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Abstract
Zero-resource speech processing (ZS) systems aim to learn
structural representations of speech without access to labeled
data. A starting point for these systems is the extraction of
syllable tokens utilizing the rhythmic structure of a speech
signal. Several recent ZS systems have therefore focused on
clustering such syllable tokens into linguistically meaningful
units. These systems have so far used heuristically set number
of clusters, which can, however, be highly dataset dependent
and cannot be optimized in actual unsupervised settings. This
paper focuses on improving the flexibility of ZS systems
using Bayesian non-parametric (BNP) mixture models that are
capable of simultaneously learning the cluster models as well
as their number based on the properties of the dataset. We
also compare different model design choices, namely priors
over the weights and the cluster component models, as the
impact of these choices is rarely reported in the previous studies.
Experiments are conducted using conversational speech from
several languages. The models are first evaluated in a separate
syllable clustering task and then as a part of a full ZS system in
order to examine the potential of BNP methods and illuminate
the relative importance of different model design choices.
Index Terms: Non-parametric clustering, zero-resource
processing, variational inference, Pitman-Yor process, von
Mises-Fisher mixtures

1. Introduction
A recently emerged area of speech technology research is
the so-called zero-resource speech processing (ZS) initiative
where the aim is to create systems capable of learning
structural representations of speech input in the absence of
any data labeling [1–3], providing both scalability towards
under-resourced domains and illuminating how human infants
may learn spoken languages. A number of the existing ZS
systems, including the best performing system at the word-level
[1] in the Interspeech-2015 Zerospeech challenge and the
state-of-the-art system in [2] are based on clustering and
temporal grouping of syllable-like rhythmic units. The system
in [1] first segments speech into syllable-like chunks, clusters
the resulting tokens into categories using K-means, and decodes
words as recurring n-grams over the syllabic clusters in the
data. The work in [2] extends this method by creating a
Bayesian segmental model that jointly optimizes word category
identities (clustering, using a Bayesian GMM) and boundaries
chosen from the syllable-like chunks (segmentation pruning).
However, both systems used a heuristically set number of
clusters for the data.

Since the overall goal in ZS is to work towards systems
that can autonomously learn speech representations that are
supported by the (statistical) properties of the available data,

it would be highly beneficial if the number of clusters could
be also inferred automatically from the input. In this context
Bayesian non-parametric (BNP) models are potentially very
powerful as they solve the model selection problem as an
inherent part of their behaviour [3]. Dirichlet process mixture
models (DPMMs) [4] are the most commonly used BNP models
in various clustering problems in speech research. For instance,
Lee and Glass [5] describe a DPMM for acoustic modelling
where each mixture model is a hidden Markov model (HMM).
Rosenberg [6] uses Gaussian DPMMs, called DPGMMs, to
model prosodic sequences in speech. Kamper et al. [7] use
DPGMMs to the task of lexical clustering whereas Chen et
al. [8] use DPGMMs to learn acoustic models from speech.
Nonparametric extensions to HMM frameworks have also been
used in speaker diarisation [9, 10].

Despite their popularity, there are several open questions
related to the use of BNP methods to ZS tasks. For instance,
word counts in natural languages tend to follow a Zipfian
distribution and hence syllable counts are also expected to
be similarly distributed, especially for languages with a large
proportion of monosyllabic words such as English [11]. Hence
power-law producing priors such as the Pitman–Yor process
(PYP) [12, 13] may perform better than Dirichlet process
(DP) priors in syllable-based systems. In addition, the
fixed-dimensional spectral representations such as those used
in [1, 2] could also be modelled using some other parametric
distribution than GMM. One candidate is the cosine distance
-based von Mises–Fisher mixture model (here: VMM) [14]
that is more suited for high-dimensional density estimation
than GMMs [15] as long as the feature vectors can be unit
normalised before clustering (see, e.g., [2]).

Given this background, the present paper focusses on
investigating the feasibility of BNP methods in ZS settings,
and especially on the impact of the prior and component model
choice as such comparisons have not been reported in previous
works. We first compare different BNP models with heuristic
k-means and Bayesian GMM in a simplified syllable clustering
task on conversational data from two different languages but
using true syllable boundaries from the manual annotation.
Then we compare the same methods on the 2015 ZS Challenge
data [16] using the full system described in [1]. As a result,
we can see 1) how the BNP methods compare against k-means
with heuristically optimized number of clusters (”informed
selection”), and 2) whether prior and component model choices
have any practical impact in idealized and real ZS settings.

