ray Tomography
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Motivation for Compressive X-Ray Tomography

729 Angles 180 Angles 90 Angles 25 Angles

L2- Norm

GPSR

PSNR=58 dB PSNR= 55 dB PSNR=47 dB PSNR= 25 dB



Motivation for Compressive X-Ray Tomography

» Random coded apertures trim down the number of rays.

» H matrix has the same size in both cases.

L2- Norm GPSR GPSR - Coded Apertures

PSNR=23 dB PSNR=25 dB PSNR=33 dB

Undersample the view angles Undersample the detectors



Coded aperture compressive fan beam X-ray CT

Coded
aperture

Object

(@)

(a) Coded aperture compressive fan beam X-ray CT system.

(b) Undersampled sinogram of 64 x 64 Shepp-Logan Phantom P = 128, M = 128,
50% undersampling.

(c) Complete uncoded sinogram.



All ones - Coded aperture and energy mapping
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Coded Aperture for 5; N
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Coded aperture and energy mapping
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Coded Aperture for S;
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Coded aperture and energy mapping

Pt

>

H: intersection length of each ray with every pixel.

v

M is the number of detector elements for each of the P view angles, N2 is the
number of pixels in the image, and D is the number of un-blocked elements in
the coded apertures.

v

C: coded aperture matrix.

v

Q: system matrix containing the rows of H corresponding to the un-blocked
detectors.



Coded aperture sub-sampling strategies!

Uniform view (UV) subsampling Random view (RV)-angle subsampling

iy
v

Uniform detector (UD) sampling Random detector (RD) subsampling

1y, Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. MacCabe, D. Politte, J. O'Sullivan, L. Carin, and D. J. Brady, “Compressed
sampling strategies for tomography,” in JOSA A 2014.



Coded aperture optimization

The Restricted Isometry Property (RIP) 5 of the system matrix
A € RP*N? with normalized columns is defined as:

(1= 65)l[xI13 < [|Ax]I3 < (1+85)Ix][3, (1)

The matrix A satisfies the RIP if 05 is small for reasonably large s
if it holds that 2

= AAgs — I 2
o= g (SRS —Il), )
where [N?] :=1,2,---, N? and [S]| is the cardinality of S. Ag are
the column sub-matrices of A consisting of the columns indexed by

118
S and ||A|]z = ( imrll{DN } 2(A)) * where o; are the singular

values of the matrix.

2y, Rauhut, “Compressive sensing and structured random matrices”, Radon Series Comp. Appl. Math XX,2011.



Using the fact that [[|A|[2 < [|A[|r, where [[A[|p = /37, 37, |Aij|*.

Then (2) can be simplified as follows

T — ma AiAc — T

> SC[NQ],)\(S\SSH sAs = Ill2
< a AAg — T
< sq}%ﬁsgs” sAs —I||p

< [|A'A-1I||p

Therefore, d, is bounded by the Frobenious norm of the PSF of the
system3, A*A, that is

55 < ||A"A —1||. (3)

3W. Hou and C. Zhang, “Analysis of compressed sensing based CT reconstruction with low radiation,” ISPACS, Kuching, 2014.



Connection with the mutual coherence

The mutual coherence of A =[a; --- ayz] is defined as

A) { 23, } (4)
= max TS T A T .
& i#31<i, <N? | ||ag]|e, [|aj]]e,

Coherence minimization can be performed by making any subset of
columns in A as orthogonal as possible #, that is, minimizing

|A"A — || (5)

> Result equivalent to the upper bound for the RIP in (4).

» The coded aperture optimization is formulated as the search of C,
over the D x M P binary space such that

PN

C = argmin ||A"A — ||z = argmin . (6)
c o

45 M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying
dictionary optimization,” in IEEE Transactions on Image Processing, 2009.



Simplification of A'A

v

Let C = [c1 c2- - - cprp], where c; are D—long column vectors.

» W=HT = [wl wl .. .wl |7, where w; are N?— long row
vectors.
» The sensing matrix A can be represented as
MP
A=CW=> cw; (7)
i=1

v

The element of A in the (m,n) position can be written as

MP

A(m,n) = ¢;(m)w;(n) (8)

=1



Simplification of A'A

The inner product between the m!* and n'" columns after normalization
of A is given by:

ATAl, — S e, €5 )wi(m)wj(n) .
(857 et ) (527 oy o)
©)
> (Ci,cj) =0 Vi#j

> <Ci,Cj>=1 Vi =j and
C; 75 0

» Thus, the norm of ¢;

can be expressed as a

Q = (G R H binary variable

bi = (ci, ¢i).




