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Abstract
We apply a recently developed nonlinear string synthesis algorithm to modeling and synthesis of the
kantele, which is a plucked string instrument used in traditional Finnish music for the past few thou-
sand years. The new model combines formerly proposed linear plucked-string models with recent
nonlinear extensions. As a result, a dual-polarization nonlinear model is obtained where the differ-
ence in the effective string length in two polarizations is accounted for, together with effects caused
by the yielding termination of kantele strings and tension modulation. Calibration of model parame-
ters is discussed. The model is also applicable to physical modeling of other plucked string instru-
ments. Sound examples are available at www.acoustics.hut.fi/~vpv/publications/icmc99.htm.

1. Introduction
This paper discusses the design and application of a
nonlinear string synthesis model. We combine the
formerly proposed linear models [1]–[3] and nonlinear
plucked-string models [4]–[6], and propose a new
extended structure. It is applied to the physical mod-
eling of a peculiar Finnish string instrument, the kan-
tele [7], [2]. In an earlier work, kantele tones were
synthesized with a linear string model that had an
instantaneous nonlinearity at its output [7].

The bright and pleasing tone of the kantele is a wel-
come amendment to the repertoire of instruments in
computer music compositions. The synthesis model
also enables varying the timbre of kantele or modify-
ing it so that new but physically behaving sounds are
generated. The proposed model is applicable to the
nonlinear synthesis of other string instruments as well.

2. Acoustics of the Kantele
The kantele has had an important role in traditional
folk music in Finland for about 2000 years. The
instrument belongs to the class of zithers. It has 5 to
40 strings which are attached in a unique way to a
wooden body. The kantele has an interesting, bright

tone quality that is characterized by three special fea-
tures:
1) strong beating due to amplitude modulation of har-

monic components,
2) bright timbre caused by strong, slowly decaying

harmonics—especially a strong second harmonic,
which is still present when a string is plucked close
to its midpoint, and

3) audible lowering of the pitch of the tone shortly
after the attack—especially in fortissimo playing.

In previous studies, it has been found that the cause for
beats is the loose knot by which one end of kantele
strings is attached to a metal bar [7]. Thus, there is a
difference in the effective string length in the vertical
and horizontal polarization planes, which brings about
the beating.

The strong second harmonic is created by a nonlin-
ear mechanism because the other end of every string is
attached (without a bridge) to a tuning peg which is
not absolutely rigid [7].

The descent of the pitch at the beginning of kantele
tones can be heard best in the case of fortissimo play-
ing. This suggests that the phenomenon is caused by
tension modulation, which is a direct consequence of
the decaying transversal vibration of the string that
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modulates the transversal wave velocity along the
string [8]. Tension modulation also affects the level of
harmonic components, thereby modifying the sound in
a nonlinear fashion.

In this work, our aim has been to develop a string
synthesis algorithm that would faithfully reproduce all
the phenomena mentioned above. The model is
described in the following.

3. String Model
The suggested new model is based on the principles of
digital waveguide modeling [9]. We use a recently
developed string model which accounts for the effects
of tension variation caused by finite string displace-
ment, i.e., tension modulation.

3.1 Nonlinear String Model for One Polarization

Figure 1 shows the block diagram of the tension
modulation string model proposed in [5] and [6]. Fil-
ters Rb(z) and Rf(z) bring about the frequency-depend-
ent reflection of waves from the end points of the
string, as in linear string models [2], and I(z) is a leaky
integrator that converts instantaneous elongation esti-
mate into deviation of the delay parameter [5, 6]. Ten-
sion modulation is realized using a signal-dependent
fractional delay (FD) filter [5], [6], which we imple-
ment using a Lagrange interpolation filter [10], [11].
The structure of Fig. 1 can simulate transversal string
vibration in one polarization of the string (vertical or
horizontal).

3.2 Nonlinear Dual-Polarization String Model

The model structure for each kantele string consists of
two parallel waveguide string models, one for each

polarization, as depicted in Fig. 2, where Sh(z) and
Sv(z) are string models identical with that of Fig. 1. As
suggested in previous works, the delay line lengths
and loop filter parameters of the two models are
slightly different to generate beats in the synthetic tone
[1]–[3]. The two polarizations may also have different
body model filters. Notice that the output signal of the
horizontal string model leaks to the input of the verti-
cal one, as suggested in [3], so that a revolving polari-
zation is obtained but the system remains stable irre-
spective of the value of the coupling coefficient gc.

The total tension of the string, which controls the
fractional delay filters in the model of Fig. 2, is
approximated by accounting for signals propagating in
both waveguide models. In the dual-polarization
vibration, the elongation of the string is given by
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where x is the direction along the string, yh and yv are
the directions of the horizontal and vertical polariza-
tions, respectively, and nomλ  is the nominal string
length. In the digital waveguide formulation, Eq. (1) is
expressed as
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where nomL̂  is the integer-valued length of the
waveguide, ph(n, k) = sr,h(n, k) + sl,h(n, k) and pv(n, k) =
sr,v(n, k) + sl,v(n, k). The subscripts are r, l, h, and v
denote right, left, horizontal, and vertical, respectively.
Thus, for example, sr,h is the right traveling slope wave
in the horizontal polarization in the digital waveguide.
In practice, we may use the truncated Taylor series
approximation of Eq. (2), which yields a simplified
formula
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Fig. 1. Waveguide string model where elongation
caused by string vibration affects the loop delay
through modulation of the fractional delay (FD) filters
[5], [6]. The input signal is the initial slope that is
inserted into both delay lines.
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Fig. 2. Block diagram of the dual-mode string model
which accounts for the variation of string tension.
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For a more detailed discussion of Eq. (2) and its com-
putationally efficient approximations, see [5].

