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X-Ray discovery*
In 1895 Wilhelm Rontgen discovered the X-rays, while working with a

cathode ray tube in his laboratory. One of his first experiments was a film of
his wife’s hand.

*Based on slides from Mark Mirotznik (ELEG 679)
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Shoe Fitting X-Ray Device

Shoe stores in the 1920s until the 1970s installed X-ray fluoroscope
machines as a promotion device.
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X-Ray Physics

X-Ray Spectrum

c
E=h-f=h—.
A

1 eV is the kinetic energy gained by an electron that is accelerated across a
one volt potential.

@ Wavelength: 0.01 - 10 nm.

@ Frequency: 30 petahertz (3x10'8) to 30 exahertz (3x10'°).
@ Soft X-Rays: 0.12 to 30 keV.

@ Hard X-Rays: 30 to 120 keV.
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Computed Tomography

Reconstruction History

Hounsfield’s experimental CT:

@ Reconstruction methods based
on Radon’s work
@ 1917-classic image
reconstruction from projections
paper
@ 1972 - Hounsfield develops the
first commercial x-ray CT scanner

@ Hounsfield and Cormack receive the
1979 Nobel Prize for their CT
contributions

@ Classical reconstruction is based
on the Radon transform

@ Method known as
backprojection

@ Alternative approaches

@ Fourier Transform and iterative
series-expansion methods

@ Statistical estimation methods

@ Wavelet and other
multiresolution methods

@ Sub-Nyquist sampling:
Compressed sensing and
Partial Fourier Theories
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Computed Tomography

15! Generation CT: Parallel Projections

Hounsfield’s Experimental CT
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Computed Tomography

Example

Suppose an object that has 4 materials arranged in the boxes shown above.
How can we find the linear attenuation coefficients?
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Computed Tomography

Image Reconstruction

Suppose an x-ray of intensity [y is
passing through the first column of
the object, and that /; is the
intensity measured at the other
side.
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Computed Tomography

Image Reconstruction

If we repeat the same process for each of the rows and the columns, we
obtain the equations necessary to obtain the values of the
coefficients.However for bigger systems, the number of equations is not
practical for implementation.
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Computed Tomography

Radon Transform
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Computed Tomography

Radon Transform
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Computed Tomography

Radon Transform

For Angles different to 0 or 90 degrees.
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Computed Tomography

Radon Transform
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Computed Tomography

Radon Transform

(Computed Tomography) Gonzalo R. Arce Spring, 2014 31/66



Computed Tomography

Radon Transform

(Computed Tomography) Gonzalo R. Arce Spring, 2014 32/66



Computed Tomography

Sinogram
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Back Projection Example

With the example of the 4 boxes given before, we back project the results

obtained. As it can be seen, the right answer is not obtained, however the
order of the numbers is the same:
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Back Projection Method
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Computed Tomography

Problems with Back Projection Method

@ Bright spots tend to reinforce, which results in a blurry image.
@ Problem:

fo(x,y) # F(x,y)
@ Resulting Image:
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Computed ography

Back Projection Example

Original Image
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Computed Tomography

Back Projection Example

(Loading Video...)
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v1ready.mp4
Media File (video/mp4)


Computed ography

Reconstruction: Back Projection

Result of the Backprojection algorithm
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Computed Tomography

Projection-Slice Theorem

First take the 1D Fourier transform of a projection g(/,0)
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Computed Tomography

Projection-Slice Theorem

From the 1D Fourier transform of a projection g(/,6)
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Computed Tomography

Projection-Slice Theorem
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Computed Tomography

Projection-Slice Theorem
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Computed Tomography

Fourier Reconstruction Method
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Fourier Reconstruction Method

@ The projection slice theorem leads to the following reconstruction
method:

e Take 1D Fourier Transform of each projection to obtain G(p, 6) for
all 6.

e Convert G(p,0) to Cartesian grid F(u, V).
o Take inverse 2D Fourier Transform to obtain f(x,y).

@ Itis not used because it is difficult to interpolate polar data into a
Cartesian grid, and the inverse 2D Fourier Transform is time consuming
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Computed Tomography

Filtered Back Projection

Consider the inverse Fourier Transform in 2D:
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Computed Tomography

Filtered Back Projection
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Computed Tomography

Filtered Back Projection

@ Filter Response.

e c(p)=pl.
e High pass filter.

@ G(p,0) is more densely sampled when p is small.

@ The ramp filter compensate for the sparser sampling at higher p.
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Computed Tomography

Filtered Back Projection Example

(Loading Video...)
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v2ready.mp4
Media File (video/mp4)


Computed Tomography

Reconstruction: Filtered Back Projection

Filtered Back Projection
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Back Projection Method Vs Filtered Back Projection
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Computed Tomography

Convolution Back Projection

From the filtered back projection algorithm we get
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Computed Tomography

Convolution Back Projection
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Computed Tomography

Convolution Back Projection
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Computed Tomography

Convolution Back Projection

Common windows
@ Hamming window

@ Lanczos window (Sinc function)
@ Simple rectangular window

@ Ram-Lak window

@ Kaiser window

@ Shepp-Logan window
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Computed Tomography

Convolution Back Projection Example

(Loading Video...)
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v3ready.mp4
Media File (video/mp4)


Computed Tomography

Reconstruction: Convolution Back Projection

Convolution Back Projection
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Computed ograph

Reconstructions Comparison

Original Image Result of the Backprojection algorithm

Convolution Back Projection

Filtered Back Projection
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Computed Tomography

ond Generation

@ Incorporated
linear array of
30 detectors

@ More data
acquired to
improve image
quality

@ Shortest scan
time was 18
seconds/slice

@ Narrow fan
beam allows
more scattered
radiation to be
detected
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Computed Tomography

2nd Generation
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Computed Tomography

3 Generation

@ Number of detectors
increased substantially
(more than 800
detectors)

@ Angle of fan beam
increased to conver
entire patient ( no
need for translational
motion)

@ Mechanically joined
x-ray tube and detector
array rotate together

@ Newer systems have
scan times of 1/2
second
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Computed Tomography

2Md and 3" Generation Reconstructions
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Computed Tomography

3 Generation Artifacts
Ring Artifacts

(Computed Tomography) Gonzalo R. Arce Spring, 2014 63 /66



Computed Tomography

4" Generation

Designed to overcome the problem of artifacts. Stationary ring of about 4800
detectors
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