

Coded Apertures in Compressive Tomography

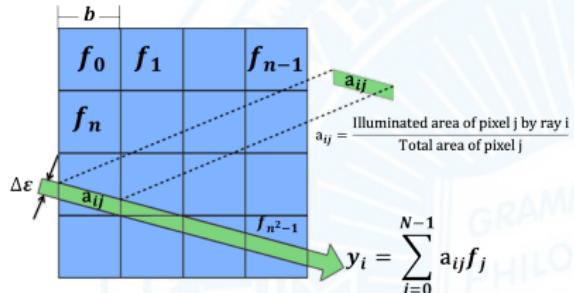
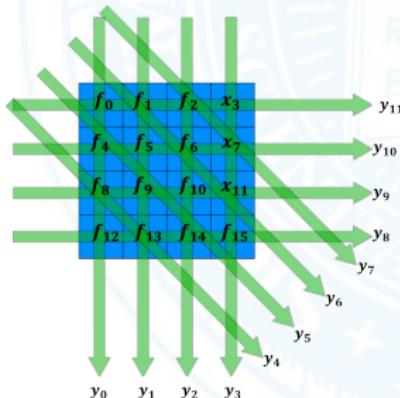
Gonzalo R. Arce

Charles Black Evans Professor and
Fulbright-Nokia Distinguished Chair

Department of Electrical and Computer
Engineering

University of Delaware,
Newark, Delaware, 19716

Tomography Problem



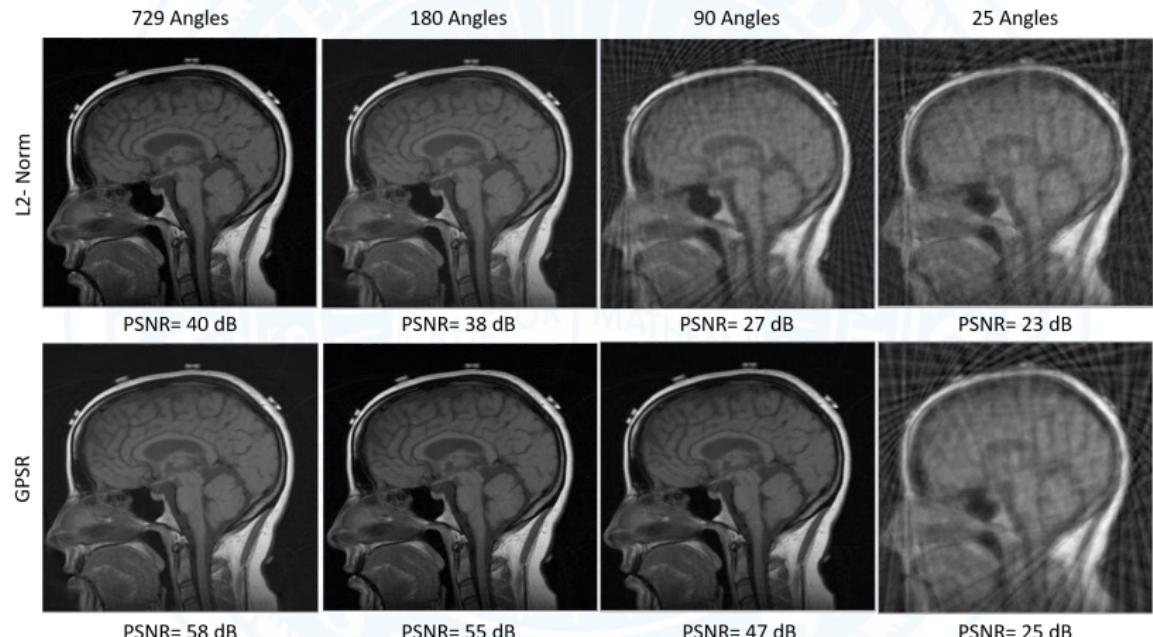
The Inverse Problem

- Matrix **H** is typically almost singular
- Ill-conditioned problem
- No fast inversion method
- Direct Inversions are extremely time- and memory-intensive

New Approach

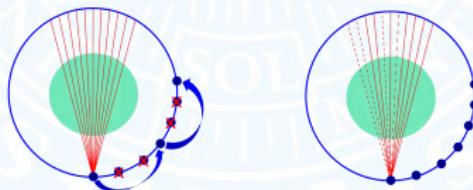
- Coded Aperture in Compressive X-Ray Tomography

Motivation for Compressive X-Ray Tomography



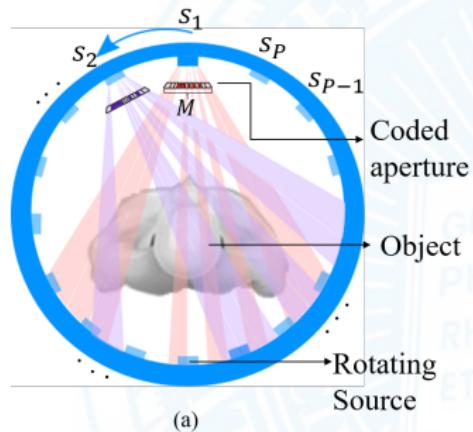
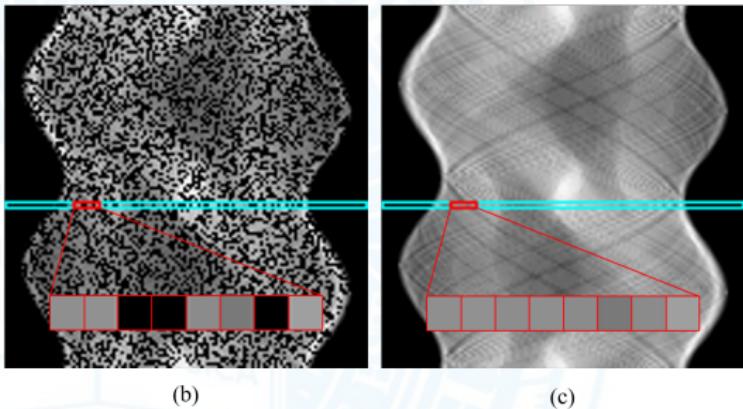
Motivation for Compressive X-Ray Tomography

- ▶ Random coded apertures trim down the number of rays.
- ▶ \mathbf{H} matrix has the same size in both cases.



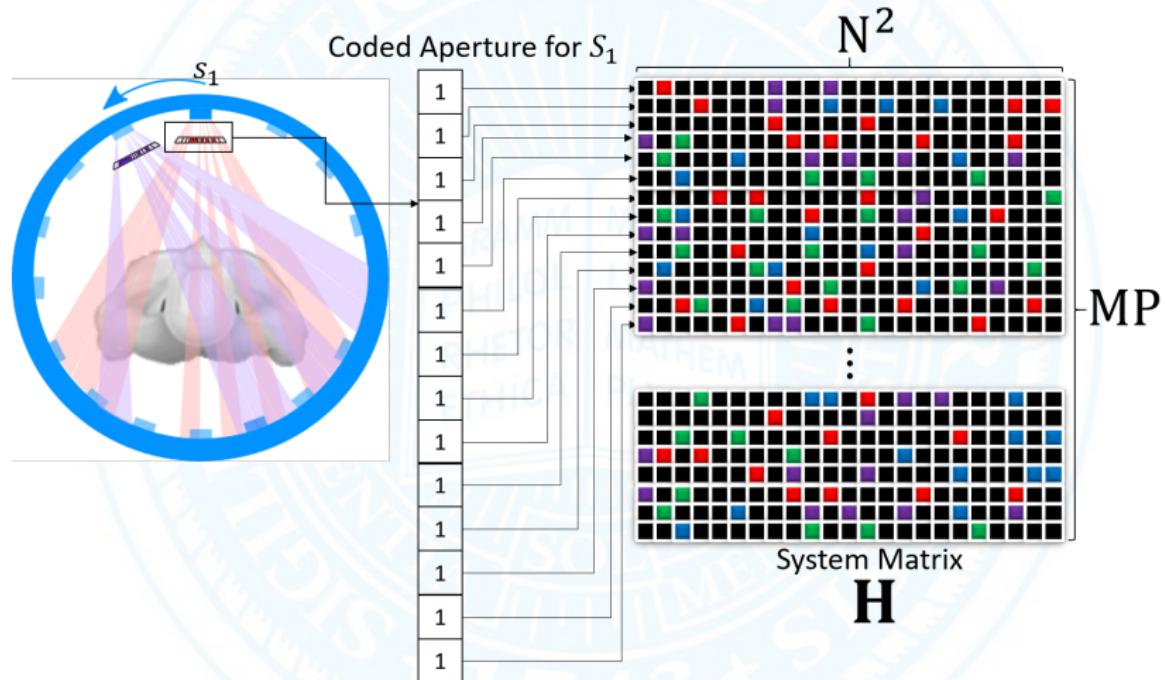
Undersample the view angles Undersample the detectors

