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Abstract 
 
Spectral tilt has been suggested to be a correlate of 
prominence in speech, although several studies have not 
replicated this empirically. This may be partially due to the 
lack of a standard method for tilt estimation from speech, 
rendering interpretations and comparisons between studies 
difficult. In addition, little is known about the performance of 
tilt estimators for prominence detection in the presence of 
noise. In this work, we investigate and compare several 
standard tilt measures on quantifying prominence in spoken 
Dutch and under different levels of additive noise. We also 
compare these measures with other acoustic correlates of 
prominence, namely, energy, F0, and duration. Our results 
provide further empirical support for the finding that tilt is a 
systematic correlate of prominence, at least in Dutch, even 
though energy, F0, and duration appear still to be more robust 
features for the task. In addition, our results show that there 
are notable differences between different tilt estimators in 
their ability to discriminate prominent words from non-
prominent ones in different levels of noise. 
Index Terms: prosody, sentence prominence, spectral tilt, 
noise, dnn 

 

1. Introduction 
Prosody and prosodic phenomena are critically important 
components of the spoken form of communication. In the 
same manner that paradigmatic contrasts at the segmental 
level allow the formation of linguistic units such as syllables 
or words, prosodic changes take place at slower rates and 
extend across individual segments conveying information 
about how something is spoken. Prominence is a prosodic 
phenomenon that can be generally defined as the property by 
which a linguistic unit is perceived to be standing out from its 
environment (see, e.g., [1,2,3], for related definitions). As the 
definition for prominence is domain specific, sentence 
prominence defines the degree of perceived emphasis for one 
or more words during a sentence (see, e.g., [2]). Prominence 
serves several functions in discourse, making it a particularly 
important component for natural language applications (see, 
e.g., [4,5]). For instance, prominence can be indicative of the 
lexical class or information structure in a sentence [3]. In this 
regard, prominence may cue the most important word or 
words in a sentence and therefore reflect the communicative 
intentions of the speaker through emphasis. 

The study of prominence has indicated a number of factors 
that seem to hold a role in the production and perception of 
prominent units in speech. Purely from the physical signal 

perspective, four acoustic correlates for prominence have been 
identified across a number of studies. Specifically, energy 
[6,7,8], fundamental frequency (F0) [9], duration [7,8], and 
spectral tilt [10,11,12] have been all observed to correlate with 
the incidence of prominent units in speech. However, the 
independent contribution of energy, F0, and duration in 
prominence seems to be more established across studies than 
that of spectral tilt. This might be explained by the fact that 
there are more established and reliable measures for energy, 
F0, and duration than for spectral tilt. For spectral tilt, a 
variety of measures have been proposed in the literature, often 
encountered under different terms. 

The diversity of the measures quantifying spectral tilt may 
also pose challenges in the interpretation of results across 
different studies. For instance, Sluijter and van Heuven 
measured spectral tilt as the band-limited intensity across four 
continuous spectral bands (0–0.5, 0.5–1, 1–2, and 2–4 kHz) 
[10]. In another study, Campbell and Beckman used the 
harmonic ratio (difference in dB between the first and second 
harmonic of F0, H1-H2) in order to quantify a measure for 
spectral tilt [11]. Other studies use an array of different 
methods, including calculation of the difference in dB between 
the overall intensity and the intensity of the fundamental 
frequency (or in a frequency band centered at the 
fundamental) [12,13,14], taking the first cepstral coefficient 
[15], taking the difference in dB between a signal with high-
frequency pre-emphasis and flat frequency weighting (SPHL-
SPL) [16], taking the difference in dB between the first 
harmonic and third formant (H1-F3) [17], fitting a regression 
line in the magnitude spectrum [18,19], taking the band-
limited spectral energy ratios [20,21], using the long-term 
average spectrum (LTAS) to obtain band-limited energy ratios 
[22], and using all-pole modeling techniques [23]. In addition, 
some studies utilize measures such as regression line fitting 
and harmonic ratio, but, instead of applying the measures 
directly on the short-term spectrum of speech, they utilize the 
spectrum of the glottal source waveform that is obtained 
through glottal inverse filtering (GIF) [24,25]. Recently, a 
DNN-based system for robust spectral tilt estimation was 
described in [26], enabling the estimation of the glottal source 
tilt in non-ideal signal conditions without explicitly using GIF 
in the estimation phase.  

