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3.4 Design Methods for Fractional Delay Allpass Filters

Above we have studied the design of FIR filters for fractional delay approximation.
Now we show how recursive or IIR filters can be used for the same problem. Since the
magnitude response of an ideal FD element is perfectly flat, we consider only the so-
called allpass filters'. Their magnitude response is always flat irrespective of the filter
coefficients. Allpass filters are typically used for phase equalization and other signal
processing tasks where the phase characteristics are of greatest concern. Also the FD
approximation is essentially a phase approximation problem and thus the allpass filter is
particularly well suited to this task.

3.4.1 Properties of the Discrete-Time Allpass Filter

A discrete-time allpass filter has the transfer function
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where N is the order of the filter, D(z) is the denominator polynomial, and the filter
coefficients a; (k =1, 2, ..., N) are real. The block diagram of the allpass filter is
depicted in Fig. 3.19.

The numerator of the allpass transfer function is a mirrored version of the denomina-
tor polynomial. The poles (i.e., roots of the denominator) of a stable allpass filter are
located inside the unit circle in the complex plane and as a result its zeros (i.e., roots of
the numerator) are located outside the unit circle so that their angle is the same but the
radius is the inverse of the corresponding pole. For this reason the magnitude response
of an allpass filter is flat. It is expressed as
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Obviously, the name ‘allpass filter’ comes from the above property that this filter passes
signal components of all frequencies without attenuating or boosting them.
The frequency response of the allpass filter can be expressed in the form

A(e®) = ¢/Pa(@ (3.119)

This form stresses the fact that the main feature of an allpass filter is its phase response
O, (w). It can be written as

0,4 () = arg A(e’)} = -Nw +20 (@) (3.120)

where O (w) is the phase response of 1/ D(ej @Y that is

T The term ‘allpass filter’ is sometimes used to denote any discrete-time system (FIR or IIR) whose
magnitude response is almost flat at all frequencies (IH(e/?)l = 1). Throughout this text this term is used
only for recursive discrete-time filters which have the exact allpass property, that is, |[H(e/)l = 1.
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with g, =1 and the vectors a, s, and ¢ are defined by
a=[l a a - ay] (3.121b)
s=[0 sinw sinw) - sin(Nw)|' (3.121c)
c=[l cosw cos2w) - cos(Nw)]T (3.121d)

The phase delay T, ,(w) of an allpass filter can be expressed with the help of Eq.
(3.120) as

T, A(0) = - = N =27, (@) (3.122)

0,(w)
)
where 7, (@) is the phase delay of 1/D(e’”). The corresponding group delay is given

by

_d@A(w)

Te.al®) = dw

=N- ZTg,D(w) (3.123)
where T, p(w) is the group delay of 1/D(e™).

3.4.2 Design of Fractional Delay Allpass Filters

There is a noteworthy difference between the design of FIR and allpass filters: the coef-
ficients of an FIR filter are easily obtained by the inverse discrete-time Fourier trans-
form of the frequency-domain specifications, since the coefficients of an FIR filter are
equal to the samples of its impulse response. However, the relationship between the
transfer function coefficients and the impulse response of an allpass filter is not this
simple. Hence, most of the design techniques for allpass filters are iterative. Many of
the design methods for FD allpass filters are counterparts of FIR design methods dis-
cussed in Section 3.2.
The desired or ideal phase response in the fractional delay approximation problem is

®id(w) =-Dw (3124)

as may be seen from the ideal frequency response given by Eq. (3.8). The phase error of
an allpass filter can be defined as the deviation from the desired phase function ©,4(w)
as

T
AB(w) = 0y (w) - O 4(w) = 2arctan{aTSﬁ } (3.125)
a C
B

where a is the coefficient vector given by Eq. (3.121b), s, and ¢, are defined as
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Sp = [sin{/a’(a))} sin{ﬁ(a)) - a)} sin{/a’(a)) - Na)}]T (3.126a)

¢s =[cos{B(@)} cos{p(w)-w} - cos{f(w)-Nw}]  (3.126b)
and B(w) as
1
B(@) = J[O(@) + No] (3.126¢)
When approximating a fractional delay D = N + d, or the ideal phase function ©,;(w) =

=-Dw = —-(N + d)w, the last form reduces to

P(w) = —%d (3.127)

The weighted least-squares phase error that is to be minimized is defined as
1 T
Eg= —fW(a))|A®(a))|2 dw (3.128)
1
0

where W(w) is a nonnegative weighting function. Lang and Laakso (1994) have intro-
duced an iterative algorithm for the design of the coefficient vector a. The algorithm
typically converges to the desired solution, but this cannot be guaranteed.