Coded aperture compressive fan beam X-ray CT

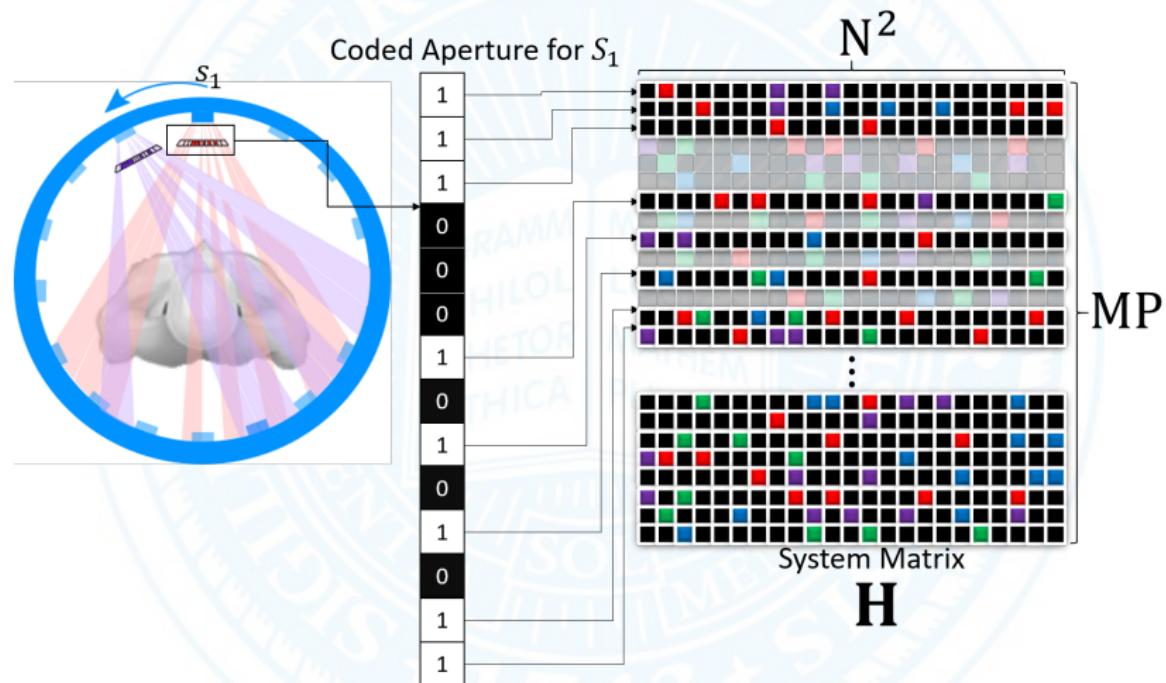


- (a) Coded aperture compressive fan beam X-ray CT system.
- (b) Undersampled sinogram of 64×64 Shepp-Logan Phantom $P = 128$, $M = 128$, 50% undersampling.
- (c) Complete uncoded sinogram.

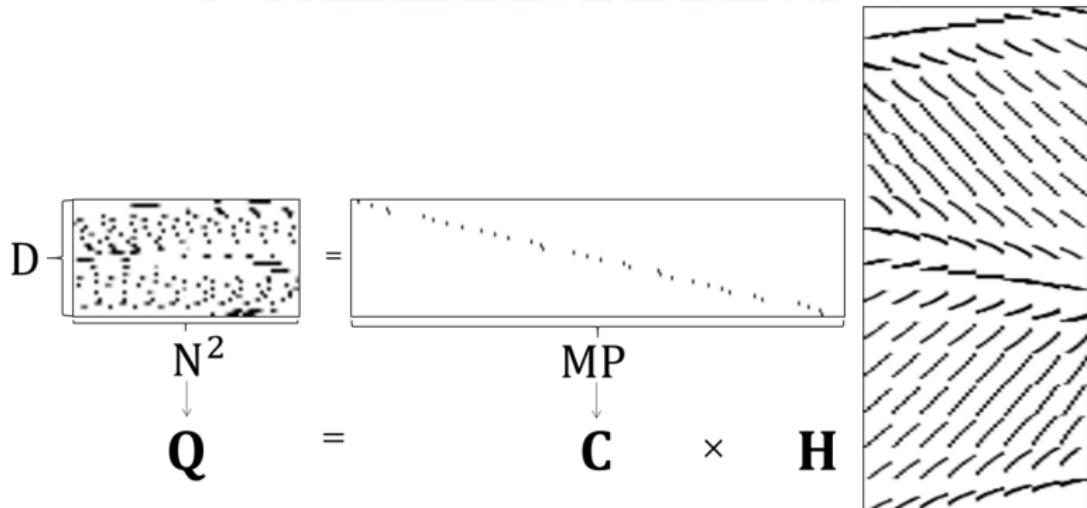
All ones - Coded aperture and energy mapping



Coded aperture and energy mapping

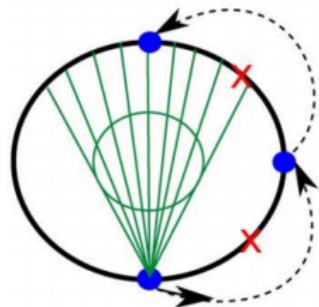


Coded aperture and energy mapping

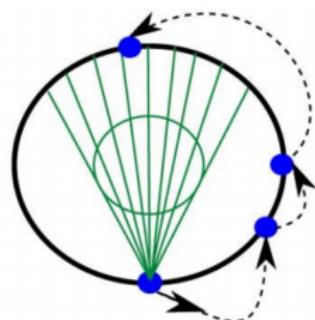


- ▶ **H**: intersection length of each ray with every pixel.
- ▶ M is the number of detector elements for each of the P view angles, N^2 is the number of pixels in the image, and D is the number of un-blocked elements in the coded apertures.
- ▶ **C**: coded aperture matrix.
- ▶ **Q**: system matrix containing the rows of **H** corresponding to the un-blocked detectors.

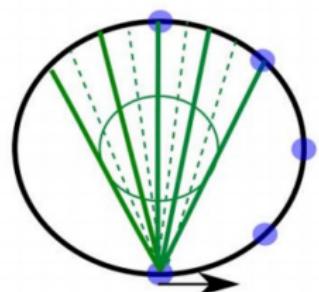
Coded aperture sub-sampling strategies¹



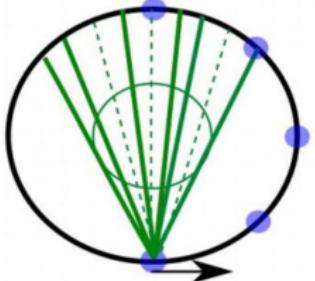
Uniform view (UV) subsampling



Random view (RV)-angle subsampling



Uniform detector (UD) sampling



Random detector (RD) subsampling

¹Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. MacCabe, D. Politte, J. O'Sullivan, L. Carin, and D. J. Brady, "Compressed sampling strategies for tomography," in *JOSA A* 2014.

Coded aperture optimization

The Restricted Isometry Property (RIP) δ_s of the system matrix $\tilde{\mathbf{A}} \in \mathbb{R}^{D \times N^2}$ with normalized columns is defined as:

$$(1 - \delta_s) \|\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \leq (1 + \delta_s) \|\mathbf{x}\|_2^2, \quad (1)$$

The matrix $\tilde{\mathbf{A}}$ satisfies the RIP if δ_s is small for reasonably large s if it holds that ²

$$\delta_s = \max_{S \subset [N^2], |S| \leq s} \|\tilde{\mathbf{A}}_S^* \tilde{\mathbf{A}}_S - I\|_2, \quad (2)$$

where $[N^2] := 1, 2, \dots, N^2$ and $|S|$ is the cardinality of S . $\tilde{\mathbf{A}}_S$ are the column sub-matrices of $\tilde{\mathbf{A}}$ consisting of the columns indexed by S and $\|\tilde{\mathbf{A}}\|_2 = \left(\sum_{i=1}^{\min\{D, N^2\}} \sigma_i^2(\tilde{\mathbf{A}}) \right)^{\frac{1}{2}}$ where σ_i are the singular values of the matrix.

