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The emergence of what is called physical modeling
and model-based sound synthesis is closely related to
the development of computational simulations of
plucked string instruments. Historically, the first
physical approaches (Hiller and Ruiz 1971a, 1971b;
McIntyre and Woodhouse 1979; McIntyre,
Schumacher, and Woodhouse 1983) were followed
by the Karplus-Strong (KS) algorithm (Karplus and
Strong 1983). The KS algorithm was discovered as a
simple computational technique that seemingly had
nothing to do with physics. Soon thereafter, Julius
Smith and David Jaffe showed a deeper
understanding of its relation to the physics of the
plucked string (Smith 1983; Jaffe and Smith 1983).

Later, Julius Smith generalized the underlying
ideas of the KS algorithm by introducing the theory
of digital waveguides (Smith 1987). Digital
waveguides are physically relevant abstractions yet
computationally efficient models, not only for
plucked strings, but for a variety of one-, two-, and
three-dimensional acoustic systems (Van Duyne and
Smith 1993; Savioja, Rinne, and Takala 1994; Van
Duyne, Pierce, and Smith 1994). Further
investigations embodied these ideas in more detailed
synthesis principles and implementations, resulting
in high-quality and realistic syntheses of plucked
string instruments (Sullivan 1990; Karjalainen and
Laine 1991; Smith 1993; Karjalainen, Välimäki, and
Jánosy 1993; Välimäki, Huopaniemi, Karjalainen,
and Jánosy 1996). A recent overview of research in
this field is given by Smith (1996).

The equivalence of Karplus-Strong and digital
waveguide formulations in sound synthesis was al–
ready known when the waveguide theory appeared

(Smith 1987, 1992, 1997); however, the relation has
never been explicated in full detail. The first aim of
this article is to show how the more “physical”
waveguide model of a plucked string can be reduced
to an extended form of the Karplus-Strong type that
we call the single delay-loop (SDL) model. For a linear
and time-invariant (LTI) case, this reduction is
relatively straightforward, and results in a
computationally more efficient digital filter
structure. (Note that the historical order of the KS
algorithm and digital waveguides is the reverse of
their logical order, since the generalization was not
developed until after the KS algorithms was
designed. This article’s title reflects the historical
evolution: the “beyond” refers to recent
generalizations and extensions of both concepts.)

The second aim of this article is to discuss further
extensions to the basic SDL models that make them
capable of simulating plucking styles, beats in string
vibration, sympathetic vibrations, and resonant
strings. Such techniques have already been proposed
and studied (Jaffe and Smith 1983; Smith 1993;
Karjalainen, Välimäki, and Jánosy 1993). Here we
discuss them in the context of our recent
implementations of plucked-string models.
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The behavior of a vibrating string with a plucked
excitation can be described in terms of two traveling
waves traversing the string in opposite directions
and reflecting back at the string terminations
(Elmore and Heald 1969; Fletcher and Rossing 1991).
When we assume that during autonomous vibration
the string is an LTI system, we can model it as shown
in Figure 1 (Smith 1987, 1992). The two delay lines
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can be interpreted as a digitized d’Alembert’s
solution to the one-dimensional lossless wave
equation. The two waveforms travel through the
delay lines and reflect at reflection filters R f (z) and
Rb(z) which produce phase inversion and slight
frequency-dependent damping. The input signal x(n)
is summed into both delay lines just as output signal
y(n) is taken as a sum of the wave-variable values in
the two delay lines at the observation point. This
digital waveguide-modeling approach yields
efficient implementations for real-time sound
synthesis. For the digital waveguide of Figure 1, a
further assumption is needed: All signals to be
modeled must be bandlimited to below one-half of
the sampling rate. Owing to the LTI assumption,
string losses and dispersions can be commuted
between any driving or observation points (Smith
1992, 1997). This allows the use of ideal delay lines
that are computationally very efficient.

In the string model of Figure 1, the input and
output signals can be of any wave-variable type,
such as displacement, velocity, acceleration, or slope
(Smith 1992; Morse 1976). An interesting case is to
select acceleration as the wave variable, since then an
ideal pluck corresponds to a unit impulse (Smith
1983; Karjalainen and Laine 1991).

