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3 Fractional Delay Filters

In this chapter we review the digital filter design techniques for the approximation of a
fractional delay (FD). They can be utilized in many areas of digital signal processing.
Examples of these fields are time delay estimation (Smith and Friedlander, 1985), null
steering in the direction pattern of antenna arrays (Ko and Lim, 1988), timing adjust-
ment of digital modems (Farrow, 1988; Armstrong and Strickland, 1993; Gardner,
1993; Erup et al., 1993), speech coding (Marques et al., 1989, 1990; Kroon and Atal,
1991; Medan, 1991), speech synthesis (Matsui et al., 1991), and arbitrary sampling-rate
conversion (Tarczynski et al., 1994). Fractional delays are essential in digital wave-
guide models for one-dimensional resonators (Jaffe and Smith, 1983; Laine, 1988;
Smith, 1983; Sullivan, 1990; Karjalainen and Laine, 1991; V�lim�ki et al., 1992a).

There are plenty of design methods for both FIR and IIR fractional delay filters.
Only the most useful of them are discussed in detail. A more comprehensive study of
known filter design methods for FD approximation has been written by Laakso et al.
(1994). Of special interest in our applications are digital filters that approximate the
ideal interpolation in a maximally flat manner at low frequencies. The maximally flat
FIR filter approximation is equivalent to the classical Lagrange interpolation method.
This technique is discussed in Section 3.3. The corresponding IIR or allpass filter has a
maximally flat group delay response. It is called the Thiran interpolator and is studied in
Section 3.4.3. These two design methods appear to be most effective in digital wave-
guide modeling mainly because they approximate ideal interpolation very accurately at
frequencies near the fundamental pitch of speech and music signals.

3.1 Ideal Fractional Delay

We first discuss the concept of fractional delay in continuous and discrete time and
consider the ideal solution of the FD problem to show why approximation is necessary.

3.1.1 Continuous-Time System for Arbitrary Delay

Consider a delay element, which is a linear system whose purpose is to delay an incom-
ing continuous-time signal xc(t) by τ  (in seconds). The output signal yc(t)  of this sys-
tem can be expressed as

yc(t) = xc(t − τ) (3.1)

where the subscript ÔcÕ refers to Ôcontinuous-timeÕ. The Fourier transform Xc(Ω)  of a
continuous-time signal xc(t) is defined as
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Xc(Ω) = xc(t)e− jΩ tdt
−∞

∞

∫ (3.2)

where W = 2pf is the angular frequency in radians. The Fourier transform Yc(W) of the
delayed signal yc(t)  can be written in terms of Xc(W)

Yc(W) = yc(t)e- jW tdt
-¥

¥

ò = xc(t - t)e- jW tdt
-¥

¥

ò = e- jWtXc(W) (3.3)

The transfer function Hid (W)  of the delay element can be expressed by means of
Fourier transforms Xc(W)  and Yc(W). This yields

Hid (W) =
Yc(W)
Xc(W)

=
e- jWtXc(W)
Xc(W)

= e- jWt (3.4)

The term e- jWt  corresponds to the Fourier transform of the delay of t .

3.1.2 Discrete-Time System for Arbitrary Delay

Next we consider a discrete-time delay system. If the Fourier transform Xc(W)  is non-
zero only on a finite interval around w = 0, the continuous-time signal xc(t) is said to be
bandlimited. It may then be expressed by its samples x(nT ), where n Î Z is the sample
index and T is the sample interval, i.e., the inverse of the sampling rate. For conve-
nience of notation, we omit T and use shortly x(n) to denote the samples of the discrete-
time signal.

We want to express the discrete-time version of the delay operation for a sampled
bandlimited signal. The outcoming discrete-time signal y(n) can simply be written as

y(n) = x(n - D) (3.5)

where D = t T  is the desired delay as multiples of the unit delay. Note that t T  is gen-
erally irrational since t  is usually not an integral multiple of sampling interval T.
Unfortunately, Eq. (3.5) is meaningful only for integral values of D. Then the samples
of the output sequence y(n) are equal to the delayed samples of the input sequence x(n),
and the delay element is called a digital delay line. However, if D were real, the delay
operation would not be this simple, since the output value would lie somewhere
between the known samples of x(n). The sample values of y(n) would then have to be
obtained by way of interpolation from the sequence x(n).