²H. Rauhut, "Compressive sensing and structured random matrices", Radon Series Comp. Appl. Math XX, 2011.

Using the fact that $\|\mathbf{A}\|_2 \leq \|\mathbf{A}\|_F$, where $\|\mathbf{A}\|_F = \sqrt{\sum_i \sum_j |A_{ij}|^2}$. Then (2) can be simplified as follows

$$\begin{aligned}\delta_s &= \max_{S \subset [N^2], |S| \leq s} \|\tilde{\mathbf{A}}_S^* \tilde{\mathbf{A}}_S - I\|_2 \\ &\leq \max_{S \subset [N^2], |S| \leq s} \|\tilde{\mathbf{A}}_S^* \tilde{\mathbf{A}}_S - I\|_F \\ &\leq \|\tilde{\mathbf{A}}^* \tilde{\mathbf{A}} - I\|_F\end{aligned}$$

Therefore, δ_s is bounded by the Frobenius norm of the PSF of the system³, $\tilde{\mathbf{A}}^* \tilde{\mathbf{A}}$, that is

$$\delta_s \leq \|\tilde{\mathbf{A}}^* \tilde{\mathbf{A}} - \mathbf{I}\|_F. \quad (3)$$

³W. Hou and C. Zhang, "Analysis of compressed sensing based CT reconstruction with low radiation," ISPACS, Kuching, 2014.

Connection with the mutual coherence

The mutual coherence of $\mathbf{A} = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_{N^2}]$ is defined as

$$\mu(\mathbf{A}) = \max_{i \neq j, 1 \leq i, j \leq N^2} \left\{ \frac{\mathbf{a}_i^T \mathbf{a}_j}{\|\mathbf{a}_i\|_{\ell_2} \|\mathbf{a}_j\|_{\ell_2}} \right\}. \quad (4)$$

Coherence minimization can be performed by making any subset of columns in \mathbf{A} as orthogonal as possible ⁴, that is, minimizing

$$\|\tilde{\mathbf{A}}^* \tilde{\mathbf{A}} - \mathbf{I}\|_F \quad (5)$$

- ▶ Result equivalent to the upper bound for the RIP in (4).
- ▶ The coded aperture optimization is formulated as the search of \mathbf{C} , over the $D \times MP$ binary space such that

$$\hat{\mathbf{C}} = \underset{\mathbf{C}}{\operatorname{argmin}} \|\tilde{\mathbf{A}}^* \tilde{\mathbf{A}} - \mathbf{I}\|_F = \underset{\mathbf{C}}{\operatorname{argmin}} \Gamma. \quad (6)$$

⁴J. M. Duarte-Carvajalino and G. Sapiro, "Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization," in IEEE Transactions on Image Processing, 2009.

Simplification of $\tilde{\mathbf{A}}^* \tilde{\mathbf{A}}$

- ▶ Let $\mathbf{C} = [\mathbf{c}_1 \ \mathbf{c}_2 \ \cdots \ \mathbf{c}_{MP}]$, where \mathbf{c}_i are D -long column vectors.
- ▶ $\mathbf{W} = \mathbf{H}\Psi = [\mathbf{w}_1^T \ \mathbf{w}_2^T \ \cdots \ \mathbf{w}_{MP}^T]^T$, where \mathbf{w}_i are N^2 - long row vectors.
- ▶ The sensing matrix \mathbf{A} can be represented as

$$\mathbf{A} = \mathbf{C}\mathbf{W} = \sum_{i=1}^{MP} \mathbf{c}_i \mathbf{w}_i \quad (7)$$

- ▶ The element of \mathbf{A} in the (m, n) position can be written as

$$\mathbf{A}(m, n) = \sum_{i=1}^{MP} \mathbf{c}_i(m) \mathbf{w}_i(n) \quad (8)$$

Simplification of $\tilde{\mathbf{A}}^* \tilde{\mathbf{A}}$

The inner product between the m^{th} and n^{th} columns after normalization of \mathbf{A} is given by:

$$[\tilde{\mathbf{A}}^T \tilde{\mathbf{A}}]_{mn} = \frac{\sum_{i,j}^{MP} \langle \mathbf{c}_i, \mathbf{c}_j \rangle \mathbf{w}_i(m) \mathbf{w}_j(n)}{\sqrt{\left(\sum_{i,j}^{MP} \langle \mathbf{c}_i, \mathbf{c}_j \rangle \mathbf{w}_i(m) \mathbf{w}_j(m) \right)} \sqrt{\left(\sum_{i,j}^{MP} \langle \mathbf{c}_i, \mathbf{c}_j \rangle \mathbf{w}_i(n) \mathbf{w}_j(n) \right)}}. \quad (9)$$

$$\begin{matrix} \mathbf{D} \\ \left[\begin{matrix} \text{N}^2 \\ \downarrow \\ \mathbf{Q} \end{matrix} \right] \end{matrix} = \begin{matrix} \text{MP} \\ \times \\ \mathbf{C} \end{matrix} \times \begin{matrix} \text{H} \\ \times \\ \mathbf{H} \end{matrix}$$

- ▶ $\langle \mathbf{c}_i, \mathbf{c}_j \rangle = 0 \quad \forall i \neq j$
- ▶ $\langle \mathbf{c}_i, \mathbf{c}_j \rangle = 1 \quad \forall i = j \text{ and } \mathbf{c}_i \neq \mathbf{0}$
- ▶ Thus, the norm of \mathbf{c}_i can be expressed as a binary variable
 $b_i = \langle \mathbf{c}_i, \mathbf{c}_i \rangle.$

Simplification of $\tilde{\mathbf{A}}^* \tilde{\mathbf{A}}$

Simplifying (9)

$$[\tilde{\mathbf{A}}^T \tilde{\mathbf{A}}]_{mn} = \frac{\sum_{i=1}^{MP} b_i \mathbf{w}_i(m) \mathbf{w}_i(n)}{\left(\sum_{i=1}^{MP} b_i \mathbf{w}_i(m) \mathbf{w}_i(m)\right)^{1/2} \left(\sum_{i=1}^{MP} b_i \mathbf{w}_i(n) \mathbf{w}_i(n)\right)^{1/2}}. \quad (10)$$

- ▶ $R_i^{m,n} = \mathbf{w}_i(m) \mathbf{w}_i(n)$
- ▶ $d(m, n) = \sum_{i=1}^{MP} b_i R_i^{m,n}$
- ▶ Substituting in (10)

$$[\tilde{\mathbf{A}}^T \tilde{\mathbf{A}}]_{mn} = \frac{d(m, n)}{(d(m, m))^{1/2} (d(n, n))^{1/2}} \quad (11)$$

Optimization Cost Function

The reparameterized cost function can be formulated in terms of the parameter $\mathbf{b} = [b_1, \dots, b_{MP}]$ as follows

$$\begin{aligned}\hat{\mathbf{b}} &= \underset{\mathbf{b}}{\operatorname{argmin}} \sum_{m=1}^{N^2} \sum_{n=1}^{N^2} |[\tilde{\mathbf{A}}^T \tilde{\mathbf{A}}]_{mn} - \mathbf{I}_{mn}|^2 \quad (12) \\ &= \underset{\mathbf{b}}{\operatorname{argmin}} \sum_{m < n} \left(\frac{d(m, n)}{(d(m, m))^{1/2} (d(n, n))^{1/2}} \right)^2 = \underset{\mathbf{b}}{\operatorname{argmin}} F(\mathbf{b}) ,\end{aligned}$$

- ▶ Values b_i can only take values 0 or 1 \Rightarrow Combinatorial optimization.
- ▶ Gradient information to explore the search space cannot be used.

Optimization Cost Function

- ▶ Bound-constrained optimization can be further reduced to an unconstrained optimization problem using the following parametric transformation

$$b_i = \frac{1 + \cos \theta_i}{2}, \quad (13)$$

- ▶ Thus, the re-parameterized cost function in terms of θ is formulated as

$$F(\theta) = \sum_{m < n} \left(\frac{\sum_{i=1}^{MP} \frac{\cos \theta_i + 1}{2} R_i^{m,n}}{\sqrt{\left(\sum_{i=1}^{MP} \frac{\cos \theta_i + 1}{2} R_i^{m,m} \right)} \sqrt{\left(\sum_{i=1}^{MP} \frac{\cos \theta_i + 1}{2} R_i^{n,n} \right)}} \right)^2. \quad (14)$$

Gradient Descent Formulation

- ▶ Let

$$d_{\theta}(m, n) = \sum_{i=1}^{MP} \frac{1 + \cos \theta_i}{2} R_i^{m,n} \quad (15)$$

then (14) can be simplified to

$$F(\boldsymbol{\theta}) = \sum_{m < n} \left(\frac{d_{\theta}(m, n)}{(d_{\theta}(m, m))^{1/2} (d_{\theta}(n, n))^{1/2}} \right)^2. \quad (16)$$

- ▶ The steepest-descent method is used to optimize (16).