Further using the above simplification principles,
it is possible to commute the elements of a
terminated, dispersive, and lossy string into the form
illustrated in Figure 2, provided that the output
signal is taken to be a single traveling-wave
component. In this extreme case, the losses and the
dispersion are lumped at a single point in the round

trip along the string: at the loop filter H l(z). When the
loop filter is a two-point average y(n) = [x(n) + x(n –
1)]/2, and when the initial conditions (i.e., the initial
contents of the delay line) that are used to pluck the
string are taken to be random numbers, the well-
known Karplus-Strong algorithm for plucked-string
sounds is obtained (Karplus and Strong 1983; Jaffe
and Smith 1983). Note that the original algorithm
uses no explicit input signal.
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Above, we discussed two computational models for
stringed musical instruments that provide the basis
for efficient real-time synthesis. The case of extreme
simplicity and efficiency, the KS model of Figure 2, is
certainly an oversimplification for anything but
rudimentary synthesis. More detailed models are
needed both for high-quality sound synthesis and for
theoretical understanding in physical modeling. In
this section, we derive the relations between the
bidirectional digital waveguide and the SDL
formulations in detail.

Let us consider the relation of the two basic
formulations, the bidirectional digital waveguide
model and the single delay-loop model. We will
analyze two cases: a string with (1) a bridge output
and (2) a pickup output. An excitation—such as a
pluck—in a real physical string initiates wave
components that travel independently in opposite
directions. The output of the string—e.g., the force at

Figure 1. A bidirectional
digital waveguide model
for a terminated string.
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the bridge of an acoustic instrument, or the pickup
voltage in an electric guitar—reacts to both wave
components. The effects of the excitation and pickup
positions are easily simulated in the waveguide
model that is based on a dual delay line, as depicted
in Figure 1. However, for sound-synthesis purposes,
the SDL realization, such as in Figure 2, is more
efficient. Also, it is interesting from a theoretical
point of view to formulate an SDL model that
includes the effects of the excitation and pickup
positions. It has been shown that an ideal
acceleration or velocity input into a string model
(corresponding to plucking or striking the string,
respectively) can be approximated by a unit impulse
(Smith 1992). Thus, by assuming linearity and time
invariance, we can naturally think in terms of
impulse responses, and interpret the string model as
a linear filter.

Plucked String with Bridge Output

In the discussion to follow, we describe the transfer
functions of the model components in the Laplace
transform domain. The Laplace transform is an
efficient tool in linear continuous-time systems
theory. In particular, time-domain integration and
derivative operations transform respectively into
division and multiplication by the Laplace variable s.
We can replace the complex variable s with jω
(where j is the imaginary unit −1 , ω is the radian
frequency, which is equal to 2π f , and f is the
frequency in Hz) to derive the corresponding
representation in the Fourier transform domain, i.e.,
the frequency domain. Later, we approximate the
continuous-time system by a discrete-time system in
the Z-transform domain. For more information on
Laplace, Fourier, and Z-transforms, see a standard
textbook on signal processing, such as that by
Oppenheim, Willsky, and Young (1983).

In Figure 3, we redefine the dual delay-line
waveguide model for an ideally plucked string with
transversal bridge force as an output. This situation
is applicable to the simulation of the acoustic guitar,
for example. In our notation, HA,B(s) refers to the
transfer function from point A to point B. Note that
we have divided the pluck excitation X(s) into two
parts, X1(s) and X2(s), such that X1(s) = X2(s) = X(s)/2.

We can first simplify the model by deriving an
equivalent single excitation at point E1 that
corresponds to the net effect of the two excitation
components at points E1 and E2. When we assume
that the bridge termination point (R1, R2) is to the
right of the input point (E1, E2) as in Figure 1, the
equivalent single excitation at E1 can be expressed as

XE1,eq(s) = X1(s) + HE2,L2(s)R f(s)HL1,E1(s)X2(s)

                       = ½[1 + HE2,E1(s)]X(s) = HE(s)X(s), (1)

where subscript “eq” stands for “equivalent,” and
XE2,E1(s) is the left-side transfer function from E2 to
E1 consisting of the partial transfer functions from E2
to L2 and L1 to E1, and the reflection function R f(s).
Thus, HE(s) is the equivalent excitation transfer
function.