The spectrum of a discrete-time signal can be expressed by means of the discrete-
time Fourier transform (DTFT). In this integral transform, the time variable is dis-
cretized, but the frequency variable is continuous. The DTFT of signal x(n) is defined as
(see, e.g., Roberts and Mullis, 1987, pp. 87Ð88; Jackson, 1989, pp. 106Ð118)

X(w ) = x(n)e- jwn

n=-¥

¥

å , w £ p (3.6)

where w = 2pfT is the normalized angular frequency. The DTFT of the output signal
y(n) can be written as
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Y(w ) = y(n)e- jwn

n=-¥

¥

å = x(n - D)e- jwn

n=-¥

¥

å = e- jwDX(w ) (3.7)

The transfer function of an ideal discrete-time delay element can be given as

Hid (w ) =
Y(w )
X(w )

=
e- jwDX(w )

X(w )
= e- jwD, w £ p (3.8)

This is the same result as given in Eq. (3.4)Ñonly now the angular frequency is circular
due to discretization in time. In order to be consistent with the z-transform notation used
commonly in digital signal processing, let us express the transfer function as

Hid (z) =
Y(z)
X(z)

=
z-DX(z)
X(z)

= z-D (3.9)

where D Î R+ is the length of the delay in samples. The delay D may be written in the
form

D = Dint + d (3.10)

where 0 £ d < 1 is the fractional delay and the integer part Dint  is given by

Dint = Dë û (3.11)

where ×ë û  is the greatest integer function. It is often called the floor function and is
defined as

xë û = max
k£x

k (3.12)

where x Î R and k Î Z. The block diagram of the ideal delay element is illustrated in
Fig. 3.1.

Note that the z-transform representation in (3.9) is used in the Fourier transform
sense so that z = e jw . In principle, the z-transform is defined only for integral powers of
z and thus, if D were real, the term z-D  should be written as an infinite series making
the notation unnecessarily involved.

To understand how to produce a fractional delay using a discrete-time system it is
necessary to discuss interpolation techniques. Interpolation of a discrete-time signal is
based on the fact that the amplitude of the corresponding continuous-time bandlimited
signal changes smoothly between the sampling instants.

z-Dx(n) y(n)

Fig. 3.1  Ideal discrete-time delay element.
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3.1.3 Fractional Delay and Shannon Reconstruction

The fractional delay d can in principle have any value between 0 and 1. To be able to
produce an arbitrary fractional delay for a discrete-time signal x(n), one has to know a
way to compute the amplitude of the underlying continuous-time signal x(t) for all t.
This leads us to fundamental issues of digital signal processingÑsampling and recon-
struction.

In 1949, Shannon introduced the sampling theorem (Shannon, 1949). It states that if
the Fourier transform Xc(W)  of a continuous-time signal xc(t) is zero outside the inter-
val (- f c,  f c ) then the signal xc(t) is completely determined by its values at equidistant
points spaced 1 / 2 f c  apart. This implies that the sampling rate f s  has to be at least 2 f c .
Shannon gave the reconstruction formula for a sampled signal using the cardinal series

xc(t) = x(nT )
sin

ws

2
(t - nT )é

ëê
ù
ûú

ws

2
(t - nT )n=-¥

¥

å = x(nT )sinc
ws

2p
(t - nT )é

ëê
ù
ûún=-¥

¥

å (3.13)

where ws = 2pf s  is the sampling angular frequency in radians per second and T is the
corresponding sampling interval, i.e., T = 1 f s . The sinc function is defined as

sinc(t) =
sin(pt)
pt

(3.14)

Note that sinc(0) = 1 since lim
t®0

[sin(pt)] / pt{ } = 1.

According to Eq. (3.13) the ideal bandlimited interpolator has a continuous-time
impulse response

hc(t) =
sin

wst

2
æ
è

ö
ø

wst

2

= sinc
wst

2p
æ
è

ö
ø

(3.15)

for t Î R. This impulse response that Shannon called the Whittaker cardinal function
converts a discrete-time signal to a continuous-time one. In delay applications, however,
it is necessary to know the value of a signal at a single time instant between the
samples. The desired result may be obtained by shifting Eq. (3.15) by D  and then
sampling it at equidistant points. Hence, the output y(n) of the ideal discrete-time frac-
tional delay element is computed as

y(n) = x(n - D) = x(k)sinc(n - D - k)
k=-¥

¥

å (3.16)

for n Î Z  and D Î R. Here we have simplified the notation setting the sampling rate f s
to 1 (and consequently, the sampling interval T = 1), since with a discrete-time system
description it is not necessary to fix the actual sampling rate.