Gradient Descent Formulation

- ▶ The gradients $\nabla F(\boldsymbol{\theta})$ can be obtained as follows

$$\begin{aligned}\nabla F(\boldsymbol{\theta}) = & \sum_{m < n} \frac{-d_{\theta}(m, n) \underline{\mathbf{R}}^{mn}}{d_{\theta}(m, m) d_{\theta}(n, n)} + \frac{d_{\theta}(m, n)^2 \underline{\mathbf{R}}^{mm}}{2d_{\theta}(m, m)^2 d_{\theta}(n, n)} \\ & + \frac{d_{\theta}(m, n)^2 \underline{\mathbf{R}}^{nn}}{2d_{\theta}(m, m) d_{\theta}(n, n)^2} \odot \sin(\theta),\end{aligned}$$

- ▶ $\nabla F(\boldsymbol{\theta}) \in \mathbb{R}^{MP \times 1}$
- ▶ \odot is the element-by-element multiplication operator
- ▶ $\underline{\mathbf{R}}^{mn} = [R_1^{mn}, R_2^{mn}, \dots, R_{MP}^{mn}]^T$

Gradient Descent Formulation

The random stochastic gradient descent algorithm uses a sample noise term r drawn uniformly from the unit sphere. Assuming θ^k is the k^{th} iteration result, at the $k^{th} + 1$ iteration and a step size α :

$$\theta_i^{k+1} = \theta_i^k - \alpha [\nabla F(\theta_i^k) + r] \quad (17)$$

- ▶ Gray-valued coded aperture masks with pixel values between 0 and 1 which make the coded aperture fabrication impractical.
- ▶ A global threshold parameter $0 \leq t_m \leq 1$ to quantize values as

$$\beta_i = U \left(\sqrt{\frac{\cos(\theta_i) + 1}{2}} - t_m \right), \quad (18)$$

- ▶ $U(x) = 1$ for $x \geq 0$, $U(x) = 0$ otherwise. Heaviside/ step function of x .
- ▶ The coded aperture matrix **C** is constructed such that matrix **Q** is formed by the rows of matrix **H** corresponding to the detector elements for which $\beta_i = 1$.

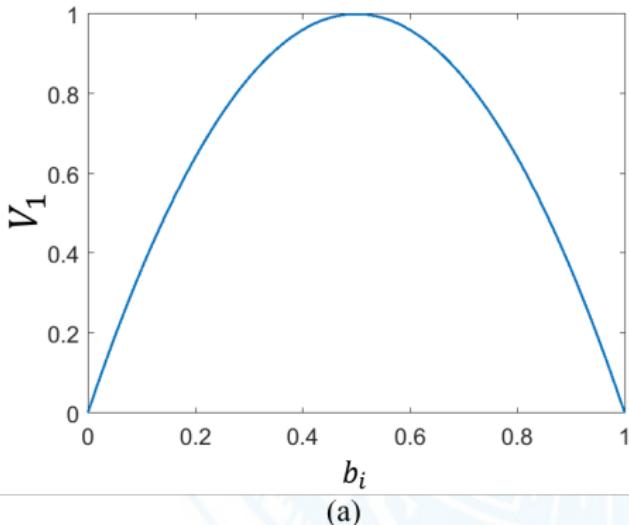
Regularization

- ▶ Global thresholding is sub-optimal.
- ▶ Transmittance of the coded apertures obtained by the optimization algorithm cannot be controlled.
- ▶ Incorporate prior knowledge about the solution by constraining the solution space through regularization terms.

$$\hat{\mathbf{b}} = \underset{\mathbf{a}}{\operatorname{argmin}} F(\mathbf{b}) + \gamma_1 V_1(\mathbf{b}) + \gamma_2 V_2(\mathbf{b}), \quad (19)$$

- ▶ $F(\mathbf{b})$ is the data fidelity term
- ▶ V_1 and V_2 are the regularization terms used to reduce the solution space and constrain the optimized results.
- ▶ γ_1 and γ_2 regularization weights.

Quadratic Penalty-Obtain near-binary gray codes



- ▶ The quadratic penalty term is

$$V_1(\mathbf{b}) = 4\mathbf{b}^T(\mathbf{1} - \mathbf{b}), \quad (20)$$

- ▶ For each coded aperture element
- $$V_1(b_i) = 1 - (2b_i - 1)^2.$$
- ▶ The penalty is maximum for $b_i = 0.5$ and minimum for 0 and 1.
- ▶ The gradient of $V_1(\mathbf{b})$ is given by
- $$\nabla V_1(\mathbf{b}) = (-8\mathbf{a} + 4)$$

Transmittance-Uniformity Penalty

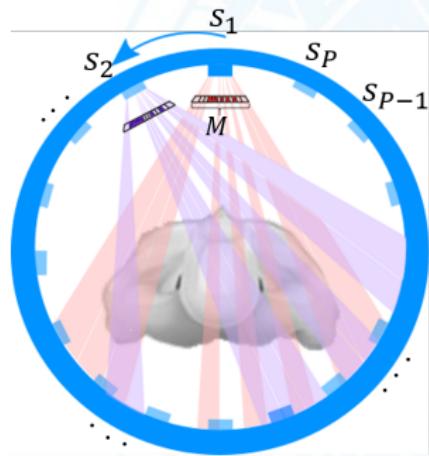
The quadratic penalty term is chosen as the variance of the sum of the length of the rays that measure each pixel:

$$V_2(\mathbf{b}) = \frac{1}{N_C} \sum_{k \in \Omega_C} \left[\left(\sum_{i=1}^{MP} \sqrt{b_i} \mathbf{H}_{i,k} \right) - \mu \right]^2, \quad (21)$$

- ▶ μ desired mean for the ray concentration, N_C number of pixels in ROI Ω_C and $H_{i,k}$ is the intersection length of the i^{th} ray with every pixel inside Ω_C .
- ▶ This penalty is minimum when the number of rays that sense every pixel inside Ω_C is approximately μ .
- ▶ $\nabla V_2(\mathbf{b})$ can be obtained as follows

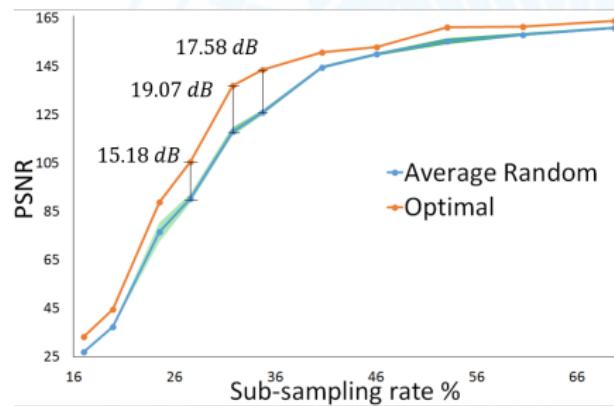
$$\nabla V_2(\mathbf{b}) = \frac{1}{N_C} \left[\sqrt{\mathbf{b}^T \mathbf{H}_{\Omega_C}} - \mu \right] [\mathbf{H}_{\Omega_C}]^T \odot \left[\sqrt{\mathbf{b}^T} \right]^{-1} \quad (22)$$

Configuration

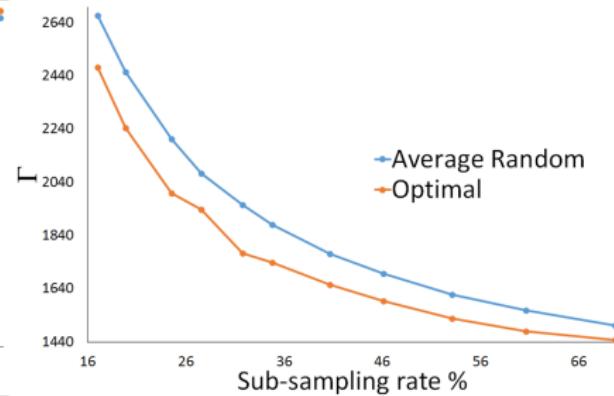


- $R_0 = 40 \text{ cm} \rightarrow$ distance from the center of rotation to the X-ray source
- $T_0 = 80 \text{ cm} \rightarrow$ source-to-detector-center distance
- Detector length 41.3 cm .
 - Case 1
 $M = P = 2N = 64$
 - Case 2
 $M = P = 2N = 128$
 - Case 3
 $M = P = 2N = 256$