The output signal of interest is the transverse force
F(s)  at the bridge. It can be elaborated as

F(s) = F+(s) + F–(s) = Z(s)[V+(s) – V–(s)]

= Z(s)[A1(s) – A2(s)]/s, (2)

where the “+” and “–“ subscripts denote the two
opposite propagation directions. Equation 2 states
that the bridge force is the bridge impedance Z(s)
times the difference of the string velocity
components V+(s) and V–(s) at the bridge. The
acceleration difference A1(s) – A2(s) is integrated
(operator 1/s) to yield velocity difference V+(s) – V–
(s). Hence

Figure 2. A simplified linear string model as a single
delay-loop (SDL) structure. The Karplus-Strong
algorithm is a special case in which the excitation is
given as the initial state of the delay line.
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    F(s) = Z(s)[A1(s) – A2(s)]/s

 = Z(s)[A1(s) – R b(s)A1(s)]/s

= Z(s)[1 – R b(s)]A1(s)/s

 = HB(s)A1(s), (3)

where HB(s) is the acceleration-to-force transfer
function at the bridge. Now

A1(s) = HE1,R1(s)XE1,eq(s) + Hloop(s)A1(s), (4)

where

H loop(s) = R b(s)HR2,E2(s)HE2,E1(s)HE1,R1(s), (5)

i.e., H loop(s) is the transfer function when the signal is
circulated once around the loop. Thus, the sum terms
of Equation 4 correspond respectively to the
equivalent excitation signal XE1,eq(s) transferred to
point R1, and to the signal A1(s) transferred once
along the loop. This yields

A H
H

X

H S X

1
1

1
( ) ( )

( )
( )

( ) ( ) ( ),

s s s

s s s

=
−

=

E1,R1
loop

E1,eq

E1,R1 E1,eq

s (6)

where S(s) is the string transfer function that
represents the recursion around the string loop.
Putting all this together, we can solve for the overall

transfer function from excitation to bridge output as
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b ,

(7)

or more compactly, based on the above notation,

H = H H S HE,B E E1,R1 B( ) ( ) ( ) ( ) ( )s s s s s, (8)

which represents the cascaded contribution of each
part in the physical string system.

At this point, we approximate the continuous-time
model of the guitar in the Laplace transform domain
with a discrete-time model in the Z-transform
domain. This approximation is needed to make the
model realizable in discrete-time form. Rewriting
Equation 8 in the Z-transform domain, we obtain

H z H z H z S z H zE,B E E1,R1 B( ) ( ) ( ) ( ) ( )= , (9a)

where

[ ]H z H zE E2,E1( )
1
2

1 ( )= + , (9b)

and

Figure 3. Dual delay-line
waveguide model for a
plucked string with out-
put at the bridge.
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S z
H z

( )
( )

=
−

1
1 loop

, (9c)

and

[ ]H z Z z I z R zB b( ) ( ) ( ) 1 ( )= − . (9d)

Filter I(z) is a discrete-time approximation of the
time-domain integration operation. We interpret the
result of Equation 9a by depicting a block diagram in
Figure 4. It shows qualitatively the delays and the
discrete-time approximations of the filter
components of Equation 9 inherent in each part of
the transfer function. Note that the top block in
Figure 4 contains the minus sign of the reflection
function included in HE2,E1(z). However, in the
bottom block, the minus sign included in Rb(z)
cancels the minus sign of Equation 9d.

For practical sound synthesis, the model of
Equation 9 and Figure 4 can be approximated by a
simplified model depicted in Figure 5, without
compromising the sound quality. The following
simplifications have been made in Figure 5. The
transfer function HE2,E1(z) in Equation 9b is almost a
lossless delay, and we can drop the low-pass filter
block in the excitation-position filter (or replace it
with a constant slightly less than 1). Next, we notice
that in normal playing conditions the wave
propagation from the excitation point (E1) to the
bridge position (R1) is also a nearly lossless delay, so
that it can be left out without perceivable effects. The
string loop S(z) in Equation 9c cannot be reduced,
because the delay and the low-pass-type loop filter
are critical to the sound quality. Finally, the term [1 –
Rb(z)] in the bridge block HB(z) in Equation 9d can
be approximated by the constant 2, since Rb(e