It can be concluded that producing a fractional delay requires reconstruction of the
discrete-time signal and shifted resampling of the resulting continuous-time signal. In
Eq. (3.16) these two operations have been combined.
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3.1.4 Characteristics of the Ideal Fractional Delay Element

In digital signal processing, it is often advantageous to study linear filters in the fre-
quency domain, that is, by their frequency response. The ideal bandlimited interpolator
given by (3.16) has the frequency response obtained from (3.8) as

Hid (e jw ) = e- jwD, w £ p (3.17)

The frequency response of the ideal delay element has the following magnitude and
phase characteristics

Hid (e jw ) º 1 (3.18a)

arg Hid (e jw ){ } = Qid (w ) = -Dw (3.18b)

In other words, the delay element is a linear-phase allpass system. Its phase delay and
the group delay are, respectively,

tp, id (w ) = -
Qid (w )
w

= D (3.19a)

and

tg, id (w ) = -
¶Qid (w )
¶w

= D (3.19b)

where Qid (w )  is the ideal phase response as defined in Eq. (3.18b). From these results
it can be concluded that the ideal delay element passes all the frequency components of
an incoming signal with the same delay D.

The inverse discrete-time Fourier transform of Eq. (3.17) gives the impulse response
(IR) of an ideal delay element [compare with Eq. (3.16)] as

hid (n) =
1

2p
Hid (e jw )e jwndw

-p

p

ò =
1

2p
e- jwDe jwndw

-p

p

ò =
1

2p
e jw (n-D)dw

-p

p

ò

=
e jp(n-D) - e- jp(n-D)

j2p(n - D)
=

sin[p(n - D)]
p(n - D)

= sinc(n - D)

(3.20)

If D is an integer (d = 0), the IR of the delay element is zero at all sampling points
except at n = D, that is

d = 0 Þ hid (n) =
1 for  n = D

0 otherwise
ì
í
î

(3.21)

In this case, the delay element is implemented by a cascade of unit delays as discussed
earlier. When D is a fractional number, i.e., 0 < d < 1, the IR has non-zero values at all
index values n Î Z , or

0 < d < 1 Þ hid (n) ¹ 0 for all n (3.22)
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Fig. 3.2 (Upper) The sinc function (dashed line) shifted by D = 3.0. The circles indi-
cate the sampled values of the sinc function. All the sample values except the
centermost are zero when the delay is an integer, that is d = 0. (Lower) The
sinc function shifted by D = 3.3. The dotted line indicates the center point of
the shifted sinc function. This figure illustrates the fact that all the sample val-
ues (circles) are non-zero in the case of a fractional delay, i.e., d ¹ 0.

These time-domain properties of the ideal delay element are illustrated in Fig. 3.2. In
the upper part of this figure, the delay D is an integer and only one sample is non-zero
because the zero crossings of the sinc function coincide with the other sampling points.
In the lower part of Fig. 3.2, however, the delay D is a fractional number and all the
samples on the interval (Ð¥, ¥) are non-zero.

To conclude, the impulse response hid (n) of the delay element is a shifted and sam-
pled version of the sinc function which is infinitely long. Due to this the IR corresponds
to a noncausal filter which cannot be made causal by a finite shift in time. In addition,
the filter is not BIBO  stable since the impulse response (3.20) is not absolutely
summable. This kind of filter is nonrealizable. To produce a realizable fractional delay
filter, some finite-length approximation for the sinc function has to be used.

Before considering these approximations we notify one particular property of the
ideal transfer function that makes the fractional delay approximation difficult. The
imaginary part of the ideal transfer function is

  BIBO is short for Bounded Input Bounded Output.
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Im Hid (e jw ){ }
w=p

= -sin(pD) (3.23)

This implies that when D is a fractional number, the transfer function has a complex
value at w = p. Discrete-time filters with real coefficients have the property that

H(e jw )
w=p

ÎR (3.24)

This implies that, at the Nyquist frequency, the approximation error cannot be smaller
than sin(pD) . Cain and Yardim (1994) call this the Tarczynski bound.

