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ABSTRACT
A novel closed-form method for designing fractional delay allpass
filters is proposed. The design uses closed-form formulas and is
based on truncating the coefficient vector of a Thiran allpass fil-
ter. While the resulting filters are non-optimal, they allow a wider
approximation bandwidth than the Thiran allpass filter, which
yields a maximally flat delay approximation at the zero frequency.
Formulas have been derived to assist in choosing the two
parameters, order and prototype order, for the new design. There
is practically no upper limit for the filter order, since the method
is not prone to numerical problems.

1 INTRODUCTION

Fractional delay filters are useful in numerous digital signal proc-
essing applications where accurate time delays are needed or the
locations of sampling instants must be changed, such as in tele-
communications, music synthesis, and speech coding [1, 2]. Many
design methods have been proposed for fractional delay filters of
FIR and IIR type [1, 2]. Within the class of IIR filters, digital
allpass filters have been a popular choice since their magnitude
response is exactly flat and the design can concentrate entirely on
the phase response. The transfer function of a digital allpass filter
is given by
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The design of fractional delay allpass filters is usually based

on solving a set of linear equations, such as the least squares
method proposed by Lang and Laakso [3, 1], or on an iterative
optimization algorithm, such as pseudo-equiripple design tech-
niques [1, 2, 3]. These methods produce optimal or very nearly
optimal designs, but their usefulness is limited when high-order
filters are needed or when coefficient values should be calculated
online in a real-time application. The largest allpass filter order
that is possible with current design programs is about 20 or less,
depending on specifications [4].

Only one FD allpass filter design method is known that can be
implemented using closed-form formulas: the maximally flat

group delay method [5] that is based on Thiran’s allpole filter
design [6]. A drawback of this method is that the fractional delay
approximation is excellent only on a narrow band at low frequen-
cies, and a dramatic widening of the bandwidth of good approxi-
mation requires the filter order to be increased excessively.

This paper proposes a design method that is based on the
Thiran allpass design but overcomes the problem of narrow
approximation band while the design is still based on closed-form
formulas. Section 2 describes the Thiran allpass filter design
method. The new design method is introduced in Section 3.
Example designs are presented, and formulas that enable finding a
compromise between the approximation bandwidth and peak error
of the frequency response magnitude are given. Section 4 con-
cludes the paper.

2 THIRAN ALLPASS FILTER

In 1971, Thiran published a closed-form design method for all-
pole filters that have a prescribed maximally flat group delay [6].
Fettweis showed that the design formulas can be used for obtain-
ing allpass filters that have the same property [5]. When the
desired group delay of an allpass filter is d, it is only necessary to
make the substitution d’ = d/2 in Thiran’s formula, since the
group delay of an allpass filter is twice that of its denominator
(see, e.g., [1]). The Thiran design formula for a fractional delay
allpass filter can be written as [5, 1]
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where d is the real-valued delay parameter and k = 1, 2, 3, ..., N.
Closed-form formulas that are at most Nth-order rational

polynomials of delay d can be obtained from (2). For example,
when N = 2, the filter coefficients are a1 = –2(D – 2)/(D + 1) and
a2 = (D – 1)(D – 2)/(D + 1)(D + 2). Here we have introduced a
notation D = N + d, where D denotes the group delay (in samples)
that the allpass filter produces at low frequencies.

In [6] it was shown that the numerator polynomial D(z) of the
original Thiran allpole filter has all its zeros inside the unit circle
for d > –0.5. This implies that the allpass filter designed using Eq.
(2) is stable for d > –1, because the group delay of the allpass
filter is twice that of the numerator (see, e.g., [1]).

Figure 1 shows the group delay error of Thiran allpass filters
when d = –0.5 and N = 1, 2, 3, ..., 9. The frequency variable has



been normalized so that 0.5 corresponds to the Nyquist limit.
Note that in Fig. 1 all the group delay error curves are close to
zero at low frequencies, as desirable. However, the error increases
with frequency, and particularly in the case of low-order filters,
the deviation soon becomes large. Also note that when the order
of the filter is increased, the bandwidth of good approximation
(error smaller than, e.g., 0.1 samples) is not becoming much
wider.

