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Tomography Problem

The Inverse Problem

I Matrix H is typically almost singular
I Ill-conditioned problem
I No fast inversion method
I Direct Inversions are extremely time-

and memory-intensive

New Approach

I Coded Aperture in Compressive
X-Ray Tomography
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Motivation for Compressive X-Ray Tomography
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Motivation for Compressive X-Ray Tomography
I Random coded apertures trim down the number of rays.
I H matrix has the same size in both cases.
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Coded aperture compressive fan beam X-ray CT

(a) Coded aperture compressive fan beam X-ray CT system.
(b) Undersampled sinogram of 64× 64 Shepp-Logan Phantom P = 128, M = 128,

50% undersampling.
(c) Complete uncoded sinogram.
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All ones - Coded aperture and energy mapping
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Coded aperture and energy mapping
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Coded aperture and energy mapping

I H: intersection length of each ray with every pixel.
I M is the number of detector elements for each of the P view angles, N2 is the

number of pixels in the image, and D is the number of un-blocked elements in
the coded apertures.

I C: coded aperture matrix.
I Q: system matrix containing the rows of H corresponding to the un-blocked

detectors.
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Coded aperture sub-sampling strategies1

1Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. MacCabe, D. Politte, J. O’Sullivan, L. Carin, and D. J. Brady, “Compressed
sampling strategies for tomography,” in JOSA A 2014.
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Coded aperture optimization
The Restricted Isometry Property (RIP) δs of the system matrix
Ã ∈ RD×N2 with normalized columns is defined as:

(1− δs)||x||22 ≤ ||Ãx||22 ≤ (1 + δs)||x||22, (1)

The matrix Ã satisfies the RIP if δs is small for reasonably large s
if it holds that 2

δs = max
S⊂[N2],|S|≤s

||Ã∗SÃS − I||2, (2)

where [N2] := 1, 2, · · · , N2 and |S| is the cardinality of S. ÃS are
the column sub-matrices of Ã consisting of the columns indexed by

S and ||Ã||2 =
(∑min{D,N2}

i=1 σ2
i (Ã)

) 1
2

where σi are the singular
values of the matrix.

2H. Rauhut, “Compressive sensing and structured random matrices”, Radon Series Comp. Appl. Math XX,2011.
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Using the fact that ||A||2 ≤ ||A||F , where ||A||F =
√∑

i

∑
j |Aij |2.

Then (2) can be simplified as follows

δs = max
S⊂[N2],|S|≤s

||Ã∗SÃS − I||2

≤ max
S⊂[N2],|S|≤s

||Ã∗SÃS − I||F

≤ ||Ã∗Ã− I||F

Therefore, δs is bounded by the Frobenious norm of the PSF of the
system3, Ã∗Ã, that is

δs ≤ ||Ã
∗Ã− I||F . (3)

3W. Hou and C. Zhang, “Analysis of compressed sensing based CT reconstruction with low radiation,” ISPACS, Kuching, 2014.
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Connection with the mutual coherence
The mutual coherence of A = [a1 · · · aN2 ] is defined as

µ(A) = max
i 6=j,1≤i,j≤N2

{
aT

i aj

||ai||`2 ||aj ||`2

}
. (4)

Coherence minimization can be performed by making any subset of
columns in A as orthogonal as possible 4, that is, minimizing

||Ã∗Ã− I||F (5)

I Result equivalent to the upper bound for the RIP in (4).
I The coded aperture optimization is formulated as the search of C,

over the D ×MP binary space such that

Ĉ = argmin
C
||Ã∗Ã− I||F = argmin

C
Γ. (6)

4J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying
dictionary optimization,” in IEEE Transactions on Image Processing, 2009.
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Simplification of Ã∗Ã

I Let C = [c1 c2 · · · cMP ], where ci are D−long column vectors.
I W = HΨ = [wT

1 wT
2 · · ·wT

MP ]T , where wi are N2− long row
vectors.

I The sensing matrix A can be represented as

A = CW =
MP∑
i=1

ciwi (7)

I The element of A in the (m,n) position can be written as

A(m,n) =
MP∑
i=1

ci(m)wi(n) (8)
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Simplification of Ã∗Ã
The inner product between the mth and nth columns after normalization
of A is given by:

[ÃT Ã]mn =
∑MP

i,j 〈ci, cj〉wi(m)wj(n)√(∑MP
i,j 〈ci, cj〉wi(m)wj(m)

)√(∑MP
i,j 〈ci, cj〉wi(n)wj(n)

) .
(9)

I 〈ci, cj〉 = 0 ∀i 6= j

I 〈ci, cj〉 = 1 ∀i = j and
ci 6= 0

I Thus, the norm of ci

can be expressed as a
binary variable
bi = 〈ci, ci〉.
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Simplification of Ã∗Ã

Simplifying (9)

[ÃT Ã]mn =
∑MP
i=1 biwi(m)wi(n)(∑MP

i=1 biwi(m)wi(m)
)1/2 (∑MP

i=1 biwi(n)wi(n)
)1/2 .