jω
) ≈ –

1. The errors due to the reductions above can be
compensated for with the timbre-control filter in
Figure 5.

The sound-synthesis model of Figure 5 includes
several controllable elements. The excitation table
can contain any useful signals, such as a unit impulse
or a complex aggregate excitation (Smith 1993;
Karjalainen, Välimäki, and Jánosy 1993). For
example, this is an efficient way to implement the
resonances of the instrument body, since the body
response can be commuted back to the excitation,
owing to the LTI assumption. The table can also be a
set of excitations to choose from or to interpolate

between. The gain control is a simple multiplier. The
timbre control may be a first- or second-order
recursive filter that can be adjusted to attenuate or
boost high frequencies, for a softer or sharper attack,
respectively (Jaffe and Smith 1983). Note that the
timbre-control filter must change with fundamental
frequency to give a fixed percept of attack sharpness.
The pluck-position control is an adjustable comb
filter, where the delay corresponds to the time it
takes for the excitation to travel the left-side route
around from E2 to E1 in Figure 3. In practice, one can
instead use the right-side delay from point E1 to E2
(which is normally shorter), since it will only slightly
change the attack part of the model’s impulse
response. The comb filtering will create a series of
zeros in the transfer function at frequencies fm =
m/tD, where tD is the delay (in seconds) of the comb
filter, and m is an integer index (m = 0, 1, 2, ...).

The bridge-output integrator can be approximated
by a first-order recursive low-pass filter whose cutoff
frequency lies below the lowest fundamental
frequency to be synthesized. One can also consider
the pluck-position filter and the output integrator
together, since at zero frequency the zero in the
former filter will be canceled by a pole in the latter.
Figure 6 illustrates the effect of both filters as found
in their combined magnitude transfer function. The
plucking position is expressed as a distance to the
bridge relative to the string length, e.g., 50 percent
refers to the middle point of the string (see Figure
6a). This effect is equivalent to the traditional
interpretation of plucked-string behavior (see
Fletcher and Rossing, Figure 2.5 [page 39] and Figure
2.7 [page 41]).

The string loop in Figure 5 is similar to the one in
Figure 2. The delay block must allow for fine tuning
of the time delay to achieve all desired pitch values
(Jaffe and Smith 1983). This is accomplished by
fractional delay filtering techniques, such as first-
order all-pass filtering or Lagrange interpolation
(Laakso, Välimäki, Karjalainen, and Laine 1996).
Also, the loop filter has to be controllable, so that the
decay of the harmonic components can be adjusted
properly according to the string length and other
varying parameters of the string. One popular choice
is a one-pole digital loop filter with two parameters:
a DC gain and a cutoff frequency parameter (Jaffe
and Smith 1983; Välimäki et al. 1996).
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Figure 4. A diagram char-
acterizing the building
blocks of the plucked
string with force output
at the bridge.
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Figure 5. A schematic
sound-synthesis model for
plucked string instruments.
The delay in the string loop
must be continuously
variable, which can be
achieved with a fractional
delay filter.
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Figure 6. Two examples of
the comb-filter effect caused
by excitation-position and
bridge-integrator filtering,
when the relative distance
from the plucking point to
the bridge is 50 percent (a)
and 22.5 percent (b) of the
string length.
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Plucked String with Pickup Output

In the next analysis, we derive the transfer function
and the synthesis block diagram for a plucked string
when the output is taken by a velocity-sensitive
sensor, such as a magnetic pickup in an electric
guitar. Figure 7 shows a dual delay-line waveguide
model for this case. The pickup position is denoted
by (O1, O2).

A comparison of Figures 3 and 7 reveals that the
excitation transfer function is the same in both cases.
This implies that Equation 4 is valid also for a string
with a pickup output, provided that the pickup point
(O1, O2) is to the right of the excitation point (E1,
E2).

The output signal is now a variable, such as
voltage from a magnetic pickup, that is proportional
to the transversal string velocity (sum of the left- and
right-going components) at the pickup position.
Velocity V(s)  is proportional to the time integral of
acceleration, and the voltage output from the pickup
U(s)  can be expressed as

 

[ ]

[ ]
[ ]
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P 1

(10)

where the pickup transfer function Po(s) models the
effect of the pickup microphone on guitar sound. For
a magnetic pickup, Po(s) is typically a second-order
low-pass filter. Notice that it is combined with the
integrator block 1/s at the output in Figure 7.