It is also of interest to examine the frequency response error
(FRE) of the allpass filter as a measure of approximation quality.
The following definition is used for the FRE:
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where the first part on the right-hand side represents the frequency
response of an ideal fractional delay filter producing a delay of N
+ d sampling intervals, and the second term is the frequency
response of the allpass filter obtained from (1) using coefficients
(2), which approximates a constant delay of N + d samples. Figure
2 shows the frequency response error of the Thiran allpass filters
of Fig. 1. Notice the sluggish increase of approximation band-
width as a function of filter order N.

3 NEW DESIGN METHOD

In this section, a new design method is introduced and its proper-
ties and usage are discussed.

3.1 Truncating the Coefficient Vector

The coefficient values of the Thiran allpass filter typically decay
fast with index k. Sometimes the coefficient values are extremely
small. For example, when d = –0.5 and N = 10, the value of coef-
ficient a10 is –0.000001427. In many implementations, coeffi-
cients that are this small will be rounded to zero. The contribution
of the small coefficients cannot be significant on the properties of
the filter. Thus, it seems sensible to neglect the smallest values by
truncating the coefficient vector of the allpass filter. The design

method proposed in this paper is based on truncating the coeffi-
cient vector even further.

The new design formula for a fractional delay allpass filter is
a slightly modified form of Eq. (2):
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where d is the real-valued fractional delay parameter and k = 1, 2,
3, ..., N. Usually M is equal to the filter order N but here we pro-
pose to choose M > N. It is convenient to call M the prototype
filter order, since it corresponds to the order of the original allpass
filter before truncation. Experiments suggest that the truncated
allpass filters (M > N) are stable for d > –1, i.e., the stability con-
dition is the same as that of the Thiran allpass filter.

3.2 Behavior of Approximation Error

Figure 3 shows the FRE when d = –0.5 and N = 10. A Thiran
allpass filter is compared against fractional delay allpass filters
whose coefficients have been truncated from prototype filters of
orders M = 100, 20, 14, and 11. Interesting properties of the trun-
cated Thiran allpass filters can be observed in Fig. 3. Most
importantly, the quality of the truncated allpass filters degrades
gracefully since the lobe structure is similar to that of optimal
digital filters, such as least squares designs. Closer examination
reveals that the results are non-optimal, however.

The level of the highest lobe of the FRE function appears to
increase monotonically and smoothly as more and more coeffi-
cients are truncated. The approximation bandwidth, which we
may define as the largest normalized frequency where the FRE is
smaller than or equal to the maximum lobe level, also tends to
increase as a function of the number of truncated coefficients. For
example in Fig. 3, it is seen that the widest bandwidth (about
0.46) is obtained with a 10th-order filter whose coefficients have
been obtained by selecting the 10 first coefficients from a Thiran
allpass filter of order M = 100. This is also the case for which the
maximum FRE is the largest among the example designs given in
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Fig. 1. Group delay error curves of Thiran allpass filters of order
N = 1, 2, 3, ..., 9 (left to right) for d = –0.5.
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Fig. 2. Frequency response error curves of Thiran allpass filter of
order N = 1, 2, 3, ..., 9 (top to bottom) for d = –0.5.



Fig. 3 (about –36 dB). The two properties are connected: when
the bandwidth is increased, the error also becomes larger.

Figure 4 shows the frequency response error as a function of
truncated filter order when prototype order M is 40 and d = –0.5.
Here it is clearly seen that the price to be paid for cheaper filter
implementation (that is, lower-order allpass filter) is that the error
increases. The truncation leads to a larger error at low frequencies,
which is visible for cases N ≤ 35. When N > 35, the contribution
of the truncation error is smaller than the numerical noise (below
–280 dB) in the generation of this figure. The curve at N = 50
corresponds to the prototype filter, which is a maximally flat
approximation whose frequency response error at ω = 0 is 0,
which is equal to –∞ dB.

3.3 How to Choose N and M

Figures 5 and 6 illustrate the behavior of normalized bandwidth
and maximum frequency response error magnitude when 1 ≤ M ≤
50 and 1 ≤ N ≤ M. Note that these two-dimensional functions are

smooth for small values of N. A discontinuity seen as a cliff in
Fig. 5 arises from numerical reasons: when only a few coefficients
are truncated, the maximum side lobe vanishes below the numeri-
cal noise level (see Figs. 4 and 6) and thus the normalized band-
width cannot be determined for such cases. The behavior of the
smooth part of the functions in Figs. 5 and 6 can be approximated
with a two-dimensional polynomial.