PSNR of the Reconstructions (Case 1)

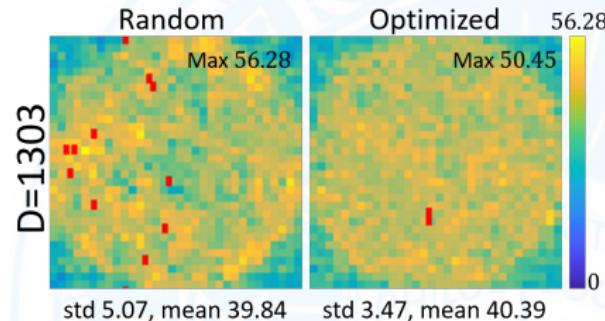
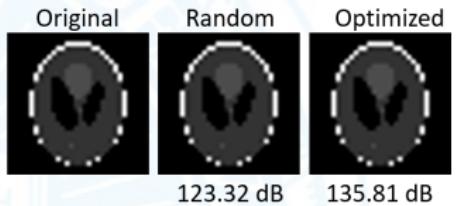
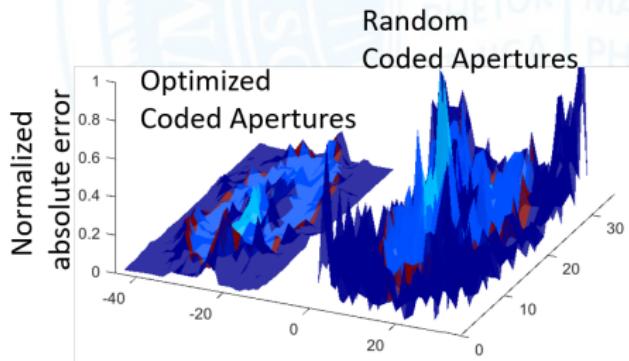
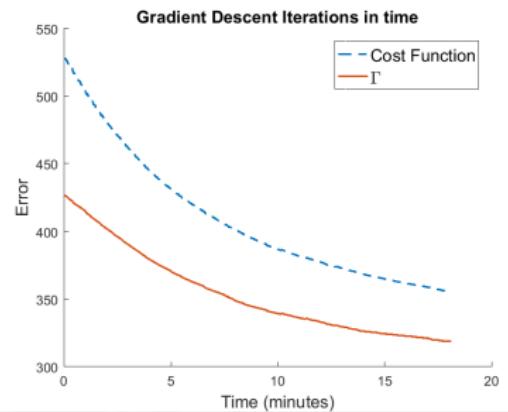


(a)

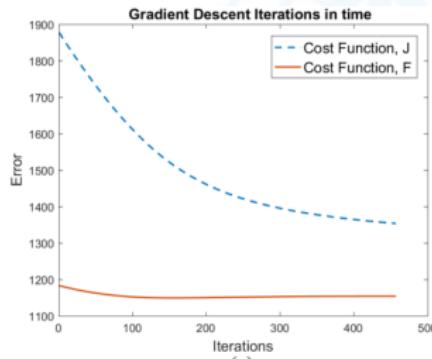
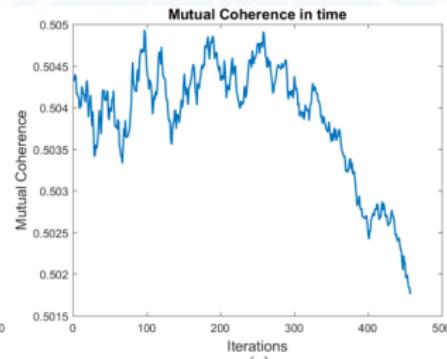
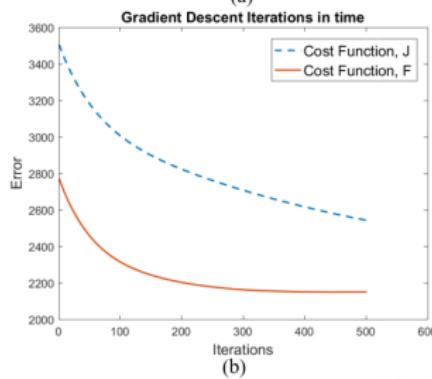
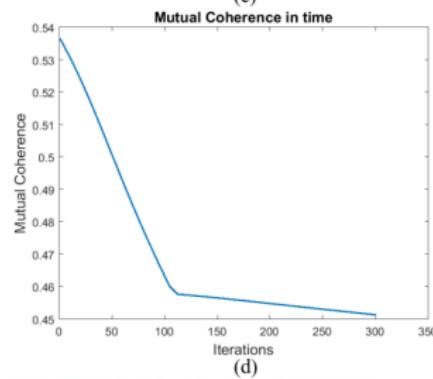


(b)

Case 1. with $D=1303$ unblocked rays



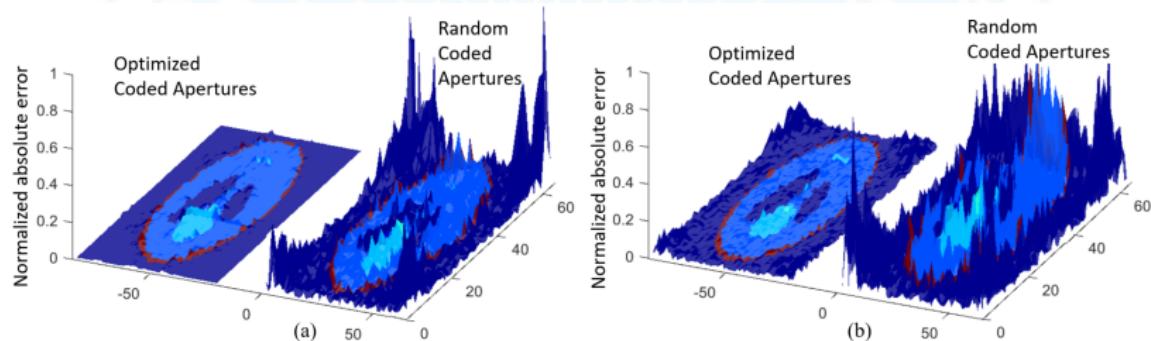
Algorithm iterations and coherence (Case 2) - Haar Wavelet



a,c Subsampling rate of 47.3%

b,d Subsampling rate of 20.3%

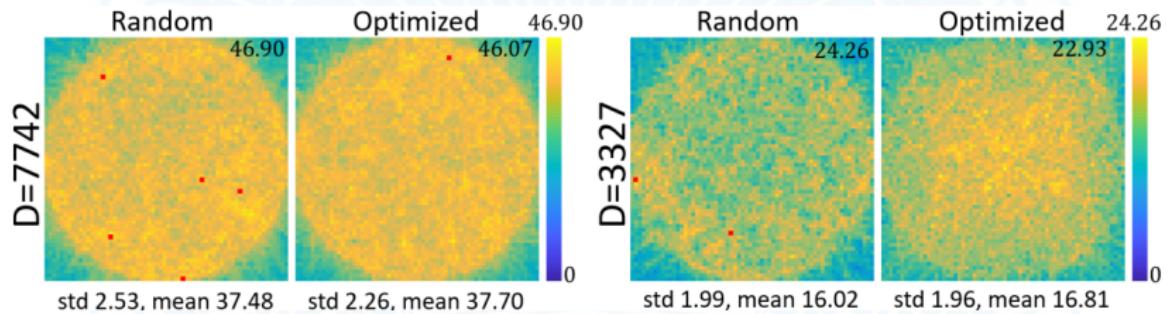
Reconstruction error (Case 2) for different representation basis