Some of the useful fractional delay approximation techniques will be discussed in
the following sections.

3.1.5 Conclusion and Discussion

Up to now we have discussed the theoretical background of noninteger digital delay, or
fractional delay. The relationship between the underlying analog signal and fractional
delay was clarified. Furthermore, the characteristics of the ideal fractional delay ele-
ment were reviewed and it was shown that the ideal FD system (i.e., ideal bandlimited
interpolator) is nonrealizable, since the corresponding impulse response is infinitely
long and noncausal. Thus, approximation techniques have to be employed to obtain a
finite-length causal implementation of FD.

Formerly, similar theoretical aspects have been considered in the context of signal
recovery and multirate signal processing. Implementation of a fractional delay requires
that the system is in principle able to compute the amplitude of the signal at any time
instant between known samples. Thus, the FD problem and recovery of an analog signal
from its samples are essentially equivalent.

The major differences between the FD problem and sampling-rate conversion are as
follows.

1) In FD processing only one new sample per sampling interval needs to be com-
puted, whereas in interpolation for increasing the sampling rate, several new
samples per original sample interval may be needed.

2) In the FD problem the fractional interval d to be approximated is in general irra-
tional, whereas in sample-rate conversions, simple rational ratios are often used.

The underlying theory of these two DSP problems is, of course, the same.
Even today, FD processing is not a well-known topic in signal processing.

Discussion on this topic has appeared only in few textbooks (see, e.g., Crochiere and
Rabiner, 1983, pp. 271Ð274; Regalia, 1993, pp. 948Ð953).

3.2 Design Methods for Fractional Delay FIR Filters

In this section, the FIR filter approximation of the fractional delay is discussed. For
more detailed discussion and examples see Laakso et al. (1994). A comparison of four
FD FIR filter design methods has been made by Cain et al. (1994).

The transfer function of an FIR filter is of the form
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H(z) = h(n)z-n

n=0

N

å (3.25)

where N is the order of the filter and h(n) (n = 0, 1, ..., N) are the real coefficients that
form the impulse response of the FIR filter. Note that the length of the impulse response
(i.e., the number of the filter coefficients) is

L = N + 1 (3.26)

In the design procedure our aim is to minimize the error function defined by

E(e jw ) = H(e jw ) - Hid (e jw ) (3.27)

i.e., the difference of the ideal frequency response and the approximation.

3.2.1 Least Squared Integral Error Design

The intuitively most attractive method for designing realizable FD filters is certainly the
truncation of the ideal IR defined by Eq. (3.20). This method minimizes the least
squared (LS) error function ELS  which is equal to the L2 norm (integrated squared
magnitude) of the error frequency response E(e jw ) , that is

ELS =
1
p

E(e jw )
2

0

p

ò dw =
1
p

H(e jw ) - Hid (e jw )
2

0

p

ò dw (3.28)

Using ParsevalÕs relation this equation can be converted into the time domain. This
results in

ELS = h(n) - hid (n)
2

n=-¥

¥

å = hid
2 (n) + h2(n) - 2h(n)hid (n)[ ]

n=-¥

¥

å (3.29)

From this equation, it is possible to derive a closed-form solution for the squared inte-
gral error in the case of fractional delay approximation. According to ParsevalÕs rela-
tion, the first term in (3.29) can be evaluated in the following way:

hid (n)
2

n=-¥

¥

å =
1
p

Hid (e jw )
2
dw

0

p

ò =
1
p

e- jwD
2
dw

0

p

ò = 1 (3.30)

The second and third term of Eq. (3.29) include the coefficients of the Nth-order FIR
filter and thus the summation indices can be limited. The closed-form solution is

ELS = 1+ h2(n) - 2h(n)sinc(n - D)[ ]
n=0

N

å (3.31)

where the sinc function is defined by Eq. (3.14).
It is also possible to derive a closed-form formula for the bandlimited squared inte-

gral error. The derivation is presented in Appendix A.
According to Eq. (3.31), the optimal solution for an Nth-order FIR filter in the L2

sense is obviously the one with N + 1 coefficients truncated symmetrically around the
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maximum value, i.e., the central point of hid (n). The approximation error resulting from
this approach may be written as