After the elongation is estimated using Eq. (2) or
(3), the time-varying delay parameter d(n) can be
computed as [5]
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where A is the modulation depth parameter related to
the string properties and the nominal tension. The
summation in Eq. (4) can be replaced with a computa-
tionally more efficient leaky integrator I(z), which is
included in Fig. 1 [5].

The direct signal path in Fig. 2 from the elongation
estimation block to the output (multiplied by Agstr)
implements the tension modulation driving force
effect, which is described in a companion paper [12].

4. Analysis and Synthesis Examples
The parameters of the nonlinear string model may be
calibrated using formerly proposed techniques for the
linear part of the system [2], plus a new technique to
extract the delay line lengths of the two polarizations,
and another novel method to estimate the appropriate
tension modulation parameter A [5]. The use of the
latter two methods is described below.

4.1 Estimation of the Detuning of Polarizations

The difference in the length of the delay lines of the

two models can be estimated based on the beating of
kantele tones. We analyzed the envelope of the first
harmonic of recorded kantele tones, and extracted the
beating frequency by fitting a sine wave using the least
squares method. Figure 3 presents an example where
the linear trend and mean of the envelope of the first
harmonic have been removed, and a sine wave has
been fitted to the data. We use an average of two
cases, a horizontal and a vertical pluck. This method
yields a good estimate of the difference in the funda-
mental frequency of vibration of the two polarizations.

Table 1 shows the fundamental frequencies corre-
sponding to the two delay lines of the synthesis model
in Fig. 1 for the five strings of the kantele. The f0 of
the horizontal string model has been chosen to be the
nominal value based on pitch analysis of recorded
kantele tones, and that of the vertical string model has
been set ∆f0 smaller. Generally speaking, the differ-
ence ∆f0 between the fundamental frequencies is
around 1 Hz (see Table 1), which can also be heard in
recorded kantele tones.

4.2 Estimation of Tension Modulation Depth

The tension modulation parameter A can be estimated
from the pitch variation of a recorded tone [5]. Since
the deviation depends on the amplitude of the tone—in
both recorded and synthetic tones—we have to choose
the numerical value of the input amplitude to be used
in synthesis prior to estimating A.

An example of variation of the fundamental fre-
quency is given in Figure 4. The maximum funda-
mental frequency here is f0,max = 327.7 Hz, and the
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Fig. 3. Beating of the first harmonic (solid line) in a
kantele tone plucked horizontally (top) and vertically
(bottom), with a least squares sine wave fit (dashed
line).

Table 1. Fundamental frequencies (in Hz) of the two
string models of Fig. 1 for kantele synthesis, and their
difference.

String #1 #2 #3 #4 #5
f0,h 466.5 415.6 392.4 355.5 315.1
f0,v 465.2 414.5 391.3 354.5 314.3
∆f0 1.3 1.0 1.1 0.97 0.77
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Fig. 4. Variation of the fundamental frequency in a
kantele tone as result of a fortissimo pluck (solid line)
and a synthetic tone (dashed line).
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nominal value is f0,nom = 317.7 Hz. When the sampling
rate is 22.05 kHz, the overall f0 variation, 10.0 Hz,
corresponds to a change of –1.06 samples in the delay
lines of the synthesis model of Fig. 1. Assuming that
the displacement is 4.0 mm, the value of A will be
1315 (for details in computing A, see [5]).

We now present an example of resynthesizing the
kantele tone produced with a fortissimo pluck. The
values of A and maximum displacement are those
mentioned above. The loop filter coefficients are g =
0.9975 and a1 = –0.0200 for both polarizations, and
f0,max = 317.7 Hz. In the dual-model model, mp =
0.5000, gc = 0.0010, and mo = 0.8000. The string was
plucked at the midpoint, although this was not the case
of the recorded tone. In Fig. 4, the variation of the
fundamental frequency of this synthetic tone is pre-
sented with a dashed line. A good match with the
analyzed result can be observed.

5. Conclusions and Future Plans
This paper has described a nonlinear string model that
can be used in the simulations of plucked string
instruments. In this paper, the application to the syn-
thesis of the kantele was studied. The algorithm is,
however, a general model for a vibrating string that
exhibits tension modulation. The special characteris-
tics of the kantele, such as beating and observable
descent of the tones, are also present in synthetic
tones. The tension modulation nonlinearity causes
coupling of harmonic modes of the string, as described
elsewhere [5], [6]. Examples of recorded and synthetic
kantele sounds are available at www.acoustics.hut.fi/
~vpv/publications/icmc99.htm. In the future, we will
employ this method in physical modeling of the
tanbur, a traditional Turkish string instrument [13].
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