2. Bayesian Mixture Models
A Bayesian mixture model (BMM; Figure 1), G with K
components, weights {πk}Kk=1 and mixture component model
parameters {θk}Ki=1 can be defined as



combined to give the the Dirichlet process G as

βk | α ∼ Beta(1, α)

πk = βk

k−1∏

j=1

(1 − βj)

φk | H ∼ H

G(θ) =
∞∑

k=1

πkδ(θ = φk)

(6)

It can be proven that G generated in this way is equivalent to G ∼ DP (α, H). The
sampling of of π in this way is call as the Griffiths-Engen-McCloskey(GEM) process and
can written simply as π ∼ GEM(α). Another way to view this is via, cluster indices
zi. By sampling this weight distribution π, we can find the model/cluster index of the
data instance xi. Sampling an infinite discrete sequence, {θk}∞

k=1 from the base measure
H , gives the potential model parameters. Hence we represent the weights and model
parameters separately by introducing the cluster index variable zi. The Bayesian graph
and equations corresponding to new interpretation is model of the DPMM is shown in
Figure 4
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Figure 3: Bayesian graph of a DPMM based on the Stick breaking process
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Figure 1: Bayesian graph of a BMM

G(θ) =
∑K

k=1 πkδ(θ = θk), (1)

Here the weights and the mixture model component parameters
are sampled from the prior distributions Q and H respectively.
We define latent variables {zi}Ni=1, sampled from a multinomial
distribution parameterized by {πk}Kk=1, as the clusters to
which the N observations {xi}Ni=1 are assigned. Finally, the
observed variables xi are then sampled from the model F (θzi).
We analyse the following models and priors on the weight
distributions

2.1. Mixture Component Models

• Bayesian Gaussian Mixture Models - We consider the
fixed spherical precision Gaussians for the mixture models
as proposed in [2], i.e. θk = µk representing the mean.
The model is then F (θzi) = N (µzi , σI), where σ is the
fixed spherical covariance. The prior is chosen as conjugate
distribution, H = N (µ0, σ0I).

• Bayesian Von Mises–Fisher Mixture Models -
Experiments are also conducted with a von Mises–Fisher
mixture model [14]. VMMs model observation vectors as
points on unit hypersphere and find clusters based on cosine
distance between observations. The model parameters θk

include mean direction µk and concentration parameter
λk. The parameters are associated with a von Mises-Fisher
(VMF)–Gamma prior as proposed in [17]: the mean direction
is expected to have a VMF distribution with mean direction µ0

and concentration parameter β0λk while λk is expected to have
a gamma distribution with parameters a0 and b0.

2.2. Weight Distributions

• Dirichlet Distribution - Dirichlet distributions (DD) are
simple parametric distributions that are commonly used as a
prior distribution for the weights, as πk ∼ Dir(α) (e.g., [2]).
The hyper-parameter α is a K dimensional vector of positive
reals. If K overestimates the number of clusters represented in
the data, unnecessary clusters may be emptied out in posterior
estimation. In the current study, K is heuristically set to the
expected number of clusters in the data, as proposed in [2].

• Dirichlet Process - A Dirichlet process (DP) [18, 4] is
a non-parametric extension of the Dirichlet distribution. DPs
model an infinite number of clusters i.e. K = ∞, so
that the number of clusters that contributed in the observed
dataset can be inferred automatically from the data. A DP is
uniquely defined by the base distributionH of model parameter
values on Θ and a positive scalar concentration parameter
α, as G ∼ DP (α,H). The weights, {πk}∞k=1, decrease
exponentially, and can be sampled from the stick breaking
process [19]

πk = vk
∏k−1

i=1 (1− vi) (2)
where vk are stick proportions, distributed as vk ∼ Beta(1, α).

• Pitman-Yor Process - The Pitman-Yor process (PYP) [12,

13] is another non-parametric model that generalises DP with
an additional parameter, 0 ≥ d > 1. It is written as G ∼
PY P (d, α,H). The weights, {πk}∞k=1 follow the power law,
making PYP suitable for Zipf-distributed data [13]. We use
a similar stick breaking process as with DPs to sample PYPs
(see Eq.(2)), but the stick proportions are now distributed as
vk ∼ Beta(1− d, α+ kd). When d = 0, PYP is equivalent to
DP, i.e. PY P (0, α,H) = DP (α,H).

