Appendix A

Bandlimited Squared Integral Error of FIR FD Filters

The least squared (LS) error function E_{LS} is the L_{2} norm (integrated squared magnitude) of the error frequency response $E\left(e^{j \omega}\right)$. In the following, we derive the bandlimited version of the error function E_{LS}, that is

$$
\begin{equation*}
E_{\mathrm{LS}}=\frac{1}{\pi} \int_{0}^{\alpha \pi}\left|E\left(e^{j \omega}\right)\right|^{2} d \omega=\frac{1}{\pi} \int_{0}^{\alpha \pi}\left|H\left(e^{j \omega}\right)-H_{\mathrm{id}}\left(e^{j \omega}\right)\right|^{2} d \omega \tag{A.1}
\end{equation*}
$$

where $0<\alpha \leq 1$. The error function can be rewritten using vectors and matrices, i.e.

$$
\begin{align*}
E_{\mathrm{LS}} & =\frac{1}{\pi} \int_{0}^{\alpha \pi}\left[\mathbf{h}^{T} \mathbf{e}-H_{\mathrm{id}}\left(e^{j \omega}\right)\right]\left[\mathbf{h}^{T} \mathbf{e}-H_{\mathrm{id}}\left(e^{j \omega}\right)\right]^{*} d \omega \tag{A.2}\\
& =\frac{1}{\pi} \int_{0}^{\alpha \pi}\left[\mathbf{h}^{T} \mathbf{C h}-2 \mathbf{h}^{T} \operatorname{Re}\left\{H_{\mathrm{id}}\left(e^{j \omega}\right) \mathbf{e}^{*}\right\}+\left|H_{\mathrm{id}}\left(e^{j \omega}\right)\right|^{2}\right] d \omega
\end{align*}
$$

Here $\mathbf{h}=\left[\begin{array}{llll}h(0) & h(1) & \cdots & h(N)\end{array}\right]^{T}$ is the coefficient vector of the FIR filter and \mathbf{e} is

$$
\mathbf{e}=\left[\begin{array}{llll}
1 & e^{-j \omega} & \cdots & e^{-j N \omega} \tag{A.3}
\end{array}\right]^{T}
$$

and we have defined the matrix \mathbf{C} as

$$
\mathbf{C}=\operatorname{Re}\left\{\mathbf{e e}^{H}\right\}=\left[\begin{array}{cccc}
1 & \cos (\omega) & \cdots & \cos (N \omega) \tag{A.4}\\
\cos (\omega) & 1 & & \cos [(N-1) \omega] \\
\vdots & & \ddots & \vdots \\
\cos (N \omega) & \cos [(N-1) \omega] & \cdots & 1
\end{array}\right]
$$

The squared error can be expressed as

$$
\begin{equation*}
E_{\mathrm{LS}}=\mathbf{h}^{T} \mathbf{P h}-2 \mathbf{h}^{T} \mathbf{p}_{1}+p_{0} \tag{A.5a}
\end{equation*}
$$

where we have used the following matrices and vectors

$$
\begin{equation*}
\mathbf{P}=\frac{1}{\pi} \int_{0}^{\alpha \pi} \mathbf{C} d \omega \tag{A.5b}
\end{equation*}
$$

$$
\left.\begin{array}{c}
\mathbf{p}_{1}=\frac{1}{\pi} \int_{0}^{\alpha \pi}\left[\operatorname{Re}\left\{H_{\mathrm{id}}\left(e^{j \omega}\right)\right\} \mathbf{c}-\operatorname{Im}\left\{H_{\mathrm{id}}\left(e^{j \omega}\right)\right\} \mathbf{s}\right.
\end{array}\right] d \omega
$$

The elements of matrix \mathbf{P} can be elaborated as

$$
\begin{align*}
P_{k, l} & =\frac{1}{\pi} \int_{0}^{\alpha \pi} \mathbf{C} d \omega=\frac{1}{\pi} \int_{0}^{\alpha \pi} \cos [(k-l) \omega] d \omega \tag{A.6}\\
& =\frac{\sin [(k-l) \alpha \pi]}{(k-l) \pi}=\alpha \operatorname{sinc}[(k-l) \alpha]
\end{align*}
$$

for $k, l=1,2, \ldots, N+1$. Also, the elements of vector \mathbf{p}_{1} can be expressed as

$$
\begin{align*}
p_{1, k} & =\frac{1}{\pi} \int_{0}^{\alpha \pi}[\cos (D \omega) \cos (k \omega)+\sin (D \omega) \sin (k \omega)] d \omega \tag{A.7}\\
& =\frac{1}{\pi} \int_{0}^{\alpha \pi} \cos [(D-k) \omega] d \omega=\frac{\sin [(D-k) \alpha \pi]}{[(D-k) \pi]}=\alpha \operatorname{sinc}[(D-k) \alpha]
\end{align*}
$$

for $k=1,2, \ldots, N+1$. Here we used the well-known trigonometric identities

$$
\begin{aligned}
\cos (a) \cos (b) & =\frac{1}{2}[\cos (a-b)+\cos (a+b)] \\
\sin (a) \sin (b) & =\frac{1}{2}[\sin (a-b)-\sin (a+b)]
\end{aligned}
$$

The second term of (A.5) can be further elaborated as

$$
\begin{equation*}
2 \mathbf{h}^{T} \mathbf{p}_{1}=2 \alpha \sum_{n=0}^{N} h(n) \operatorname{sinc}[(n-D) \alpha] \tag{A.8}
\end{equation*}
$$

Finally, the bandlimited squared frequency response error can be expressed as a function of filter coefficients:

$$
\begin{equation*}
E_{\mathrm{LS}}=\mathbf{h}^{T} \mathbf{P h}-2 \alpha \sum_{n=0}^{N} h(n) \operatorname{sinc}[(n-D) \alpha]+\alpha \tag{A.9}
\end{equation*}
$$

where the elements of matrix \mathbf{P} are given by (A.6).

