Reduction of the Dispersion Error in the Interpolated Digital Waveguide Mesh Using Frequency Warping

Lauri Savioja and Vesa Välimäki
Helsinki University of Technology
Laboratory of Acoustics and Audio Signal Processing
(Espoo, Finland)
http://www.acoustics.hut.fi/
Reduction of the Dispersion Error in the Interpolated Digital Waveguide Mesh Using Frequency Warping

Outline

➤ Introduction
➤ Interpolated 2-D Digital Waveguide Mesh
➤ Frequency Warping
➤ Simulation Example
➤ Conclusions
Introduction

- **Digital waveguides** are useful in physical modeling of musical instruments and other acoustic systems (Smith, 1992, 1997)

- **2-D digital waveguide mesh** (WGM) for simulation of plates, drums etc. (Van Duyne & Smith, 1993)

- **3-D digital waveguide mesh** for simulation of acoustic spaces (Savioja *et al.*, 1994)

- 3-D simulation also using wave digital filters (Schetelig & Rabenstein, ICASSP’98)
Sophisticated Waveguide Structures

- In the original WGM, wave propagation speed depends on direction and frequency (Van Duyne & Smith, 1993)
- More advanced structures improve this problem, e.g.,
 - triangular WGM (Van Duyne & Smith, 1995, 1996; Fontana & Rocchesso, 1998)
 - interpolated WGM (Savioja & Välimäki, ICASSP’97)
- Direction-dependence is reduced but frequency-dependence remains
 ⇒ Dispersion!
Interpolated 2-D Waveguide Mesh

Original WGM

Hypothetical 8-directional WGM

Interpolated WGM

(Van Duyne & Smith, 1993)

(Savioja & Välimäki, ICASSP’97)
Wave Propagation Speed

Original WGM

Interpolated WGM (bilinear interpolation)
Relative Frequency Error (RFE)

RFE in diagonal and axial directions:

(a) original and
(b) interpolated rectangular WGM
Frequency Warping

- Dispersion error of the interpolated WGM can be reduced by frequency warping because
 - the difference between the max and min errors is small
 - the RFE curve is smooth

- Postprocess the response of the WGM using a warped-FIR filter (Oppenheim et al., 1971; Laine et al., ICASSP’94; Karjalainen & Smith, 1996)
Frequency Warping: Warped-FIR Filter

- Chain of first-order allpass filters

\[A(z) = \frac{z^{-1} + \lambda}{1 + \lambda z^{-1}} \]

- \(s(n) \) is the signal to be warped
- \(s_w(n) \) is the warped signal
- The extent of warping is determined by \(\lambda \)

\(\delta(n) \rightarrow A(z) \rightarrow A(z) \rightarrow \ldots \rightarrow A(z) \rightarrow s_w(n) \)
Optimization of Warping Factor λ

- Different optimization strategies can be used, such as:
 - least squares
 - minimize maximal error (minimax)
 - maximize the bandwidth of $X\%$ error tolerance

- We present two results:
 (a) minimax
 (b) maximize 1%-error bandwidth
Reduced Relative Frequency Error

RFE in axial and diagonal directions after warping

(a) minimax:
\[\lambda = -0.1947 \]

(b) max 1%-error bandwidth:
\[\lambda = -0.1757 \]
Comparison

- Computational complexity:
 - Original WGM: 1 binary shift & 4 additions
 - Interpolated WGM: 3 MUL & 9 ADD
 - Warped-FIR filter: $O(L^2)$ where L is the signal length
- 1%-error-bandwidth of the original WGM is $0.077f_s$ while that of the new algorithm is $0.22f_s$ → the bandwidth is 2.9 times wider!
- Original WGM requires 3 times more time steps and over 8 times more memory for the same bandwidth
Simulation Result vs. Analytical Solution

Eigenfrequencies of a square plate:
(a) original,
(b) interpolated, and
(c) warped interpolated
($\lambda = -0.1757$)
digital waveguide mesh
Error in Mode Frequencies

Error in eigenfrequencies of the square plate:

- Warped Interp. WGM \((\lambda = -0.1757)\)
- Original WGM
- Interpolated WGM
Warped Triangular Waveguide Mesh

- We have also applied the frequency-warping technique to the triangular WGM
- Results were published in the March 1999 issue of the *IEEE Signal Processing Letters*
- The warped triangular WGM is better than the interpolated rectangular one
- A “drawback” is the triangular tessellation
Conclusions and Future Work

- Accuracy of 2-D digital waveguide mesh simulations can be improved using
 1) the interpolated or triangular WGM and
 2) frequency warping
- The frequency error caused by dispersion can be reduced dramatically
- In the future, the warping technique will be applied to 3-D waveguide mesh simulations