ELS = hid (n)
2

n=-¥

-1

å + hid (n)
2

n=N+1

¥

å (3.32)

It is seen that the approximation error decreases as N increases. This is intuitively clear.
The impulse response h(n) of the LS FD FIR filter can be expressed as

h(n) =
sinc(n - D),

0,
ì
í
î

0 £ n £ N

otherwise
(3.33)

The delay D should be located between the two central taps of the filter when N is
odd (L = N + 1 is even), or within half a sample from the central tap when N is even (L
odd), since then the approximation error is smallest. This means that the delay D should
be chosen so that the following inequality is valid:

N -1
2

£ D £
N +1

2
(3.34)

For odd-order FIR interpolators (N odd and L even) this simply implies that the integer
part Dint  of the delay has to be chosen in the following way:

Dint =
N -1

2
(3.35)

When N is even (L odd) the integer part of the delay should be chosen so that

Dint =

N

2
when 0 £ d <

1
2

N

2
-1 when 

1
2
£ d < 1

ì

í
ï

î
ï

(3.36)

This will ensure that point D is located within half a sample from the midpoint of the
interpolator and consequently that the approximation error is smallest possible with the
used FIR design technique.

Above we have assumed that the FIR filter coefficients are truncated from the
beginning of the ideal impulse response. This is not the only possible choice. The index
M of the first non-zero sample should be chosen in the following way:

M =
round(D) -

N

2
for even N

Dë û -
N -1

2
for odd N

ì

í
ïï

î
ï
ï

(3.37)

where round(á) denotes the operation of rounding to the nearest integer, and ×ë û  is the
greatest integer function as given by Eq. (3.12). The FIR filter h(n) will be causal if M
³ 0. If M < 0, the filter will be noncausal and thus nonrealizable. An integer must then
be added to D in order to shift the central point of the sinc function so that the require-
ment of Eq. (3.34) is fulfilled. This is equivalent to adding unit delays to the delay line.
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Fig. 3.3 Magnitude responses (upper) and phase delay curves (lower) of a third-order
FIR filter designed by truncating the shifted sinc function. The curves are
plotted for 11 fractional delay values between 1.0 and 2.0. Note that the
magnitude responses for N - D  are the same as for D.

However, unit delays cannot be added if the actual delay D, including the integer part, is
important. Another method to make the FIR filter causal is to choose a smaller value for
N, that is, to design a filter of lower order. This will obviously make the approximation
less accurate.

If Eq. (3.31) is valid, then M = 0 and the entire delay D is implemented by the FIR
filter. This case corresponds to the best (highest-order) causal approximation but also to
the heaviest computational load that an LS FIR filter can offer. If M > 0 then part of the
desired delay has to be implemented by a sequence of unit delays while the rest of that
delay is approximated by the FD filter. The implementation of a fractional delay with
FIR filters will be discussed further in Sections 3.5.2 and 4.1.

Truncating the shifted sinc function is an easy way to design FD FIR filters. This
approach has been proposed, e.g., by Sivanand et al. (1991) (see also Sivanand, 1992)
and Cain et al. (1994). However, it is often not useful since truncation of the impulse
response introduces ripple to the frequency response. This is called the Gibbs phe-
nomenon. It causes the maximum deviation from the ideal frequency response to remain
approximately constant irrespective of the filter order. This goes for both the magnitude
and the phase response.

The magnitude and phase delay characteristics of an LS FD FIR filter are illustrated
in Fig. 3.3. The order N of the filter is 3 and thus the best approximation (M = 0) is
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obtained with delay values 1 £ D < 2. Were N = 4, M would be 0 for 1.5 £ D < 2.5.
Notice the overshoot in both the magnitude and the phase delay curves. It is seen that
the phase delay curves are symmetrical with respect to the delay of 1.5 samples, which
corresponds to the central point of the filterÕs impulse response.