Corresponding to Equation 4, we can now write

A = H X H A1 E1,O1 E1,eq loop 1( ) ( ) ( ) ( ) ( )s s s s s+ , (11)

which yields

A = H
H

X

H S X

1 E1,O1
loop

E1,eq

E1,O1 E1,eq

( ) ( )
1

1 ( )
( )

( ) ( ) ( ).

s s
s

s

s s s

−

=
(12)

Figure 7. Dual delay-line
waveguide model for a
plucked string with a
pickup output.
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Based on Equations 1, 10, and 12, we can solve for
the overall excitation-to-pickup transfer function,

   

[ ] [ ]
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(13)

or more compactly, based on the above notations,

H = H H S HE,P E E1,O1 P( ) ( ) ( ) ( ) ( )s s s s s . (14)

If the pickup point O is to the left of the excitation
point (E1), we can derive a similar formulation
where the indices 1 and 2 are interchanged, as are
the string terminations, L and R.

As with the case of the bridge output, we now
approximate the continuous-time transfer function in
the Laplace transform domain with a discrete-time
transfer function in the Z-domain:

H z H z H z S z H zE,P E E1,O1 P( ) = ( ) ( ) ( ) ( ) . (15)

The differences between the bridge-output model
(Equation 7) and the pickup-output model (Equation
13) are twofold. First, the wave propagation from the
excitation point to the output, HE1,R1(s) versus
HE1,O1(s), covers different distances along the string.
Due to very low losses of wave propagation during
normal playing conditions, this difference is
negligible. Second, the transfer functions related to
the output couplings are very different. While the
difference of accelerations at the bridge R has a
relatively flat response (Equation 3 and Figure 3), the
summation of the two acceleration waves at the
pickup point O creates a comb-filter effect (Equation
10 and Figure 7) similar to the excitation point
filtering. Thus, a string-instrument model with a
string-velocity pickup has two cascaded comb filters
to color the response, instead of just the one in Figure

4. A block diagram of the string-output stage for a
pickup is shown in Figure 8. Note that again the
minus sign due to the reflection from the end of the
string is explicitly shown with multiplication by – 1
(compare with Figure 4).

A sound-synthesis model for a plucked string
with a pickup output will be the same as the
diagram shown in Figure 5, except that a pickup-
position comb filter and a pickup filter, Po(s), must
be cascaded. The comb filter can be similar to the
pluck-position filter of Figure 5, and the pickup filter
can be a second-order low-pass filter.

The synthesis models derived above can be
further simplified using the commuted aggregate
excitation techniques (Smith 1993; Karjalainen,
Välimäki, and Jánosy 1993), whereby the impulse
responses of other parts, such as the body, are
preconvolved with the primary excitation and stored
in a wavetable. If all the components apart from the
string loop are aggregated, we approach a variant of
the basic KS algorithm that has an explicit input
signal. All variations are possible, from a fully
aggregated excitation containing even the string loop
(that is, pure wavetable synthesis), to the SDL model
of Figure 5, or to the full bidirectional waveguide
model of Figure 3. This shows the compatibility of
physical modeling with more traditional synthesis
techniques, such as source-filter modeling or
sampling. The more simplified versions are
computationally more efficient, naturally, but the
price is paid with decreased flexibility of parametric
control.

0RUH ([WHQVLRQV WR WKH 6'/ 0RGHOV

The SDL models derived above are flexible building
blocks when one is developing model-based sound
synthesis of plucked string instruments. The SDL

Figure 8. A pickup output
block for the string model
of Figure 7. The block LP
is a low-pass filter.
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models show improved efficiency compared to the
bidirectional digital waveguides, because the basic
DSP building blocks are maximally consolidated and
simplified. For example, a single fractional delay
filter for fine-tuning the pitch is sufficient. However,
if the string behavior contains essential nonlinearities
or time-varying characteristics, bidirectional
waveguide formulations are needed (see, for
example, Karjalainen, Backman, and Pölkki 1993).