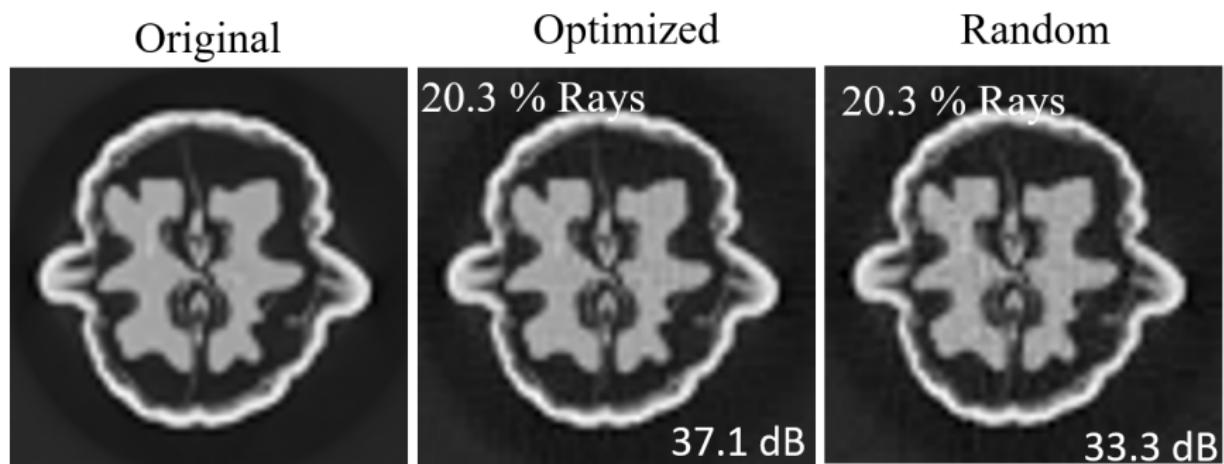
Normalized absolute error plots for the reconstructions of the 64×64 Shepp-Logan phantom.

- a Haar Wavelet - Subsampling rate 32.47 %
- b Symlet Wavelet Subsampling rate 32.43 %

Uniformity (Case 2)



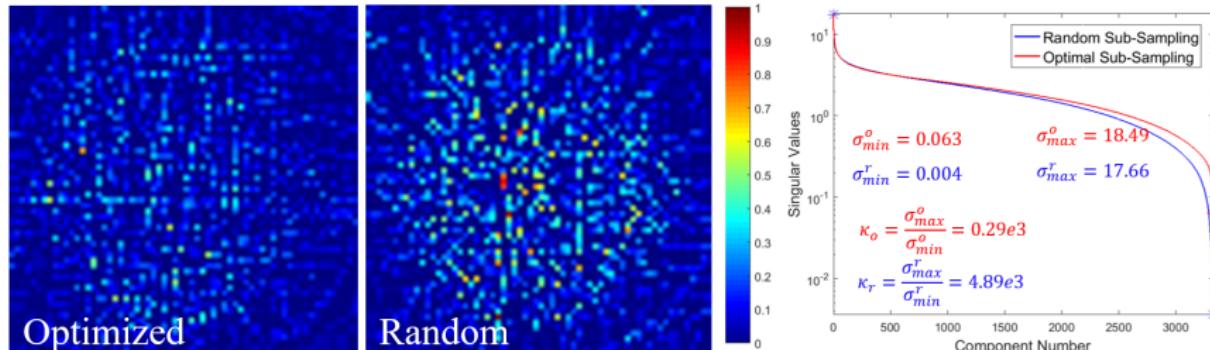
Reconstruction results (Case 2)



Walnut phantom - K. Hämäläinen, A. Harhanen, A. Kallonen, A. Kujanpää, E. Niemi, and S. Siltanen, "Tomographic X-ray data of a walnut," arXiv preprint arXiv:1502.04064, (2015)

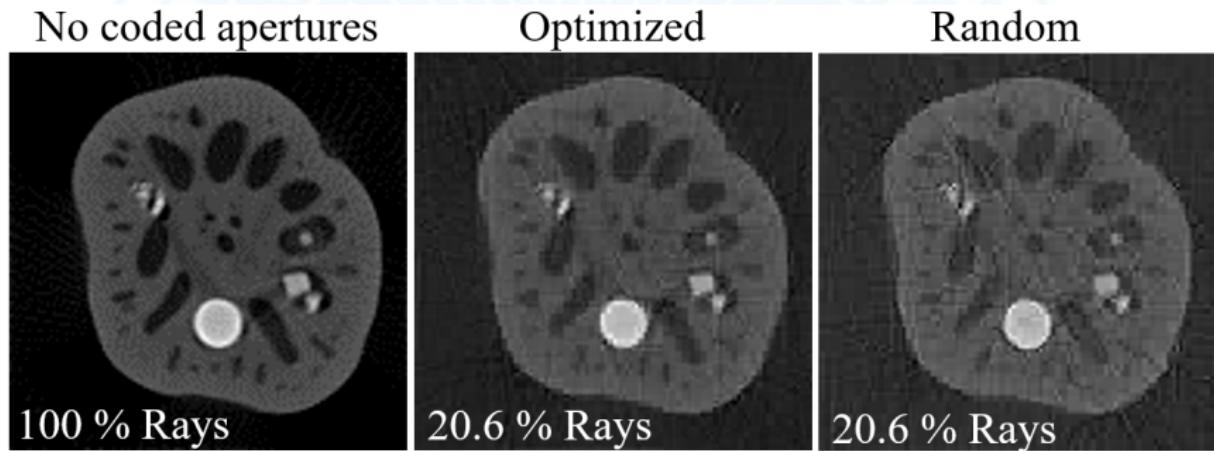
Reconstruction results (Case 2)

Normalized Absolute Error



Walnut phantom - K. Hämäläinen, A. Harhanen, A. Kallonen, A. Kujanpää, E. Niemi, and S. Siltanen, "Tomographic X-ray data of a walnut," arXiv preprint arXiv:1502.04064, (2015)

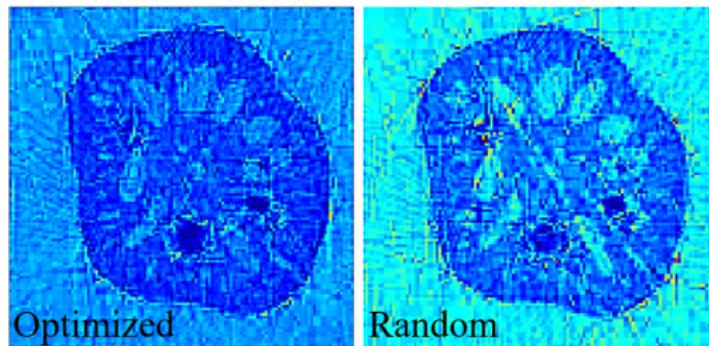
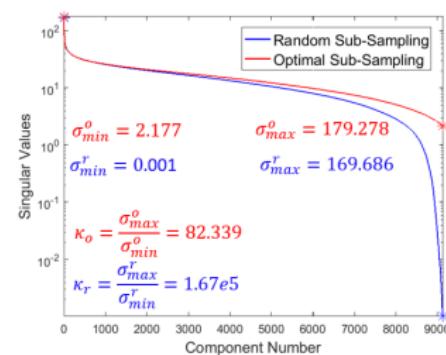
Reconstruction results (Case 3) - Real projection data



Lotus Root measurements - T. A. Bubba, A. Hauptmann, S. Huotari, J. Rimpelainen, and S. Siltanen,
"Tomographic x-ray data of a lotus root filled with attenuating objects," arXiv preprint arXiv:1609.07299, (2016)