3.2.2 LS Design with Reduced Bandwidth

A variation of the LS design technique is to use a lowpass interpolator as a prototype
filter instead of a fullband filter (Laakso et al., 1994). The ideal solution is then defined
in the interval [0, ap] where 0 < a < 1. The solution corresponding to Eq. (3.33) is now

h(n) =

sin[ap(n - D)]
p(n - D)

for  M £ n £ M + N

0 otherwise

ì

í
ï

îï
(3.38)

with M defined as in Eq. (3.37). It appears that the Gibbs phenomenon will be reduced
considerably, as desired, but the usable bandwidth will contract by a. Thus we conclude
that narrowing the bandwidth does not necessarily improve the LS FD filter design.

Another variation of the basic LS design is to use a reduced bandwidth with a smooth
transition band function (Parks and Burrus, 1987, pp. 63Ð70). This will make the
impulse response of the FD element decay fast. The IR will still be infinitely long and
must be truncated, but the Gibbs phenomenon is guaranteed to be reduced, since the
discontinuity is not as sharp as originally. A good choice for the transition band is a
low-order spline multiplied by e- jwD . Using this design the magnitude response of the
FD FIR filter will remain constant with high precision. However, the price paid is that
the phase response will be severely nonlinear (Laakso et al., 1994).

3.2.3 Windowing the Ideal Impulse Response

A well-known method to reduce the Gibbs phenomenon in FIR filter design is to use a
bell-shaped window function for weighting in the time domain (see, e.g., Parks and
Burrus, 1987, pp. 71Ð83). Truncation corresponds to windowing with a rectangular
window function. An extensive tutorial on window functions and their properties has
been written by Harris (1978). The impulse response of an FIR filter designed by the
windowed LS method can be written in the form

h(n) =
w(n - D)sinc(n - D) for  M £ n £ M + N

0 otherwise
ì
í
î

(3.39)

Note that the midpoint of the window function w(n) of length N + 1 has been shifted by
D so that the shifted sinc function will be windowed symmetrically with respect to its
center. The window function w(n Ð D ) is asymmetric, however. Many window func-
tions, such as the Hamming and von Hann windows, can be easily delayed by a frac-
tional value D (Laakso et al., 1994; Cain and Yardim, 1994; Cain et al., 1994, 1995)
whereas some others cannot. For instance, there is no known method to design exact
fractionally shifted DolphÐChebyshev or Saram�ki windows for an arbitrary D. This is
because these windows have been designed in the frequency domain. An approximative
technique for shifting these windows has been proposed by Laakso et al. (1995b).

It is readily seen that the approximation error ELS  [see Eq. (3.29)] will be larger with
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a window function than without it [see Eq. (3.32)]. Thus, this design method does not
minimize the LS error measure, but it is an ad hoc modification of the LS technique. In
general, the frequency response of an FD FIR filter designed using this technique has a
lower ripple but also a wider transition band than a corresponding LS filter (see, e.g.,
Parks and Burrus, 1987, p. 73). A drawback is that the control of the magnitude error is
difficult when changing the parameters of, e.g., the Kaiser or the DolphÐChebyshev
window.

The windowing method is suitable for real-time systems where the fractional delay is
changed since the coefficients can be updated quickly. The samples of the sinc and the
window function can be stored in memory for several values of D. The filter coeffi-
cients for delay values between the stored ones may be obtained, e.g., by linear interpo-
lation (Smith and Gossett, 1984). Smith (1992a) has studied the implementation and
error analysis of this kind of interpolator in detail.

3.2.4 General Least Squares FIR Approximation of a Complex Frequency
Response

In principle, the FIR fractional delay filter with the smallest LS error in the defined
approximation band is accomplished by defining the response only in that part of the
frequency band and by leaving the rest out of the error measure as a ÔdonÕt careÕ band
(Laakso et al., 1994). This scheme also enables frequency-domain weighting of the LS
error. This technique is called general least squares (GLS) FIR filter approximation, and
it results in the following error function

EGLS =
1
p

W(w )E(e jw )
2
dw

0

ap

ò =
1
p

W(w )H(e jw ) - Hid (e jw )
2
dw

0

ap

ò (3.40)

where the error is defined in the lowpass frequency band [0, ap] only and W(w ) is the
nonnegative frequency-domain weighting function [which has nothing to do with the
time-domain window function w(n)]. The derivation of the bandlimited squared integral
error function for the case W(w ) º 1 is presented in Appendix A. Now it is shown how
a filter design algorithm can be obtained based on this approach.