The LS phase delay error can be defined as

Eg=— fW(w)\Ar (a))‘ dw = fW( )‘

- (3.129)

W(w)

A8(w) dew

0

In other words, the phase delay error solution is obtained by introducing an additional
weighting function WQw) = 1/ w? to the phase error, Eq. (3.128). Allpass filters may be
designed using the iterative algorithm modified from that mentioned above.

There exists a large variety of algorithms for equiripple or minimax allpass filter
design in terms of phase, group delay, or phase delay (see Laakso et al., 1994 for refer-
ences). New iterative techniques for equiripple phase error and phase delay error design
are described in Laakso ef al. (1994).

It appears that, just as with the FD FIR filters, a well suited digital allpass filter for
FD approximation in audio signal processing is obtained by using the maximally flat
design at w = 0. This technique deserves more attention than the others.

3.4.3 Maximally Flat Group Delay Design of FD Allpass Filters

The maximally flat group delay design is the only known FD allpass filter design tech-
nique that has a closed-form solution (Laakso et al., 1992, 1994). Here we discuss this
solution.

Thiran (1971) proposed an analytic solution for the coefficients of an all-pole low-
pass filter with a maximally flat group delay response at the zero frequency
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with the binomial coefficient

(N) M (3.131)
k] kN -k)!

It has been shown by Thiran (1971) that when d > 0 the denominator polynomial
obtained by the above method will have its roots within the unit circle in the complex
plane, i.e., the filter will be stable. A drawback of Thiran’s design technique is that the
magnitude response of the all-pole lowpass filter cannot be controlled. In the allpass
design, however, this kind of problem does not exist. Thus it seems that the result of
Thiran is better suited to the design of allpass than all-pole filters.

As can be seen from Eq. (3.123) the group delay of an allpass filter is twice that of its
all-pole counterpart. Thus Thiran’s solution may easily be applied to the design of all-
pass filters by making the substitution d’ = d/2. The solution for the coefficients of a
maximally flat (MF) allpass filter is thus (Laakso et al., 1992)

MY d+n
—(_1\k _aern _
a, =(-1) (k)n|=0|d+k+n fork=0,1,2,...,.N (3.132)

Note that ay =1 always and thus the coefficient vector a need not be scaled. This
closed-form solution to the allpass filter approximation is called the Thiran allpass fil-
ter.

The allpass filters designed using Eq. (3.132) approximate a group delay of N + d
samples. This kind of parametrization is rather impractical. For this reason we substitute
d =D — N into Eq. (3.132). As a result we obtain the following formula:

ML D-N+n
= (=D — = fork=0,1,2,....N 3.133
e = )(k)rg)D—N+k+n ( )

Now the delay parameter D refers to the actual delay rather than the offset from N
samples. In Table 3.1 we give the coefficients for the Thiran allpass filters with N =1,
2, and 3.

Table 3.1 Coefficients of the Thiran allpass filters of order N =1, 2, and 3.

4 a, a3
N=1 _D-1
D+1
N=2 _2D—2 (D-1)(D-2)
D+1 (D+1)(D+2)
N=3 3D-3 3 (D=2)(D-3) _(D-1)(D-2)D-3)

D+1 (D+1)(D+2) (D+1)(D+2)D+3)
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Fig. 3.20 The phase delay of a first-order (N = 1) Thiran allpass filter. The dashed lines
indicate the ideal phase delay which is constant.

Thiran’s proof of stability implies that this allpass filter will be stable when D > N.
We have experimentally observed that the Thiran allpass filter is also stable when the
delay is N— 1 <D <N. At D =N - 1, one of the poles (as well as one zero) of the
Thiran allpass filter will be on the unit circle making the filter asymptotically unstable.
When D < N — 1, one or more poles will be outside the unit circle and the filter will be
unstable.

In Figs. 3.20, 3.21, and 3.22, the phase delay responses of first, second, and third-
order MF allpass interpolators are presented for several values of the delay parameter D
starting at D = N — 1. The ideal phase delay (constant at all frequencies) is illustrated
with a dotted line in each figure. It is seen that the Thiran allpass filter is most accurate
at low frequencies. This is an expected result since Thiran designed the denominator
polynomial so that the group delay and its N derivatives evaluated at the zero frequency
match the desired result. As the filter order is increased, the phase delay curves remain
nearly constant at higher frequencies.

The closed-form design of the first-order allpass filter for varying the length of a
delay line has been discussed in papers by Jaffe and Smith (1983) and Smith and
Friedlander (1985). They obtained the solution by first expressing the phase response of
the first-order allpass filter by its Taylor series with the expansion point z = 0 and then
truncating this series after the first term. The expression for the filter coefficient a; of
the first-order (N = 1) allpass filter is the same as that given in Table 3.1.
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Fig. 3.21 The phase delay of a second-order (N = 2) Thiran allpass filter.