It is possible to add further details to the SDL
models to improve the naturalness and other sound-
quality features. Figure 9 illustrates an extended
model in which additional properties are
implemented (Välimäki et al. 1996). The string
model’s excitation is realized with wavetables that
store consolidated pluck excitations and body
responses, for easy and extremely efficient (but non-
physical) modeling of the body (Smith 1993;
Karjalainen, Välimäki, and Jánosy 1993). Alternative
wavetables can be applied for different pluck styles
and qualities. A pluck-shaping filter E(z) can be used
to fine-tune the timbre of a single pluck-table
excitation. The comb-notch filter effect caused by
pluck position and pickup position are easy to add.
The pluck-position filter P(z) is shown in Figure 9,
but the pickup-position filter is not included.

The beat effects caused by dual polarization of
string vibration (horizontal and vertical with respect
to the top plate) can be realized by mixing the
outputs of two string models (Jaffe and Smith 1983).
When the two models are slightly mistuned, a
natural sounding beat effect results that reduces the

“synthesizer-like” character. An example of the
effect of mistuning the two polarization models is
shown in Figure 10. In Figure10a, the model
parameters are equal, and exponential decay is
resulted. In Figure10b, the fundamental frequencies
of the models are equal, but the loop-filter
parameters are different, and a two-stage decay is
produced. In Figure10c, the loop-filter parameters
are equal, but the frequencies are mistuned to obtain
a beating effect.

Several principles to simulate the sympathetic
coupling between strings have been proposed (Jaffe
and Smith 1983; Smith 1993; Välimäki et al. 1996). A
physically correct method is a bridge-coupling filter
presented by Smith (1993). A simple feedback
coupling is added in Figure 9 to simulate the
sympathetic coupling between strings. This
approach is potentially unstable, because there is a
feedback from the output of all strings to their
inputs. When the feedback signals are attenuated
using small gain coefficients between all outputs and
inputs, it is possible to reach a stable simulation.
Nevertheless, it would be safer to use a sympathetic
coupling model that is inherently stable. Jaffe and
Smith (1983) proposed using a separate bank of
sympathetic strings that get their input signal from
the output of the main strings that are plucked. This
approach is always stable. However, it would be
desirable to use the existing strings of the instrument
model for generating sympathetic vibrations, and
not implement separate models. In the following
section, we introduce such a configuration.

Figure 9. Single delay-loop structure with consolidated
pluck and body wavetables, pluck-position comb filter,
dual-polarity string models, and sympathetic couplings
between strings (Välimäki et al. 1996).
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Figure 10. An example of
the effect of mistuning the
polarization models: equal
parameter values (a),
mistuned decay rates (b),
and mistuned fundamental
frequencies (c).
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Coupling Phenomenon

Figure 11 illustrates a modified version of the
plucked-string synthesizer for a single dual-
polarization string. This time, the excitation for
sympathetic vibrations is taken from one of the
parallel strings that model the two polarizations (in
Figure 11, the horizontal one is used). To avoid
feedback, the input from other strings is added to the
input of only those parallel strings that do not have
sympathetic coupling output. This implies that input
must be fed into the vertical string model in Figure
11, because the output is taken from the horizontal
model. This kind of signal coupling is
unconditionally stable, and produces realistic
sympathetic coupling phenomena. Furthermore,
separate sympathetic string models need not be
implemented, since sympathetic vibrations are now
produced in a natural manner by all the strings
included in the synthesis model.

In the general form of this algorithm, there is a
matrix C of coupling coefficients that determine the
proportion of the output signal to be sent to a
particular parallel string. This matrix can be written
as

C =























g c c c

c g c

c c g

c g

c N

c

c

N cN

1 12 13 1

21 2 23

31 32 3

1
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�

� �

�

(16)

where N is the number of dual-polarization strings,
the coefficients gck (for k = 1, 2, 3, ..., N) denote the

gains of the output signal to be sent from the kth
horizontal string to its parallel vertical string, and
coefficients cmk are the gains of the kth horizontal
string output to be sent to the mth vertical string.
There is a physical motivation to use real numbers
less than 1 for all the elements of matrix C. However,
the structure’s stability does not depend on these
values, since there is no feedback.

The model shown in Figure 11 also divides the
excitation signal that is sent to the two polarizations,
by using a mixing coefficient mp that is chosen to
have a value between 0 and 1. A non-zero value of
parameter gck enables coupling of the two
polarizations. If at the same time mp = 1, the model
for the vertical polarization becomes a resonance
string that receives input only from the upper string
model in Figure 11.