We have experimentally devised formulas that describe the
behavior of the normalized bandwidth and the maximum FRE of
the proposed allpass filter as a function of N and M. These for-
mulas facilitate the design of fractional delay allpass filters when
the desired approximation bandwidth and maximum error are
given.

The normalized approximation bandwidth B (defined in Sec-
tion 3.2 above) can be approximated in the following way:

)arctan()5352.0055.2(8367.0660.3 MNNB +−+−= (5)

The coefficients in this equation have been obtained using non-
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Fig. 3. Frequency response error of several 10th-order fractional
delay allpass filters: a Thiran allpass filter of order N = 10 (solid
line) and 10th-order truncated allpass filters obtained from pro-
totype filters of order M = 100, 20, 14, and 11 (top to bottom).
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Fig. 4. Frequency response error of a family of truncated Thiran
allpass filters obtained from a prototype filter of order M = 50.
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Fig. 5. Normalized bandwidth of the truncated Thiran allpass
filters as a function of prototype filter order M and truncated
filter order N, when d = –0.5.
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Fig. 6. Peak frequency response error of truncated Thiran allpass
filters in the approximation band as a function of prototype filter
order M and truncated filter order N, when d = –0.5.



linear least squares optimization in the range 5 ≤ M ≤ 100 with d
= –0.5, which was assumed to be nearly the worst case. Differ-
ences from the actual normalized bandwidth can be as large as
about 10 % and even larger near the cliff in Fig. 5. For example,
for the cases shown in Fig. 3, Eq. (5) gives the normalized band-
widths 0.44, 0.31, 0.24, and 0.17 for the cases M = 100, 20, 14,
and 11, respectively. Finding the proper combination of values of
N and M may require several trials—the formula can be used for
choosing an initial guess.

The maximum FRE, which we denote by Emax, can also be
approximated with a simple formula:

)arctan()()( 21max MNpNpE += (6)

where p1(N) and p2(N) are second-order polynomials of N:

2
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These polynomials were obtained using nonlinear least squares
optimization. The differences between the estimates obtained with
these polynomials and the actual peak error is typically less than
10 dB and can be larger sometimes, but the results can be benefi-
cial in estimating the behavior of a filter or when searching for
suitable values for N and M. For example, in the case N = 10 and
M = 100, the peak FRE estimated using Eq. (6) is –35 dB, which
is not far from what is seen in Fig. 3 (about –36 dB).

3.4 Design Example and Comparison

As an example, a wideband fractional delay allpass filter is
designed. The specifications for the worst case (d = –0.5) are the
following: the frequency response error must be smaller than –40
dB at frequencies below 0.4fs.

With the design formulas (5) and (6) it is easy to soon find
many candidates for the combination of N and M which would fill
the specifications. One of the solutions with the smallest possible

filter order N should be chosen. The combination M = 19, N = 5
seems to be the optimal choice. For this case, the estimated band-
width and peak error are 0.42 and –41 dB, respectively. The cor-
responding actual values are 0.4003 and –42.06 dB.

Figure 7 shows the group delay error for the truncated design.
For comparison, results of a least-squares phase design [3] and a
pseudo-equiripple phase design [1] are presented in Fig. 7. These
filters also fulfill the specifications with filter order N = 5. Note
that the difference between these optimal designs and the trun-
cated Thiran filter is not large in this example. Naturally, com-
parison of allpass filters designed using the proposed method with
other techniques reveals that the more elaborate optimal method
usually yields a superior approximation.

The main advantages of the new method are thus the ease of
the design using closed-form formulas and the possibility to
design high-order filters. The maximum filter order obtainable
using the other two methods is less than 20, while with the new
method orders exceeding 1000 cause no problems.

4 CONCLUSION

The truncation of the coefficient vector of a Thiran allpass filter
provides a simple design method which facilitates the design of
very high-order fractional delay filters if desired. The values of
prototype filter order M and the allpass filter N are practically
unlimited, since the design formula is not prone to numerical
problems. The method facilitates wideband approximation of
fractional delay using lower filter orders than the original Thiran
design. The proposed design is based on a closed-form formula.
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Fig. 7. Group delay error of 5th-order allpass filters for d = –0.5
obtained with different design methods: truncated Thiran (solid
line), least squares (dash-dot line), and pseudo-equiripple phase
(dashed line). The prototype Thiran allpass filter (dotted line) of
order 19 is shown for comparison.


