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History

X-Ray discovery∗

In 1895 Wilhelm Rontgen discovered the X-rays, while working with a
cathode ray tube in his laboratory. One of his first experiments was a film of
his wife’s hand.

∗Based on slides from Mark Mirotznik (ELEG 679)
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History

Shoe Fitting X-Ray Device

Shoe stores in the 1920s until the 1970s installed X-ray fluoroscope
machines as a promotion device.
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X-Ray Physics

X-Ray Spectrum

E = h̄ · f = h̄
c
λ
.

1 eV is the kinetic energy gained by an electron that is accelerated across a
one volt potential.

Wavelength: 0.01 - 10 nm.

Frequency: 30 petahertz (3x1016) to 30 exahertz (3x1019).

Soft X-Rays: 0.12 to 30 keV.

Hard X-Rays: 30 to 120 keV.
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Computed Tomography

Reconstruction History

Hounsfield’s experimental CT:

Reconstruction methods based
on Radon’s work

1917-classic image
reconstruction from projections
paper

1972 - Hounsfield develops the
first commercial x-ray CT scanner

Hounsfield and Cormack receive the
1979 Nobel Prize for their CT
contributions

Classical reconstruction is based
on the Radon transform

Method known as
backprojection

Alternative approaches

Fourier Transform and iterative
series-expansion methods
Statistical estimation methods
Wavelet and other
multiresolution methods
Sub-Nyquist sampling:
Compressed sensing and
Partial Fourier Theories
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Computed Tomography

1st Generation CT: Parallel Projections

Hounsfield’s Experimental CT
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Computed Tomography

Example

Suppose an object that has 4 materials arranged in the boxes shown above.
How can we find the linear attenuation coefficients?

(Computed Tomography) Gonzalo R. Arce Spring, 2014 24 / 66



Computed Tomography

Image Reconstruction

Suppose an x-ray of intensity I0 is
passing through the first column of
the object, and that I1 is the
intensity measured at the other
side.
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Computed Tomography

Image Reconstruction

If we repeat the same process for each of the rows and the columns, we
obtain the equations necessary to obtain the values of the
coefficients.However for bigger systems, the number of equations is not
practical for implementation.
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Computed Tomography

Radon Transform

(Computed Tomography) Gonzalo R. Arce Spring, 2014 27 / 66



Computed Tomography

Radon Transform
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Computed Tomography

Radon Transform

For Angles different to 0 or 90 degrees.
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Computed Tomography

Radon Transform
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Computed Tomography

Radon Transform
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Computed Tomography

Radon Transform
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Computed Tomography

Sinogram
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Computed Tomography

Back Projection Example

With the example of the 4 boxes given before, we back project the results
obtained. As it can be seen, the right answer is not obtained, however the
order of the numbers is the same:
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Computed Tomography

Back Projection Method
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Computed Tomography

Problems with Back Projection Method

Bright spots tend to reinforce, which results in a blurry image.

Problem:

fb(x ,y) 6= f (x ,y)

Resulting Image:
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Computed Tomography

Back Projection Example

Original Image
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Computed Tomography

Back Projection Example

(Loading Video...)
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v1ready.mp4
Media File (video/mp4)



Computed Tomography

Reconstruction: Back Projection

Result of the Backprojection algorithm 
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Computed Tomography

Projection-Slice Theorem
First take the 1D Fourier transform of a projection g(l ,θ)
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Computed Tomography

Projection-Slice Theorem
From the 1D Fourier transform of a projection g(l ,θ)
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Computed Tomography

Projection-Slice Theorem
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Computed Tomography

Projection-Slice Theorem
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Computed Tomography

Fourier Reconstruction Method
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Computed Tomography

Fourier Reconstruction Method

The projection slice theorem leads to the following reconstruction
method:

Take 1D Fourier Transform of each projection to obtain G(ρ,θ) for
all θ .
Convert G(ρ,θ) to Cartesian grid F (u,v).
Take inverse 2D Fourier Transform to obtain f(x,y).

It is not used because it is difficult to interpolate polar data into a
Cartesian grid, and the inverse 2D Fourier Transform is time consuming
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Computed Tomography

Filtered Back Projection

Consider the inverse Fourier Transform in 2D:
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Computed Tomography

Filtered Back Projection
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Computed Tomography

Filtered Back Projection

Filter Response.

c(ρ) = |ρ|.
High pass filter.

G(ρ,θ) is more densely sampled when ρ is small.

The ramp filter compensate for the sparser sampling at higher ρ.
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Computed Tomography

Filtered Back Projection Example

(Loading Video...)
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v2ready.mp4
Media File (video/mp4)



Computed Tomography

Reconstruction: Filtered Back Projection

Filtered Back Projection
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Computed Tomography

Back Projection Method Vs Filtered Back Projection
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Computed Tomography

Convolution Back Projection
From the filtered back projection algorithm we get
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Computed Tomography

Convolution Back Projection
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Computed Tomography

Convolution Back Projection
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Computed Tomography

Convolution Back Projection

Common windows

Hamming window

Lanczos window (Sinc function)

Simple rectangular window

Ram-Lak window

Kaiser window

Shepp-Logan window
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Computed Tomography

Convolution Back Projection Example

(Loading Video...)
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Computed Tomography

Reconstruction: Convolution Back Projection

Convolution Back Projection
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Computed Tomography

Reconstructions Comparison
Original Image
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Computed Tomography

2nd Generation

Incorporated
linear array of
30 detectors

More data
acquired to
improve image
quality

Shortest scan
time was 18
seconds/slice

Narrow fan
beam allows
more scattered
radiation to be
detected

(Computed Tomography) Gonzalo R. Arce Spring, 2014 59 / 66



Computed Tomography

2nd Generation
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Computed Tomography

3rd Generation

Number of detectors
increased substantially
(more than 800
detectors)

Angle of fan beam
increased to conver
entire patient ( no
need for translational
motion)

Mechanically joined
x-ray tube and detector
array rotate together

Newer systems have
scan times of 1/2
second
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Computed Tomography

2nd and 3rd Generation Reconstructions
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Computed Tomography

3rd Generation Artifacts
Ring Artifacts
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Computed Tomography

4rth Generation

Designed to overcome the problem of artifacts. Stationary ring of about 4800
detectors
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