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Introduction

* Digital waveguides are useful in physical modeling of
musical instruments and other acoustic systems
(Smith, 1992, 1997)

 2-D digital waveguide mesh (WGM) for simulation of
plates, drums etc. (Van Duyne & Smith, 1993)

 3-D digital waveguide mesh for simulation of acoustic
spaces (Savioja et al., 1994)

« 3-D simulation also using wave digital filters (Schetelig
& Rabenstein, ICASSP’98)
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Sophisticated Wave guide Structures

* In the original WGM, wave propagation speed depends
on direction and frequency (Van Duyne & Smith, 1993)

 More advanced structures improve this problem, e.qg.,
- triangular WGM (Van Duyne & Smith, 1995, 1996;
Fontana & Rocchesso, 1998)

- interpolated WGM (Savioja & Valiméaki, ICASSP’97)

 Direction-dependence is reduced but frequency-
dependence remains

I Dispersion !
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Interpolated 2-D Wave guide Mesh

Original WGM Hypothetical Interpolated WGM
8-directional WGM
® : ®
@<«—0—>0
® x ®
(Van Duyne & Smith, (Savioja & Valimaki,
1993) ICASSP’97)
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Wave Propa gation Speed

Interpolated WGM
(bilinear interpolation)
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Relative Frequency Error (RFE)

rectangular WGM

1
ol

<> 5 .
X
RFE in diagonaland o
e O
axial directions: T .
X 5
(a) original and O 10
=
' o 5
(b) interpolated T ° [
N T |
LL
>
|_
S
LL
o

=
oo

005 01 015 0.2 035
NORMALIZED FREQUENCY

Savioja and Valiméki 1999



HELSINKI UNIVERSITY OF TECHNOLOGY

Frequency Warpin ¢

 Dispersion error of the interpolated WGM can be
reduced by frequency warping because

- the difference between the max and min errors
IS small

- the RFE curve Is smooth

» Postprocess the response of the WGM using a
warped-FIR filter (Oppenheim et al., 1971,
Laine et al., ICASSP’94,; Karjalainen & Smith, 1996)
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Frequency Warpin g: Warped-FIR Filter

 Chain of first-order allpass filters A(Z) = Z"+ A
/ 1+ Az
6(") —> A( z) A(Z) N A(Z)
s S(l)i> s(2) S(L-I)I
s, (n)

 5(n) Is the signal to be warped
e 5,,(N) Is the warped signal
* The extent of warping is determined by A
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Optimization of Warpin g Factor A

e Different optimization strategies can be used, such as:
- least squares
- minimize maximal error (minimax)
- maximize the bandwidth of X% error tolerance
* We present two results:
(a) minimax
(b) maximize 1%-error bandwidth
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Reduced Relative Frequency Error

RFE in axial and >

diagonal directions
after warping
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Comparison

o Computational complexity:

— Original WGM: 1 binary shift & 4 additions
— Interpolated WGM: 3 MUL & 9 ADD
— Warped-FIR filter: O(L?) where L is the signal length

* 1%-error-bandwidth of the original WGM is 0.077f,
while that of the new algorithm is 0.22f

L] the bandwidth is 2.9 times wider!

* Original WGM requires 3 times more time steps and
over 8 times more memory for the same bandwidth
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Simulation Result vs. Analytical Solution
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Error in Mode Frequencies
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Warped Trian gular Wave guide Mesh

 We have also applied the frequency-warping
technique to the triangular WGM

* Results were published in the March 1999 issue of
the IEEE Signal Processing Letters

 The warpec
Interpolatec

triangular WGM is better than the
rectangular one

e A “drawbac

K" IS the triangular tessellation
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Conclusions and Future Work

e Accuracy of 2-D digital waveguide mesh simulations
can be improved using

1) the interpolated or triangular WGM and
2) frequency warping

 The frequency error caused by dispersion can be
reduced dramatically

 |n the future, the warping technique will be applied
to 3-D waveguide mesh simulations
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