An example of sympathetic coupling is pictured in
Figure 12. The primary vibration (the waveform
displayed in the upper part of Figure 12) excites
another string whose output signal is shown in the
lower part of Figure 12. In this example, the
fundamental frequency of the secondary string is an
octave higher than that of the primary string. Notice
the slow attack of the vibration in the coupled string
(the lower part of Figure 12).

6WLOO 0RUH ([WHQVLRQV� DQG )XWXUH 'LUHFWLRQV

Topics for future work in physical modeling of
plucked strings includes pluck simulation, different
kinds of nonlinearities, the interaction between the
string and the body, modeling of the body response

Figure 11. A modified
plucked-string synthesis
model with a new method
to include sympathetic
coupling between strings.
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using a digital filter, and calibration of the model
parameters. Some of these problems have been
tackled in recent literature. Rank and Kubin (1997)
proposed a nonlinear model for cases where the
amplitude of string vibration is limited by contact
with frets, such as in slap-bass playing techniques. A
passive nonlinear filter structure was devised by
Pierce and Van Duyne (1997). They presented an
example where the nonlinear generation of missing
harmonics in string vibrations was successfully
simulated by their simple digital model. Digital filter
approximations of the body response were discussed

by Karjalainen and Smith (1996). In the
computationally efficient synthesis models, it has
been advantageous to avoid the use of a body model
and instead use the principle of commuted
waveguide synthesis. However, if one wishes to
simulate the two-way interaction between the strings
and the body, an explicit model for the body can be
developed, although this is not required in the LTI
case.

Calibration of the parameter values of a plucked-
string model was tackled by Välimäki et al. (1996).
The proposed technique was based on short-time

Figure 12. An example of
the simulation of sympa–
thetic coupling using the
model of Figure 11. The
primary vibration (top)
excites vibration in another
string (bottom).
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Fourier analysis of recorded plucked string tones.
The excitation signal was obtained by inverse-
filtering a recorded sound using the inverse transfer
function of the string model. This enabled high-
quality resynthesis of tones that were well behaved
in that their harmonics decayed nearly
exponentially. Problematic cases are tones where
beats occur in harmonics or the decay rate of
harmonics changes over time in some other way. A
recent improvement to this problem is a method
where the excitation signal is obtained by subtracting
a sinusoidal model of the harmonics from an
analyzed tone (Tolonen and Välimäki 1997; Välimäki
and Tolonen 1998; Tolonen 1998). This method
accounts for the time-varying decay rate of
harmonics, and yields a clean excitation signal. A
remaining problem in parameter calibration is to
reliably estimate the pluck position from a recording
of a plucked-string tone (Välimäki et al. 1996). It
would be useful to extract this information and
cancel its effect in the excitation signal. Thereafter,
the excitation position would be a free parameter in
the synthesis stage.

The realism of plucked-string synthesis could be
further improved by including different kinds of side
effects, such as those generated when the player
slides his or her finger along a string (friction noise)
or touches the body of a guitar (Jánosy, Karjalainen,
and Välimäki 1994). Such sound effects could be
incorporated by using samples that are triggered at
the right time according to certain rules or, to obtain
more expression and variation, by developing
physical models for these effects. Furthermore, a
virtual plucked string instrument should allow the
player to use the complete range of playing styles,
including the left-hand techniques such as pull-offs,
hammer-ons, trills, slurs, and the use of a slide, as
well as right-hand techniques such as fret-tapping.
Jaffe and Smith (1983) discussed the simulation of
some of these styles. Nevertheless, realistic and
computationally efficient physical modeling of these
playing techniques remains a future challenge.

&RQFOXVLRQV

In this article, we focused on algorithms for the
synthesis of plucked-string tones. The relation and
equivalence of the bidirectional digital waveguide
and single delay-loop (SDL) models of plucked
string instruments were discussed. The derivation of
SDL models based on the digital waveguide
approach was given for the cases of a bridge output
and a pickup output. A further extension of the SDL
model with several additional features for improved

sound quality was presented, including a new way
to simulate sympathetic vibrations.

$FNQRZOHGJPHQWV
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was a visiting scholar at CCRMA, Stanford
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