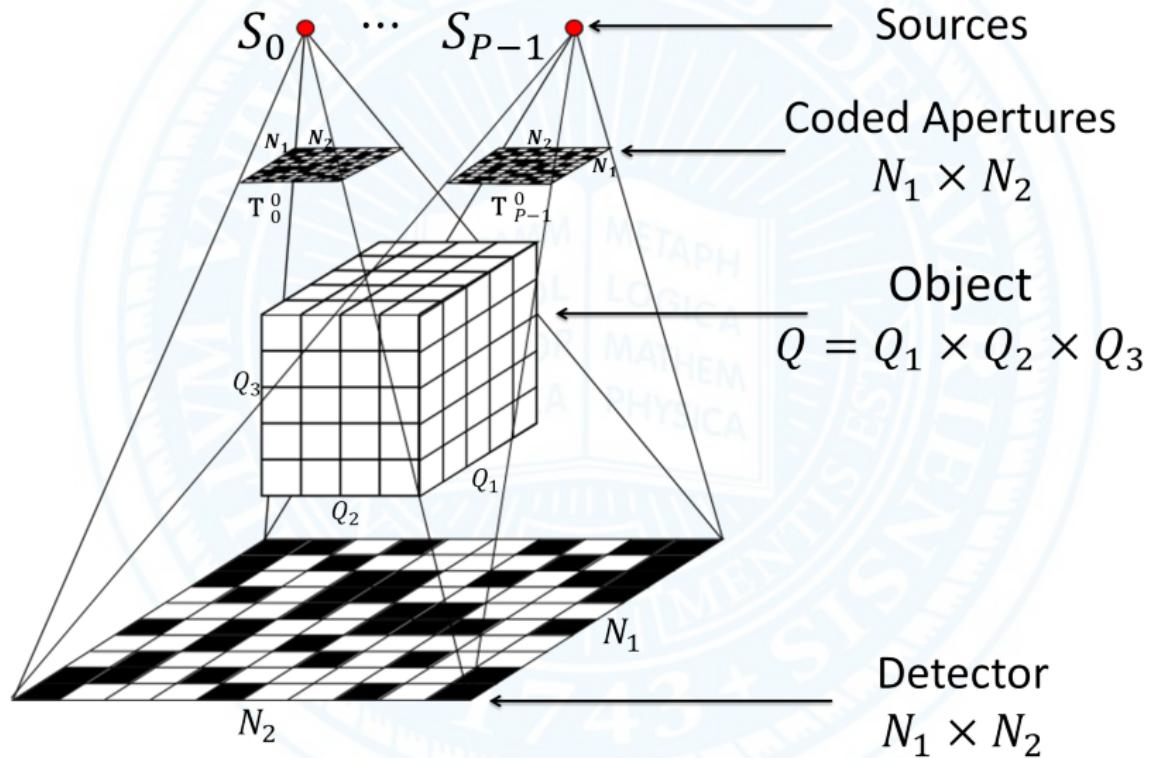
Reconstruction results (Case 3) - Real projection data

Normalized Absolute Error

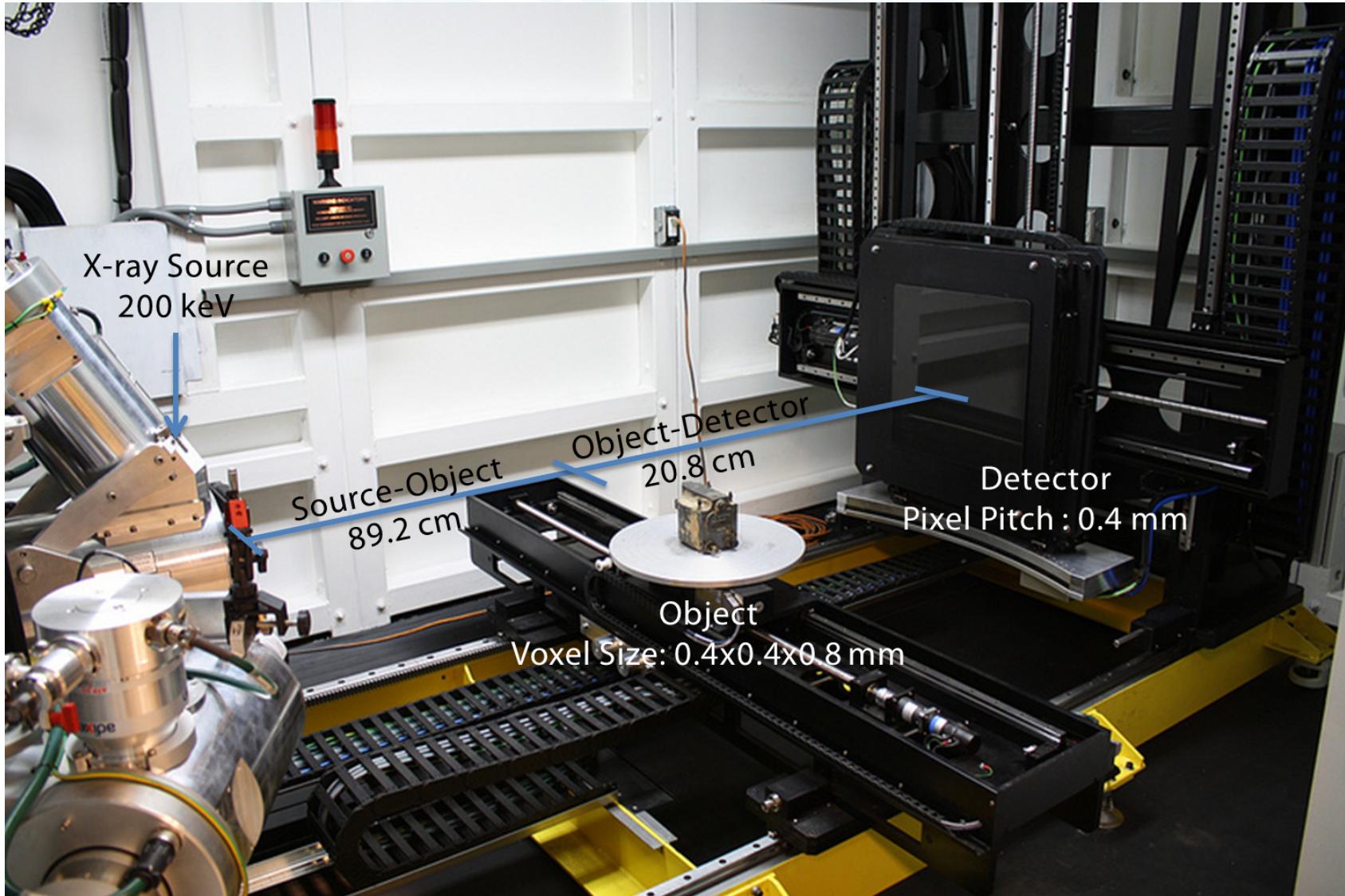


Lotus Root measurements - T. A. Bubba, A. Hauptmann, S. Huotari, J. Rimpelainen, and S. Siltanen,
"Tomographic x-ray data of a lotus root filled with attenuating objects," arXiv preprint arXiv:1609.07299, (2016)

Compressive X-Ray Tomosynthesis

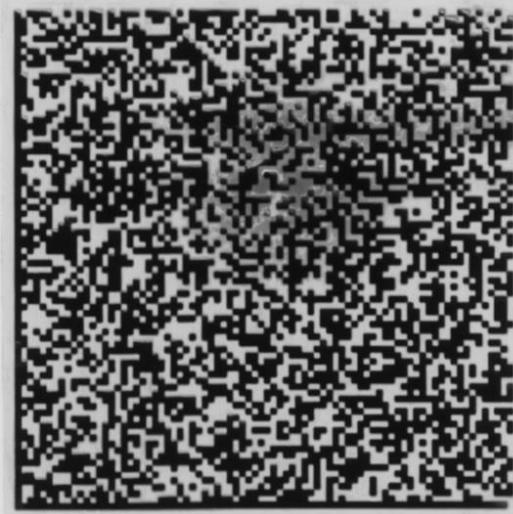


Experimental Testbed



Coded Aperture Implementation

Tungsten Coded Aperture



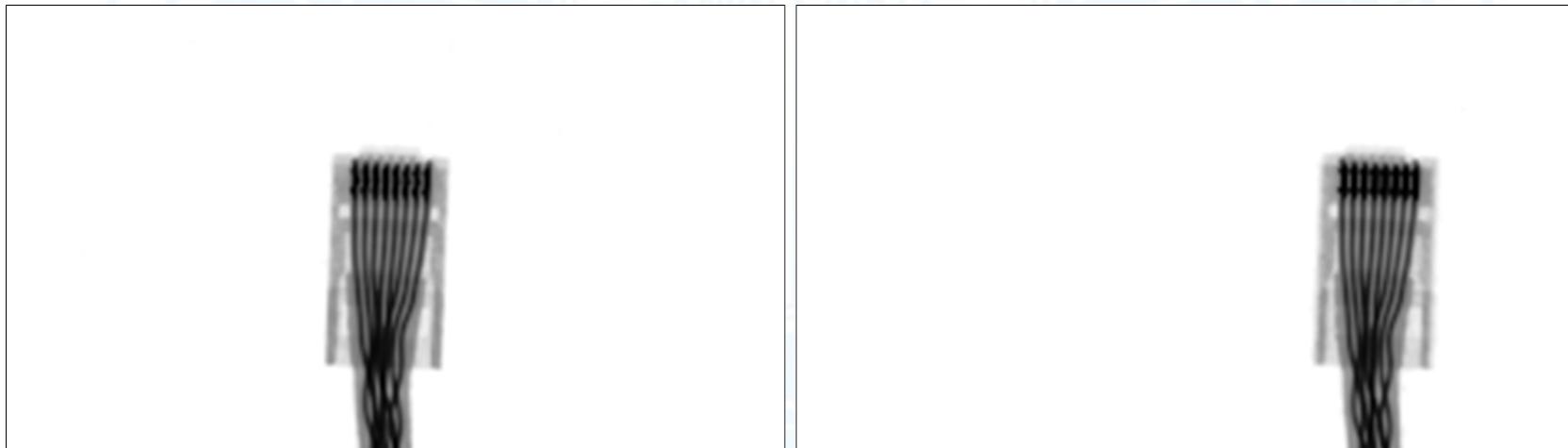
Target (Ipod Touch)

Coded Projection

Experimental Testbed

- ▶ Sources Locations -20 cm , -10 cm , 0 , 10 cm and 20 cm .
- ▶ Object: 12 slices of 128×128 pixels.
- ▶ Detector: 140×240 .