(10)

I Rm,ni = wi(m)wi(n)
I d(m,n) =

∑MP
i=1 biR

m,n
i

I Substituting in (10)

[ÃT Ã]mn = d(m,n)
(d(m,m))1/2 (d(n, n))1/2 (11)
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Optimization Cost Function

The reparameterized cost function can be formulated in terms of
the parameter b = [b1, · · · , bMP ] as follows

b̂ = argmin
b

N2∑
m=1

N2∑
n=1
|[ÃT Ã]mn − Imn|2 (12)

= argmin
b

∑
m<n

(
d(m,n)

(d(m,m))1/2 (d(n, n))1/2

)2

= argmin
b

F (b) ,

I Values bi can only take values 0 or 1 ⇒ Combinatorial
optimization.

I Gradient information to explore the search space cannot be
used.
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Optimization Cost Function

I Bound-constrained optimization can be further reduced to an
unconstrained optimization problem using the following
parametric transformation

bi = 1 + cos θi
2 , (13)

I Thus, the re-parameterized cost function in terms of θ is
formulated as

F (θ) =
∑
m<n


∑MP
i=1

cos θi+1
2 Rm,ni√(∑MP

i=1
cos θi+1

2 Rm,mi

)√(∑MP
i=1

cos θi+1
2 Rn,ni

)


2

.

(14)
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Gradient Descent Formulation

I Let

dθ(m,n) =
MP∑
i=1

1 + cos θi
2 Rm,ni (15)

then (14) can be simplified to

F (θ) =
∑
m<n

(
dθ(m,n)

(dθ(m,m))1/2 (dθ(n, n))1/2

)2

. (16)

I The steepest-descent method is used to optimize (16).
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Gradient Descent Formulation

I The gradients ∇F (θ)θ can be obtained as follows

∇F (θ) =
∑
m<n

−dθ(m,n)Rmn

dθ(m,m)dθ(n, n) + dθ(m,n)2Rmm

2dθ(m,m)2dθ(n, n)

+ dθ(m,n)2Rnn

2dθ(m,m)dθ(n, n)2 � sin (θ),

I ∇F (θ) ∈ RMP×1

I � is the element-by-element multiplication operator
I Rmn = [Rmn1 , Rmn2 , · · · , RmnMP ]T
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Gradient Descent Formulation
The random stochastic gradient descent algorithm uses a sample noise
term r drawn uniformly from the unit sphere. Assuming θk is the kth

iteration result, at the kth + 1 iteration and a step size α:

θk+1
i = θk

i − α
[
∇F (θk

i ) + r
]

(17)

I Gray-valued coded aperture masks with pixel values between 0 and
1 which make the coded aperture fabrication impractical.

I A global threshold parameter 0 ≤ tm ≤ 1 to quantize values as

βi = U

(√
cos(θi) + 1

2 − tm

)
, (18)

I U(x) = 1 for x ≥ 0, U(x) = 0 otherwise. Heaviside/ step function
of x.

I The coded aperture matrix C is constructed such that matrix Q is
formed by the rows of matrix H corresponding to the detector
elements for which βi = 1.
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Regularization

I Global thresholding is sub-optimal.
I Transmittance of the coded apertures obtained by the

optimization algorithm cannot be controlled.
I Incorporate prior knowledge about the solution by constraining

the solution space through regularization terms.

b̂ = argmin
a

F (b) + γ1V1(b) + γ2V2(b), (19)

I F (b) is the data fidelity term
I V1 and V2 are the regularization terms used to reduce the

solution space and constrain the optimized results.
I γ1 and γ2 regularization weights.
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Quadratic Penalty-Obtain near-binary gray codes

I The quadratic penalty term
is

V1(b) = 4bT (1− b), (20)

I For each coded aperture
element
V1(bi) = 1− (2bi − 1)2.

I The penalty is maximum for
bi = 0.5 and minimum for 0
and 1.