2.3. Variational Inference

It is not possible to obtain a direct analytic solution for
the BMM parameters. This paper focuses on variational
inference methods [20, 21] that approximate the analytically
intractable posterior with a tractable distribution called
variational distribution. This is done by first making a
number of independence assumptions that simplify the posterior
distribution. Kullback–Leibler (KL) divergence to the true
posterior is then minimised to find the variational distribution.
In practice, the final update equations are similar to the
expectation–maximisation (EM) algorithm that iterates between
finding the probabilities of zi (called responsibilities) based
on the current model and updating model parameters based
on the current responsibilities. The variational mixture model
proposed in [21] is used to handle the non-parametric weight
priors (DP and PYP), where K is truncated at a truncation limit
T to deal with the infinite number of clusters.

3. Experiments
The first experiment was a syllable clustering task where the
syllable tokens were extracted from the manual annotation, as
we wanted to compare the methods in idealized settings without
additional uncertainty caused by automatic syllabification. In
the second experiment, the comparison was extended to an
actual ZS pipeline where automatic syllable segmentation and
clustering (compared here) was followed by decoding of words
as recurring syllable n-grams of varying orders (see [1] for
details). All tests were conducted on conversational speech.

3.1. Data and pre-processing

Switchboard [22] and Phonetic Corpus of Estonian Speech
([23]; studio section of the corpus) were used for the first
experiment as they have manual syllable annotations available.
Experiments were conducted in speaker independent settings
for both Switchboard and Estonian (called ”SB-I” and ”Est-I”
respectively) and speaker dependent settings for Estonian. The
former was done using 1000 utterances (approx. 10000 syllable
tokens) randomly chosen from each corpora. The latter using
all data from each speaker in the Estonian corpus with the final
results averaged across the speakers of the same gender. We
call ”Est-DM” for the 16 male and ”Est-DF” for the 12 female
talkers and containing 104074 syllables tokens in total.

As for the second experiment, a 10.5-h and 12-talker
subset of the American English Buckeye corpus [24] and a
Tsonga dataset [25] containing a total of 4.4 hours of speech
from 24 talkers were used similarly to the ZS-2015 challenge
(see [16] for details). Following [1], syllable clustering was
done in a speaker dependent setting in the second experiment.
Syllabification was carried out using a sonority envelope -based
method described in [26], an improved version from the one
described in [1].

In both experiments, standard 13-dimensional MFCC
features (25-ms window and 10-ms step size) were extracted



for each syllable segment. Similarly to [1, 2], the syllable
tokens were divided into 10 equal-length non-overlapping
sub-segments, over which the MFCC features were averaged.
The resulting vectors were then concatenated to create a
130-dimensional representation for each syllable. Finally,
the vectors were normalised to unit vectors similarly to [2]
after ensuring in preliminary experiments that the GMM
performance is not affected by the process.

3.2. Evaluation

• Clustering - Performance was measured using purity of
the resulting clusters, each phonetically annotated syllable type
consisting of a separate class. This overall purity, Qtot, was
calculated as an extension to the commonly used standard
cluster purity Qclust, that is used in several zero-resource
settings [2, 27, 28] defined as

Qclust =
∑

z(maxc p(c|z))nz/
∑

z nz, (3)

where p(c|z) is the proportion of class c samples in cluster z and
nz is the number of samples. Concentration of class-specific
samples into a specific cluster, Qclass, was computed similarly
to (3) but using p(z|c). Qtot is then the harmonic mean of
Qclust and Qclass. Qtot yields a value of one if one–to–one
mapping between clusters and sample classes exists. It
otherwise penalises clusters with data from multiple classes or
having multiple parallel clusters for the same class.

• ZS evaluation - All evaluations were performed using the
Zerospeech evaluation kit described in [29]; the reader is
directed to the original paper for full technical details. The basic
method in the kit is to represent each discovered pattern as a
sequence of the underlying phonemes. The kit then measures
several metrics, including the normalized edit distance (NED)
between all phoneme sequences belonging to the same pattern
class (cluster), the proportion of the corpus covered by the
learned patterns (cov), and word level measures such as type
and token selectivity of the clusters and word segmentation
performance in terms of precision, recall and F-scores.

3.3. Compared methods

For the syllable clustering experiments, the baseline results
were obtained using parametric methods with heuristically set
number of clusters K, including K-means (”KM-heuristic”;
as in [1]) and a BMM with the Dirichlet Distribution on the
weights of Gaussians mixture components (”DDGMM”; as in
[2]). These were compared to the four BNP models using
either DP or PYP priors and VMF or Gaussian components.
All models were also compared to K-means with K set to the
actual number of syllable classes in the data (”KM-true”). For
the ZS system the KM-heuristic was compared with the four
BNP models on a speaker dependent basis.

