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1. Motivation: The Importance of
Sampling at the Right Time

a) Uniform sampling problems

* Fine-tune sampling rate and/or instant

1) Constant delay : accurate time delays

2) Time-varying delay : resampling on a nonuniform grid
b) Nonuniform sampling problems

« Sampling instants determined, e.g., by physical
constraints

* Resample on a uniform grid
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1. Motivation: Many Applications (2

Sampling rate conversion

— Especially conversion between incommensurate rates, e.g.,
between standard audio sample rates 48 and 44.1 kHz

Music synthesis using digital waveguides
— Comb filters using fractional-length delay lines

Doppler effect in virtual reality

Synchronization of digital modems

Speech coding and synthesis

Beamforming

etc.

Valiméaki and Laakso 2000 4




|

HELSINKI UNIVERSITY OF TECHNOLOGY

2. Ideal FD Filter and Approximations

» FD filter = digital version of a continuous time delay

* An ideal lowpass filter with a time shift: Impulse
response is a sampled and shifted sinc function :

sinc(n — D) = sin[p(n — D)]/p(n— D)

where nis the time index; D is delay in samples
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2. Ideal FD Filter and Approximations
Sampled Sinc Function (D = 0)
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When D integer:

Sampled at zero-
crossings

(no fractional delay)

When D non-integer:

Sampled between
Zero-crossings

O Infinite-length
Impulse response
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2. FIR FD Approximations

FD must be approximated using FIR or IIR filters
(see, e.g., Laakso et al., IEEE SP Magazine, 1996)

FIR FD filters have asymmetric impulse response

but they aim at having linear phase

Approximation of complex-valued frequency response
(magnitude and phase)

[J traditional linear-phase methods not applicable
Most popular technique: Lagrange interpolation
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2. Lagrange Interpolation

Polynomial curve fitting = max. flat approximation

Closed-form formula for coefficients:
N
h(r) = [

k=0""
kZn
where D is delay and N is the filter order

Linear interpolation is obtained with N = 1:
h(0)=1-D, h(1)=D
Good approximation at low frequencies only
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2. IR FD approximations

» Allpass filters are well suited to FD approximations,
since their magnitude response is exactly flat

e The easiest choice is the Thiran a,
allpass filter (Fettweis 1972): *™

k ON O D-N+n

EH D-N+k+n

for n=0, 1, 2,...,N
» Close relative to Lagrange:
Max. flat approximation at O Hz

y(n)

ax = (-1
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3. FD Filters for Very Small Delays

* Very small delays required, e.g., in feedback loops and
control applications

— We consider the case of D< 1

* There is always inherent delay in good-quality FD filters
— Total delay about N/2 for FIR and about N for allpass filters
— Allpass FD filters are stable only for D> N-1

» Thiran all-pole filter (Thiran, 1971) provides small delay
— Lowpass-type magnitude response cannot be controlled

* FIR filters can approximate small delays but the quality
gets low
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3. FD Filters for Very Small Delays (2

Comparison of various FD filters for a delay D = 0.5
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(Fig. 4 of the paper)
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4. Time-Varying FD Filters

 Many applications need tunable FD filters

* Three principles to change the coefficients:
1) Recomputing of coefficients

2) Table lookup
3) Polynomial approximation of coefficients
— Farrow structure (Farrow, 1988)
* FIR filters better suited to TV filtering than IIR filters
— Time-varying recursive filters suffer from transients

(we proposed a solution at ICASSP’98; see also IEEE
Trans. SP, Dec. 1998)
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4. Time-Varying FD Filters (2

Farrow (1988) structure for FIR FD filters
— Direct control of filter properties by delay parameter D
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Polynomial interpolation filters  can be directly implemented

Vesma and Saramaki (1996) have proposed a modified Farrow
structure and general methods to design the filters C,(2)
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5. Polynomial Resampling of

Nonuniformly Sampled Signals
When sampling is nonuniform and sampling instants
are known accurately, uniform resampling is possible

— Problem: traditional sinc series LS fitting computationally
intensive and numerically problematic

Alternative: polynomial signal model for smooth (low-
frequency) signals

— Extension of nonuniform Lagrange interpolation

— Suppress noise also instead of exact reconstruction

— See: Laakso et al., Signal Processing, vol. 80, no. 4, 2000
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5. Examples of Nonuniform Reconstruction
» 2 sinusoids plus noise (SNR 3 dB); pol. order 5; filter order 6

* Noise reduction: 3.70 dB (LS reconstruction), 3.43 dB (Oth-order
appr.) and 3.82 dB (2nd-order appr.)

JITTERED RANDOM SAMPLING JITTERED RANDOM SAMPLING

AMPLITUDE
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6. Conclusions

» Fractional delay filters provide a link between uniform
and nonuniform sampling

» Useful in numerous signal processing tasks
— Sampling rate conversion, synchronization of digital
modems, time delay estimation, music synthesis, ...

« Resampling of nonuniformly sampled signals on a
uniform grid

« MATLAB tools for FD filter design available at:
http://www.acoustics.hut.fi/software
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