3.4.4 Choice of Optimal Range for D in the Thiran Interpolator

In the case of FIR FD filters we noticed that it is a good choice to use values (N — 1)/2 =<
D < (N + 1)/2, since then the mean squared error is the smallest in all cases of d. In the
case of recursive filters this rule does not apply. In the following we analyze the optimal
range for the delay parameter in the case of the Thiran allpass filter.

Let us examine the mean squared error function of the Thiran allpass filter given by

E—lnE i)y —1nA oy~ 1 (/) d
S-;{\ (") a’-;ﬂ (¢/) = Hyg(e")| dw

17 2 17
_ 1 f‘eﬂam) _ e—ij‘ dow = — ﬂejm(w) _ e—ijIe—j@m) _ eij]da,
™0 ™0 (3.134)

T

1 —fcos[@A(a)) + a)D]da)
0

alw

Integration of the last form is difficult and we thus use numerical methods for investi-
gating the approximation error. We use a numerical integration technique to evaluate
the error for Thiran allpass filters of different order. Figure 3.23 gives the error Eg as a
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Fig. 3.22 The phase delay of a third-order (N = 3) Thiran allpass filter.

function of the delay parameter D for Thiran allpass filters of orders 1 to 6.

It is seen that the error is zero for integral delay values N — D = —1 or 0. This implies
that the Thiran allpass filter yields the original signal samples in these cases. As dis-
cussed before, the case N — D = —1 yields an asymptotically unstable filter. It is sug-
gested not to use this kind of filter in practical work. The Thiran allpass filter can thus
only be used for delay approximations such that D > N — 1.

In the case D = N the Thiran filter reduces to a delay line because all the coefficients
of the numerator polynomial are zero. This is easily shown by noticing that each coeffi-
cient computed according to (3.133) has a factor D — N in its numerator.

A fractional delay filter can usually be used for approximating a delay D for which it
holds

Dy<D<Dy+1 (3.135)

To solve for the optimal choice for D, we may evaluate the average error E, . written
as

DO +1
Epe(Dy) = fES(D)dD (3.136)
Dy

We can evaluate this integral numerically. Figure 3.24 presents the average error as a
function of D, for some low-order Thiran allpass filters. The minimum of each curve is
indicated by a circle in Fig. 3.24. These points correspond to the optimal D, for each
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Fig. 3.23 Squared integral error of Thiran allpass filters of orders N = 1 to 6 (top to bot-
tom).

filter. The values of D; and the corresponding average error E,  are presented in
Table 3.2.

Some general observations can be made from Fig. 3.24. Apparently, the approxima-
tion error of the Thiran allpass filter is quite small for delay values N — 1 <D <N
reaching a minimum at the value given in Table 3.2. For much larger values of D, the
approximation error increases considerably. It is seen in Fig. 3.24 that the average error
does not increase very rapidly in the neighborhood of the minimum. Thus, if the best
possible accuracy is not essential, one may use a simple rule of thumb to choose the

Table 3.2 The optimal values for D, and minimum average errors for low-order Thiran
allpass filters. E,.(N —0.5) is the average error when Dy = N-0.5.

N DO, opt Eave(DO, opt) Eave(N - 0-5)
1 0.418 0.040 0.043
2 1.403 0.030 0.033
3 2.396 0.025 0.027
4 3.392 0.022 0.024
5 4.390 0.019 0.022
6 5.389 0.018 0.020
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Fig. 3.24 The average error of low-order Thiran allpass filters as a function of D,. The
filter orders from top to bottom are N = 1, 2, 3, 4, 5, and 6. The minimum of
each error function is indicated by a circle.

range for D: for the Thiran allpass filter, a close-to-minimum error is obtained when D,
= N — 0.5, which means that D is

N-0.5=D<N+0.5 (3.137)

A similar statement as in the case of FIR FD filters can be made: the total delay of the
Thiran allpass filters increases linearly with order N.

3.4.5 Discussion

This section has dealt with allpass filter approximation of fractional delay. Digital all-
pass filters are a good choice for this task since their magnitude response is exactly flat
and the design can concentrate on the phase properties. The Thiran interpolator was dis-
cussed in detail since it is easy to design with closed-form formulas and it is very accu-
rate at low frequencies.

The design of general IIR filters (with different numerator and denominator poly-
nomials) for FD approximation has not been much discussed in the DSP literature. One
example is the paper by Tarczynski and Cain (1994) where reduced-bandwidth IIR fil-
ters are optimized iteratively. The design of optimal IIR filters is a difficult problem but
new techniques are certainly worth trying since generally speaking recursive filters are
more powerful than FIR filters. This is a fascinating topic for future research.