Simplification of A'A

Simplifying (9)

ATAl, = ML biwi(m)wi(n) _
(SMF bows (mws(m)) " (SHE bows (mpwi(m))
(10)
> R = wi(m)w;(n)
> d(m,n) = sz\i{) biRzT'n’n
» Substituting in (10)
A" Al = e (11)




Optimization Cost Function

The reparameterized cost function can be formulated in terms of

the parameter b = [by,--- ,byrp] as follows
N2 N2
b = argmin 3 3 [[AT Al — bl (12)
b m=1n=1

d(m,n) R
I i gﬂ<<d<m,m>>1/2<d<n,n>>l/2> T E N

» Values b; can only take values 0 or 1 = Combinatorial
optimization.

» Gradient information to explore the search space cannot be
used.



Optimization Cost Function

» Bound-constrained optimization can be further reduced to an
unconstrained optimization problem using the following
parametric transformation

1+ cos b;

e~ (13)

b =

» Thus, the re-parameterized cost function in terms of 8 is
formulated as

MP cos@ cosf;+1 pm,n
21 1 R

FO)= )
m<n \/(Ef\llf COSaerl R'lm,m) \/(25\4]13 cos 9,+1 Rn n)
(14)




Gradient Descent Formulation

> Let e
1+cost; mn
do(m,n) = Y — LR (15)
i=1

then (14) can be simplified to

dg(m,n) -
n;n <<de<m,m>>“2 <de<n,n>>”2> '

» The steepest-descent method is used to optimize (16).

F(0) =

(16)



Gradient Descent Formulation

v

The gradients VF(0)g can be obtained as follows

_de(m’ n)an dg(m, n)QBmm
VF(0) =
( ) mz<:n do(m,’m)dg(n,n) 2da(m,m)2d9(n,n)
dg(m, n)ZBnn ;
5 ©sin (0),

2dg(m, m)dg(n,n)

v

VF(0) € RMPx1
©® is the element-by-element multiplication operator
R™ = [R{"™, Ry™, -, Rip]"

v

v



Gradient Descent Formulation

The random stochastic gradient descent algorithm uses a sample noise
term r drawn uniformly from the unit sphere. Assuming 0" is the k'h
iteration result, at the k'™ + 1 iteration and a step size a:

OFtt = 0F — a [VE(0F) + 1] (17)

» Gray-valued coded aperture masks with pixel values between 0 and
1 which make the coded aperture fabrication impractical.

> A global threshold parameter 0 < t,,, < 1 to quantize values as
0;)+1
@-=U< “S‘;*—tm>, (18)

> U(x) =1 forz >0, U(z) = 0 otherwise. Heaviside/ step function
of z.

» The coded aperture matrix C is constructed such that matrix Q is
formed by the rows of matrix H corresponding to the detector
elements for which 3; = 1.



Regularization

» Global thresholding is sub-optimal.

» Transmittance of the coded apertures obtained by the
optimization algorithm cannot be controlled.

» Incorporate prior knowledge about the solution by constraining
the solution space through regularization terms.

A

b = argmin F(b) + 11 V1 (b) + 72 V2(b), (19)
a

» F'(b) is the data fidelity term

> Vi and V5 are the regularization terms used to reduce the
solution space and constrain the optimized results.

> 71 and 7o regularization weights.



Quadratic Penalty-Obtain near-binary gray codes
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The quadratic penalty term
is

Vi(b) = 4bT (1 —b), (20)

For each coded aperture
element

Vi(b) =1—(2b; — 1)2.
The penalty is maximum for

b; = 0.5 and minimum for 0
and 1.

The gradient of V;(b) is
given by
VVi(b) = (—8a+4)



Transmittance-Uniformity Penalty

The quadratic penalty term is chosen as the variance of the sum of
the length of the rays that measure each pixel:

LE(Em) ] w

k‘EQC =1

> 1 desired mean for the ray concentration, No number of
pixels in ROl Q¢ and H; j, is the intersection length of the ith
ray with every pixel inside Q¢.

» This penalty is minimum when the number of rays that sense
every pixel inside Q¢ is approximately p.

» VV;(a) can be obtained as follows

VVa(b [\/ITTHQC u] Hoo]" @ Wﬂ_l (22)



Configuration

S1 * Ry =40 cm - distance from the center of
rotation to the X-ray source

Ty = 80 cm — source-to-detector-center
distance

* Detector length 41.3 cm.