Following [2], the number of clusters for the heuristic
methods was set to 5% and 20% of the total number of syllable
tokens available for the speaker independent and dependent
cases, respectively. The hyperparameters of the spherical
Gaussian were set as in [2]: µ0 was set to mean of all the
corresponding data, σ0 = 0.05 and σ = 10−3. The results
generally depend on the fixed spherical covariance value, but
were found to be consistent within the range σ ∈ [10−2, 10−4].
The hyper-parameters associated with the mean direction in
VMF components were chosen to correspond to those of the
Gaussian model: length-normalised dataset mean for µ0 and
β0 = 0.05. The gamma distribution parameters a0 and b0
were chosen to favour unconcentrated solutions (a0 = 1) but
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Figure 2: Bar plots showing the total purities using different
models with the 4 datasets.
not to constrain the posterior too much (b0 = 0.01). The
hyper-parameters of the weight distribution were set as all ones
vector for α while using the DD (as in [2]), α = 1 for the DP
(similar to previous works in speech as in [5]) and α = 1 ,
d = 0.5 for the PYP.

T for variational inference was set to 5000 for the speaker
independent case and to 50% of the number of syllable
tokens for the speaker dependent case. Since optimisation can
converge to local maxima, variational distribution parameters
were estimated 10 times with the means being reported.
K-means was initialised randomly and its results are also
averaged across 10 runs. The variational updates were
continued until the difference between evidence lower bound
in consecutive iterations did not exceed 10−4% or when 400
iterations were reached. MATLAB codes for the variational
inference are available under an open source license1.

4. Results
The results of the first experiment are shown in Figure 2. Since
the variation in performance across the 10 runs of each method
was very small, we only report means across the runs for each
compared method. In general, the purities of the best methods
are in the range of 35–50%, being similar to those reported by
[2] for word clusters resulting from the full ZS system. This
relatively low value indicates the difficult nature of the problem.
As expected, speaker dependent clustering results are better
than the speaker independent ones. The clustering methods
performed at about the same level in the speaker independent
experiments on the English and Estonian data, thus indicating
language robustness of the approaches.

As expected, the oracle KM-true performs best among
compared methods, except in the Est-I dataset where PYPVMM
is marginally better. Between the parametric methods the
DDGMM performed better than KM-heuristic. The BNP
methods however performed better than both of these. This is
much more pronounced in the speaker independent case, and
shows that the 5% rule-of-thumb for the number of clusters [2]
is not necessarily generalizable across data sets. Comparing the
BNP methods, the performance of the VMM based methods
is consistently higher than the GMMs. PYPVMM—the model
with the best matching assumptions with respect to language
data type and based on cosine distance—seems to achieve the
best performance among the methods and almost approaching
the level of KM-true. On the contrary, there is hardly any
difference in the performance of the DPGMM and PYPGMMs.

We also analyzed the number of clusters found by different

1http://github.com/shreyas253/variational NP BMM/



Table 1: ZS system performance on Buckeye and Tsonga datasets, comparing the baseline ZS system, KM-heuristic and the 4 BNP
methods. NED, cov, PRC, RCL and F stand for normalized edit distance, coverage, precision, recall, and F-value (see [29] for details).

		 General	 Phoneme	grouping	 Word	token	 Word	type	 Word	boundary	
English	 NED	 cov	 PRC	 RCL	 F	 PRC	 RCL	 F	 PRC	 RCL	 F	 PRC	 RCL	 F	

Baseline	 21.9	 16.3	 21.4	 84.6	 33.3	 5.5	 0.4	 0.8	 6.2	 1.9	 2.9	 44.1	 4.7	 8.6	
KM-heur		 73.4	 111.8	 9.7	 7.7	 8.5	 15.4	 15.3	 15.3	 9.0	 25.3	 13.3	 56.7	 57.2	 56.9	
DPVMM		 79.5	 111.0	 5.8	 9.6	 7.1	 15.6	 14.3	 14.9	 9.0	 25.5	 13.3	 57.7	 54.7	 56.1	
PYPVMM	 78.7	 111.1	 6.3	 9.7	 7.5	 15.6	 14.6	 15.1	 9.0	 25.5	 13.3	 57.4	 55.3	 56.3	
DPGMM	 79.2	 111.4	 6.0	 7.7	 6.7	 15.4	 15.0	 15.2	 9.0	 25.3	 13.2	 56.7	 56.3	 56.4	
PYPGMM		 79.2	 111.3	 6.0	 7.5	 6.7	 15.5	 15.0	 15.2	 9.0	 25.3	 13.2	 56.7	 56.3	 56.4	
Tsonga	 NED	 cov	 PRC	 RCL	 F	 PRC	 RCL	 F	 PRC	 RCL	 F	 PRC	 RCL	 F	