The DTFT of the FIR filter can be written as

H(e jw ) = hTe (3.41a)

where h is the coefficient vector

  h = h(0) h(1) L h(N)[ ]T (3.41b)

and e is defined as

  
e = 1 e- jw L e- jNw[ ]T (3.41c)

The error function (3.40) can now be rewritten in the following way:

EGLS =
1
p

W(w ) hTe - Hid (e jw )[ ] hTe - Hid (e jw )[ ]*
0

ap

ò dw (3.42)
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where the superscript Ô*Õ denotes complex conjugation. This equation can be further
elaborated as

EGLS =
1
p

W(w ) hTCh - 2hT Re Hid (e jw )e*{ } + Hid (e jw )
2é

ëê
ù
ûú

0

ap

ò dw (3.43a)

where

  

C = Re eeH{ } =
1 cos(w ) L cos(Nw )

cos(w ) 1 cos (N -1)w[ ]
M O M

cos(Nw ) cos (N -1)w[ ] L 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

(3.43b)

Here the superscript ÔHÕ stands for the Hermitian operation, i.e., transposition with con-
jugation. The error function can further be expressed as

EGLS = h
TPh - 2hTp1 + p0 (3.44a)

where we have used the following matrices and vectors:

P =
1
p

W(w )Cdw
0

ap

ò (3.44b)

p1 =
1
p

W(w ) Re Hid (e jw ){ }c - Im Hid (e jw ){ }s[ ]dw
0

ap

ò (3.44c)

p0 =
1
p

W(w )Hid (e jw )
2
dw

0

ap

ò (3.44d)

  c = 1 cos(w ) L cos(Nw )[ ]T (3.44e)

and

  s = 0 sin(w ) L sin(Nw )[ ]T (3.44f)

The optimal solution in terms of the L2 norm is obtained by solving for the minimum
of the error measure (3.44a). The unique minimum-error solution is found by setting its
derivative with respect to h to zero. This results in the following normal equation

2Ph - 2p1 = 0 (3.45)

which is solved formally by matrix inversion, i.e.,

h = P-1p1 (3.46)

In practice, the optimal solution is obtained by determining the integrals involved in
Eqs. (3.44) (usually numerically) and solving the set of N + 1 linear equations (3.46).
Numerical problems may arise, particularly in narrowband approximation (Laakso et
al., 1994). However, in FD filter design this is not typical. The design is much easier if
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Fig. 3.4 Magnitude responses (upper) and phase delay curves (lower) of a third-order
GLS FIR filter with a = 0.5. The curves are plotted for 11 fractional delay val-
ues between 1.0 and 2.0. Note that the magnitude responses for N - D  are the
same as for D.

the weighting function is not used, i.e.,W(w ) º 1, since the solution can be given in
closed form. Then elements of P and p1 can be expressed as

  

Pk,l =
1
p

cos (k - l)w[ ]dw
0

ap

ò = asinc a(k - l)[ ] k,l = 1,2,K,L (3.47)

and

  

p1,k =
1
p

cos (k - D)w[ ]dw
0

ap

ò = asinc a(k - D)[ ] k = 1,2,K,L (3.48)

Note that matrix P  is independent of the delay parameter D  and only needs to be
inverted once. The resulting FIR filter coefficients depend on the choice of frequency
band parameter a and the weighting function.

Figure 3.4 presents a third-order GLS filter with unity weighting function W(w ) º 1
and a = 0.5 (i.e., halfband approximation). This result can be compared with the full-
band LS FIR approximation of Fig. 3.3. It is seen that the maximum error in both mag-
nitude and phase delay has been reduced in the approximation band. At high frequen-
cies the error has slightly increased since now the approximation error outside the pass-
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band [0, 0.5p] has not been considered in the design.

3.2.5 Minimax Design of FIR FD Filters

If it is desired to minimize the peak approximation error, it is suitable to use the mini-
max or Chebyshev design. These approximation problems can usually be solved only by
iterative techniques. Advanced algorithms for complex approximation with minimax
error characteristics have been presented, e.g., by Parks and Burrus (1987), Pyfer and
Ansari (1987), Preuss (1989), Schulist (1990), Alkhairy et al. (1991), and Karam and
McClellan (1995). For a more detailed discussion on minimax FIR FD filters, see
Laakso et al. (1994).