* Casel

M =P =2N =64
* Case?2

M=P=2N =128
e Case3

M =P =2N =256



PSNR of the Reconstructions (Case 1)

17.58 dB
19.07 dB

~Average Random
~Optimal

~Average Random
~Optimal

16 26 66

36 46 56 36 .46 56
Sub-sampling rate % Sub-sampling rate %

(@ ®)



Case 1. with D=1303 unblocked rays

Normalized
absolute error

Random Optimized
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std 5.07, mean 39.84
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14 Optimized
Coded Apertures
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Algorithm iterations and coherence (Case 2) - Haar

Wavelet

Gradient Descent Iterations in time

Mutual Coherence in time
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Reconstruction error (Case 2) for different

representation basis

Normalized absolute error

Random
Optimized Coded Apertures
Coded Apertures

Optimized
Coded Apertures

0

Normalized absolute error
o

Normalized absolute error plots for the reconstructions of the 64 x 64
Shepp-Logan phantom.

a Haar Wavelet - Subsampling rate 32.47 %
b Symlet Wavelet Subsampling rate 32.43 %



Uniformity (Case 2)

Random

Optimized

46.90 Optimized

. . |0 . ‘0
std 2.53, mean 37.48 std 1.99, mean 16.02

24.26
std 2.26, mean 37.70

std 1.96, mean 16.81

DA 34/39



Reconstruction results (Case 2)

Optimized Random

Original

Walnut phantom - K. Hamalainen, A. Harhanen, A. Kallonen, A. Kujanpaa, E. Niemi, and S. Siltanen,
“Tomographic X-ray data of a walnut,” arXiv preprint arXiv:1502.04064, (2015)



Reconstruction results (Case 2)

Normalized Absolute Error

— Random Sub-Sampling| |
— Optimal Sub-Sampling | |
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Walnut phantom - K. Hamalainen, A. Harhanen, A. Kallonen, A. Kujanpaa, E. Niemi, and S. Siltanen,
“Tomographic X-ray data of a walnut,” arXiv preprint arXiv:1502.04064, (2015)



Reconstruction results (Case 3) - Real projection
data
Random

No coded apertures Optimized

100 % Rays 20.6 % Rays 20.6 % Rays

Lotus Root measurements - T. A. Bubba, A. Hauptmann, S. Huotari, J. Rimpelainen, and S. Siltanen,
“Tomographic x-ray data of a lotus root filled with attenuating objects,” arXiv preprint arXiv:1609.07299, (2016)



Reconstruction results (Case 3) - Real projection

data

Singular Values

— Random Sub-Sampling|
— Optimal Sub-Sampling
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min

0

1000 2000 3000 4000 5000 6000 7000 8000 9000
Component Number

Lotus Root measurements - T. A. Bubba, A. Hauptmann, S. Huotari, J. Rimpelainen, and S. Siltanen,
“Tomographic x-ray data of a lotus root filled with attenuating objects,” arXiv preprint arXiv:1609.07299, (2016)



Compressive X-Ray Tomosynthesis

Sources

Coded Apertures
N; X N,

Object
Q=01 X0Q2XQ3

Detector
N2 Nl X Nz




Experimental Testbed

P
-

N M Voxel Size

Object
10.3%0.4%6,8 mm

”'.-._‘

= Detector
Pixel Pitch: 0.4 mm




Coded Aperture Implementation

Tungsten Coded Aperture

Coded Projection
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Target ( Ipod Touch)




Experimental Testbed

» Sources Locations —20 cm, —10 cm, 0, 10 cm and 20 cm.
» Object: 12 slices of 128 x 128 pixels.
» Detector: 140 x 240.

Projections from 2 source locations.

Central Source Source located 10 cm to the left of the
center source



Real Data Reconstruction - 6th Slice

Optimized Codes = Random Codes

O = 5 = = QA 62/70



Real Data Reconstruction - 6th Slice

Optimized Codes

Random Codes

Tungsten Coded




Real Data Reconstruction - 12th Slice

Optimized Codes = Random Codes

O = 5 = = QA 63/70



Conclusion and Future Work

» Optimized Coded apertures
for compressive X-ray
tomosynthesis.

» Criteria: Make each
snapshot non-redundant and
complimentary to each
other.

» Optimization yields uniform
sensing.

» Optimized codes result in
3dB PSNR improvement.

» Compressive Computed
Tomography (CT).

» Compressive Spectral CT.
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