Baseline	 12.0	 16.2	 52.1	 77.4	 62.2	 2.6	 0.5	 0.8	 3.2	 1.4	 2.0	 22.3	 5.6	 8.9	
KM-heur	 60.8	 100	 15.2	 8.9	 11.1	 2.8	 6.1	 3.9	 2.9	 6.1	 3.9	 29.8	 54.6	 38.5	
DPVMM		 68.5	 100	 9.5	 10.5	 9.9	 3.1	 6.1	 4.1	 3.1	 6.4	 4.2	 30.5	 53.4	 38.8	
PYPVMM	 67.9	 100	 10.2	 10.4	 10.2	 3.0	 6.1	 4.0	 3.1	 6.4	 4.2	 30.2	 53.9	 38.7	
DPGMM	 67.7	 100	 10.3	 7.4	 8.6	 2.8	 6.1	 3.8	 2.8	 5.9	 3.8	 29.1		 55.0	 38.1	
PYPGMM	 67.5	 100	 10.2	 7.0	 8.3	 2.8	 6.2	 3.9	 2.9	 6.0	 3.9	 29.2	 55.3	 38.2	

 
Table 2: Number of syllable classes found by the 4 BNP meth-
ods on 4 datasets, shown as a percentage of the true number of
syllable classes for each dataset.

GMM VMMDatasets DP PYP DP PYP
SB-I 64.99 67.51 60.90 85.69
Est-I 66.93 69.73 87.56 109.56

Est-DM 74.31 75.59 73.71 87.88
Est-DF 70.56 72.41 74.01 89.39

BNP methods (Table 2). Since the PYP better approximates
the Zipfian distribution typical to syllables, we would expect
it to create more clusters than DP. This is also exactly what is
observed in the results. In addition, the effect is again more
pronounced with the VMMs than GMMs where the PYPVMMs
find significantly more clusters than DPVMMs. Table 1 shows
the results from the full ZS pipeline. Overall, the performance
of all the BNP methods is similar to the heuristic k-means. As in
the original pipeline [1], the performance of the BNP methods
is greatly above the challenge baseline system [16, 30] in word
discovery but much worse in terms of phoneme grouping. This
is because the present system attempts to perform full parse
of the corpus while the DTW-based baseline system outputs
only a small number of well matching segments of speech,
as reflected by its low coverage and word-level performance.
The improvements of using VMM over GMM observed in the
first experiment are still present, but much more marginal due
to the increased complexity of the task due to less accurate
syllabification.

5. Discussion and Conclusions
The present paper aimed at investigating feasibility of different
BNP methods in clustering of syllabic units from speech. The
comparison shows that they can all achieve relatively consistent
performance across different subsets (and languages) of syllable
data, having comparable or better performance than the earlier
parametric methods used in ZS systems with heuristically
set number of clusters [1, 2]. Still, K-means also leads to
good performance in cases where the number of clusters K
can be somehow defined in advance. However, setting the
appropriate number of clusters is generally problematic in the

zero-resource domain where no labeled data are assumed to
exist, although some measures such as silhouette width [31]
exist for that purpose. In contrast, the consistent performance
of the BNPs across the four different languages implies that
the BNP methods can be flexibly used in domains where
validation of the obtained clustering solutions is not possible
and without the need for external measures for quality of
different clustering solutions. In addition, variational inference
makes the BNP methods computationally tractable with even
modest computational resources, which is in contrast to
alternatives such as Gibb’s sampling that is much slower and
faces convergence issues.

As for the comparison between the BNP methods, it was
observed that there was a difference in performance and in
the number of clusters found between the PYP and DP weight
distributions. This difference was more prominent with the
VMM component model that also performed better than GMM
in all cases. This confirms our initial assumptions that the PYP
prior might be better to model Zipfian like data, while VMM
is more suited for density estimation in a high-dimensional
feature space with cosine distance. However, it should be noted
that for the GMM components we had to use fixed covariance
parameters in order to acquire well-performing solutions for the
clustering tasks, a problem already encountered in [2]. While
this may lead to suboptimal cluster shapes and sizes, it also
indicates that the VMM is more suited for the present type
of task where no such parameter tying/fixing is required for
successful model inference with noisy high-dimensional data.
These differences are less apparent when there is additional
noise due to uncertainty in the syllable boundaries.

Overall, the present results show that non-parametric
methods perform consistently across several data sets with the
same set of prior parameters and therefore provide a potential
alternative to more traditional parametric methods.
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