Here we consider a technique proposed by Oetken (1979). The observation that led
to the development of this design method is that the magnitude error functions E(e jw )
of odd-order equiripple FIR FD filters are almost exactly proportional to each other
over the whole frequency range. This implies that it is only needed to determine one
optimal filter (the Chebyshev prototype filter), calculate the zeros of its magnitude error
function, and then use these zeros to design other FIR FD filters with similar character-
istics.

The following discussion has been adapted from Laakso et al. (1994). Let us con-
sider that an Nth-order (with odd N) symmetric FIR filter has been designed. This filter
must approximate flat magnitude response in the equiripple sense in the passband. The
error function of this filter has K = L/2 Ð 1 zeros, i.e.

  E(e jw ) = H(e jw ) - Hid (e jw ) = 0 , w = Wk , k = 1,2,K,K (3.49)

implying that

  
h(n)e- jnWk

n=0

N

å = e- jWk N /2 , k = 1,2,K,K (3.50)

where N/2 is the delay of the filter. The filter coefficients can be solved from (3.50) for
a chosen total delay D which is close to N/2. This can be expressed in matrix form as

EWh = eD (3.51a)

where EW  is a K ´ (N +1)  matrix defined by

  

EW =

1 e- jW1 e- j2W1 L e- jNW1

1 e- jW2 e- j2W2 L e- jNW2

M M M M

1 e- jWK e- j2WK L e- jNWK

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(3.51b)

and

  
eD = e- jDW1 e- jDW2 L e- jDWK[ ]T (3.51c)

Equation (3.51) is a set of K complex equations with L = 2K unknowns, which can
be expressed as a fully determined set of L real equations by equating the real and
imaginary parts of both sides as
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Fig. 3.5 The magnitude and phase delay responses of a third-order (N = 3) approxi-
mately equiripple FIR FD filter. The curves are plotted for 11 delay values
between 1.0 and 2.0. Note that the magnitude responses for N - D  are the
same as those for D.

PWh º pW (3.52a)

with

PW =
CW
SW

é

ë
ê

ù

û
ú (3.52b)

and

pW =
cD
sD

é

ë
ê

ù

û
ú (3.52c)

where the matrices and vectors contain appropriate cosine and sine elements such that
EW = CW - jSW  and eD = cD - jsD . The coefficient vector of the almost-equiripple FIR
FD filter is obtained as

h = PW
-1pW (3.53)

Note that the cosine-sine matrix PW  depends only on the prototype filter but not on
the delay parameter D. Thus it can be inverted once and the same inverse matrix can be
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used for approximating FD filters for several values of D.
An example of third-order equiripple FIR FD filters designed using OetkenÕs method

is shown in Fig. 3.5. The prototype filter is a linear-phase halfband (a = 0.5) equiripple
FIR filter designed using the Remez algorithm (see, e.g., Parks and Burrus, 1987).
Figure 3.5 can be compared with Figs. 3.3 and 3.4. It is apparent that at the lower half
of the frequency band the equiripple design (Fig. 3.5) yields a much more accurate
approximation than the LS approximation (Fig. 3.3). However, the result is comparable
to the halfband GLS filter of Fig. 3.4. In both of these figures, the magnitude and phase
response curves oscillate around the nominal value at the lower half of the frequency
band, and show lowpass behavior at high frequencies.

3.2.6 Other Methods for the Design of FIR FD Filters

In principle, many general FIR filter design techniques may also be applied to the
design of FD filters. Altogether, there is a large variety of methods, some of which are
mentioned in the following. These techniques are not discussed in detail because they
have not appeared to be very useful.

Oetken et al. (1975) proposed a stochastic approach to the design of interpolating
filters. In this technique, the design criterion is the minimum expectable mean squared
output error. It appears that this is mathematically equivalent to the general LS design
with the frequency-domain weighting function being equal to the average power spec-
trum of the input signal (Laakso et al., 1994). All the LS methods can also be modified
so that the desired frequency response is sampled using a uniform or nonuniform grid.

The maximally flat FD filter design seems to be appropriate for digital waveguide
systems since it approximates the ideal bandlimited interpolator very accurately at low
frequencies, and its magnitude response never exceeds unity. For these reasons we
examine this technique in detail in the following.