I The gradient of V1(b) is
given by
∇V1(b) = (−8a + 4)
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Transmittance-Uniformity Penalty
The quadratic penalty term is chosen as the variance of the sum of
the length of the rays that measure each pixel:

V2(b) = 1
NC

∑
k∈ΩC

[(
MP∑
i=1

√
biHi,k

)
− µ

]2

, (21)

I µ desired mean for the ray concentration, NC number of
pixels in ROI ΩC and Hi,k is the intersection length of the ith
ray with every pixel inside ΩC .

I This penalty is minimum when the number of rays that sense
every pixel inside ΩC is approximately µ.

I ∇V2(a) can be obtained as follows

∇V2(b) = 1
NC

[√
bTHΩC

− µ
]

[HΩC
]T �

[√
bT
]−1

(22)
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Configuration
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PSNR of the Reconstructions (Case 1)
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Case 1. with D=1303 unblocked rays
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Algorithm iterations and coherence (Case 2) - Haar
Wavelet

a,c Subsampling
rate of 47.3%

b,d Subsampling
rate of 20.3%
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Reconstruction error (Case 2) for different
representation basis

Normalized absolute error plots for the reconstructions of the 64× 64
Shepp-Logan phantom.

a Haar Wavelet - Subsampling rate 32.47 %
b Symlet Wavelet Subsampling rate 32.43 %
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Uniformity (Case 2)
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Reconstruction results (Case 2)

Walnut phantom - K. Hämäläinen, A. Harhanen, A. Kallonen, A. Kujanpää, E. Niemi, and S. Siltanen,
“Tomographic X-ray data of a walnut,” arXiv preprint arXiv:1502.04064, (2015)
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Reconstruction results (Case 2)

Walnut phantom - K. Hämäläinen, A. Harhanen, A. Kallonen, A. Kujanpää, E. Niemi, and S. Siltanen,
“Tomographic X-ray data of a walnut,” arXiv preprint arXiv:1502.04064, (2015)
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Reconstruction results (Case 3) - Real projection
data

Lotus Root measurements - T. A. Bubba, A. Hauptmann, S. Huotari, J. Rimpelainen, and S. Siltanen,
“Tomographic x-ray data of a lotus root filled with attenuating objects,” arXiv preprint arXiv:1609.07299, (2016)
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Reconstruction results (Case 3) - Real projection
data

Lotus Root measurements - T. A. Bubba, A. Hauptmann, S. Huotari, J. Rimpelainen, and S. Siltanen,
“Tomographic x-ray data of a lotus root filled with attenuating objects,” arXiv preprint arXiv:1609.07299, (2016)
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Compressive X-Ray Tomosynthesis
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Experimental Testbed
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Coded Aperture Implementation
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Experimental Testbed

I Sources Locations ≠20 cm, ≠10 cm, 0, 10 cm and 20 cm.
I Object: 12 slices of 128 ◊ 128 pixels.
I Detector: 140 ◊ 240.

Projections from 2 source locations.
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Real Data Reconstruction - 6th Slice
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Real Data Reconstruction - 6th Slice
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Real Data Reconstruction - 12th Slice
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Conclusion and Future Work

I Optimized Coded apertures
for compressive X-ray
tomosynthesis.

I Criteria: Make each
snapshot non-redundant and
complimentary to each
other.

I Optimization yields uniform
sensing.

I Optimized codes result in
3dB PSNR improvement.

I Compressive Computed
Tomography (CT).

I Compressive Spectral CT.



1/1

Acknowledgements
I Computational Imaging Group: Hoover Rueda, Claudia Correa,

Laura Galvis, Chen Fu, Angela Cuadros, Alejandro Parada, Carlos
Mendoza, Juan Becerra, Michael Don, Edgar Salazar, Juan Florez.

I Collaborators
I Dr. Javier Garcia-Frias - University of Delaware
I Dr. Daniel Lau - University of Kentucky, College of Engineering
I Christopher Peitsch - Chesapeake Testing Services,Inc.
I Dr. Clare Lau, Dr. David Laurence - JHU-APL
I Dr. Xu Ma - Beijing Institute of Technology
I Kris Roe - Smiths Detection

I Sponsored by the Nokia Foundation and Fulbright Finland
Foundation

I Funding from


	CASSI+Tomography_v3
	CASSI+Tomography_v2
	CASSI+Tomography_v2
	FinalPresentation_CompressiveXrayCT_Cropped
	Aalto1




	CASSI+Tomography_v3
	CASSI+Tomography_v2
	CASSI+Tomography_v2
	DuplicateCASSI 72



	GroupandSponsors