Projections from 2 source locations.



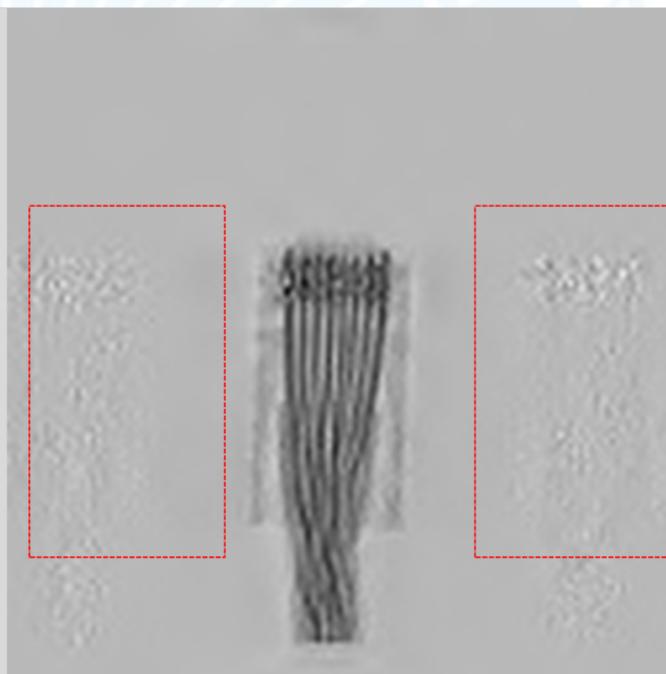
Central Source

Source located 10 cm to the left of the center source

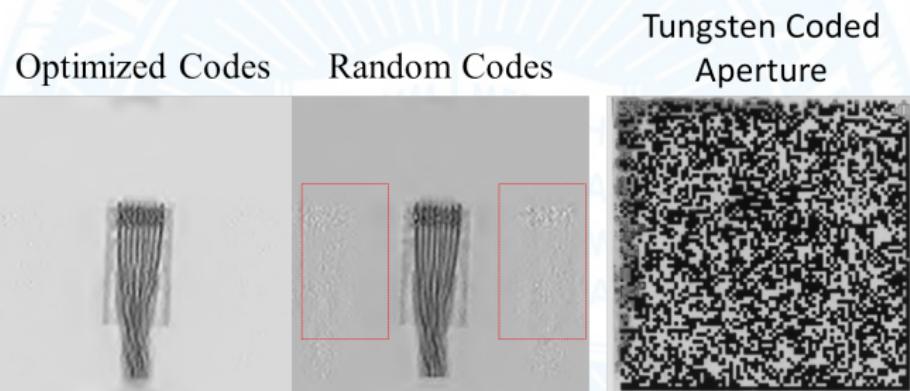
Real Data Reconstruction - 6th Slice

Optimized Codes

Random Codes



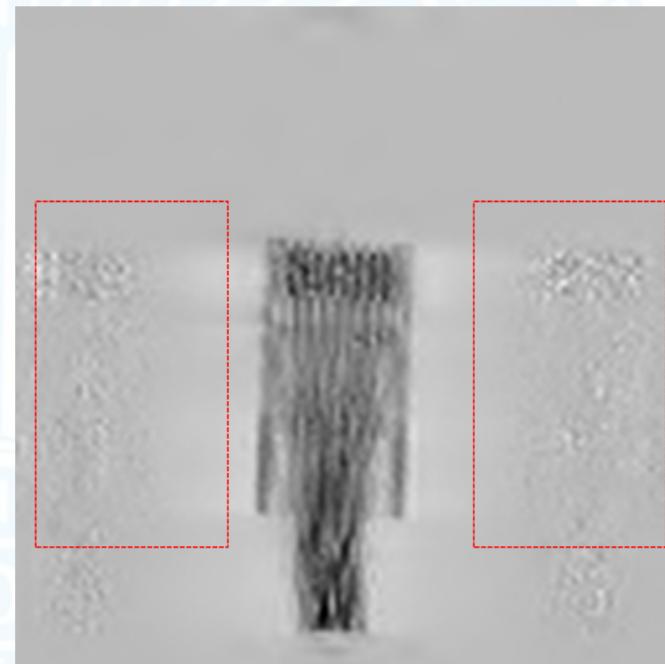
Real Data Reconstruction - 6th Slice



Real Data Reconstruction - 12th Slice

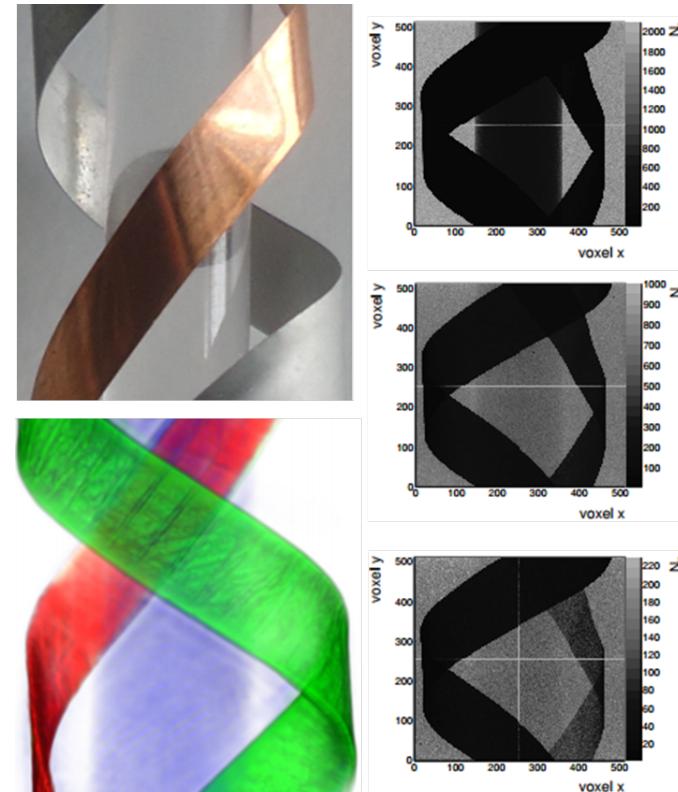
Optimized Codes

Random Codes



Conclusion and Future Work

- ▶ Optimized Coded apertures for compressive X-ray tomosynthesis.
- ▶ Criteria: Make each snapshot non-redundant and complimentary to each other.
- ▶ Optimization yields uniform sensing.
- ▶ Optimized codes result in 3dB PSNR improvement.
- ▶ Compressive Computed Tomography (CT).
- ▶ Compressive Spectral CT.



Acknowledgements

- ▶ Computational Imaging Group: Hoover Rueda, Claudia Correa, Laura Galvis, Chen Fu, Angela Cuadros, Alejandro Parada, Carlos Mendoza, Juan Becerra, Michael Don, Edgar Salazar, Juan Florez.
- ▶ Collaborators
 - ▶ Dr. Javier Garcia-Frias - University of Delaware
 - ▶ Dr. Daniel Lau - University of Kentucky, College of Engineering
 - ▶ Christopher Peitsch - Chesapeake Testing Services, Inc.
 - ▶ Dr. Clare Lau, Dr. David Laurence - JHU-APL
 - ▶ Dr. Xu Ma - Beijing Institute of Technology
 - ▶ Kris Roe - Smiths Detection
- ▶ Sponsored by the Nokia Foundation and Fulbright Finland Foundation
- ▶ Funding from