As the methods for the estimation of spectral tilt are highly 
variable, the goal of the present work is to compare a range of 
the most well-known measures for spectral tilt together with 
the newly-proposed deep neural net (DNN) –based technique 
[26]. The capability of the spectral tilt measures to describe 
prosodic prominence is then evaluated using clean and noise-
corrupted Dutch speech. The results indicate that tilt is a 
consistent correlate of prominence, but also that there are 
important differences in the discriminative capabilities of the 
different tilt estimators.  



2. Methods 
Central part of the investigation in this work is the evaluation 
of the effect of noise across different features for prominence. 
For this purpose, speech signals were initially degraded with 
additive babble noise of variable signal-to-noise ratio (SNR). 
For each signal, the standard acoustic correlates for 
prominence, namely, energy, F0, and duration were computed 
(section 2.1) together with several tilt measures that have been 
commonly used in the literature (section 2.2). In addition, a 
DNN-based spectral tilt estimation was also evaluated (similar 
to [26]) in order to investigate (i) the efficiency of DNN-based 
source tilt estimation for prominence, and (ii) the potential for 
the DNN to add robustness on tilt estimation for noisy signals 
(section 2.3). For all features, a number of aggregate statistical 
measures over words were then computed, and their capability 
to discriminate prominent from non-prominent words was 
measured in terms of the separability of the feature 
distributions. All measures were computed only for the voiced 
frames during the words, as detected by the F0 estimator (see 
below) at each given noise level. 
2.1. Energy, F0, and duration 
Energy, F0, and duration were used as the reference features 
in this work because many previous studies have shown that 
they correlate well with the manifestation of prominence (see, 
e.g., [6,7,8,9,10]). In order to compute them, speech data were 
initially downsampled to 16 kHz. F0 estimation was carried 
out using a noise robust pitch tracker [27] with a 100-ms 
window and 10-ms hop size. The pitch tracker provided pitch 
estimates as well as a voicing decision for each frame of the 
analysis. Finally, energy was computed using a 20-ms window 
and 10-ms hop size, while duration was extracted for each 
word from the corpus annotations. 
2.2. Spectral tilt measures 
For the comparative analysis of the spectral tilt measures, 
several tilt estimation techniques that are commonly used in 
the literature were utilized. In this work we are limiting the 
analysis to include only scalar one-parameter models. All tilt 
measures below were computed over a 20-ms window and 
using a 10-ms hop size. The following measures were 
included in the comparison: 
• The difference in dB between the first and second 

harmonic (H1-H2) (see, e.g., [11]). 
• The difference in dB between the first harmonic and third 

formant (H1-F3) (see, e.g., [17]). 
• The first cepstral coefficient (see, e.g., [15]). 
• The spectral energy ratio in the frequency bands between 

0–1 kHz and 1–5 kHz (see, e.g., [20]). 
• The slope of the line obtained by fitting a first order 

polynomial in the short-term magnitude spectrum (spectral 
regression – see, e.g., [18]). 

• The first order linear prediction coefficient (LPC) – 1LP. 
2.3. DNN-based spectral tilt estimation 
A new method was proposed recently in [26] to estimate and 
parameterize the glottal source spectrum in noisy, non-ideal 
conditions where conventional GIF analysis cannot be used 
due to its known sensitivity to noise [28]. The method 
proposed in [26] uses a deep neural network (DNN) to map an 
input feature vector (the logarithmic speech power spectrum) 
into an output vector (all-pole model of the glottal source  

 

Figure 1: Schematic diagram of the training of the DNN-based 
tilt estimator. 
spectrum parameterized using line spectrum frequencies 
(LSFs)). In this work, two separate standard feed-forward 
DNNs were trained for the prediction of the LSFs describing 
the glottal source spectrum directly from the logarithmic FFT 
magnitude spectrum of the speech input (20-ms window, 10-
ms hop size; see also Fig. 1). The first DNN was trained on 
clean speech only. In the second DNN the clean training data 
were augmented with noise-corrupted versions of the same 
data with 15 dB SNR additive babble noise but using the clean 
speech LSFs. It is worth emphasizing that the DNN-based 
spectral tilt estimation method does not need GIF in the 
estimation phase. GIF is used only in the training phase to 
compute the output LSF feature vectors from studio-quality 
speech. In the current study, the quasi closed phase (QCP) 
method [29] was used in the computation of the output LSF 
feature vectors. 

The 255-dimensional spectral frame inputs and LSF 
outputs of the DNNs were z-score normalized across all 
training data to ensure proper scaling. Both networks use 
sigmoid activation functions for hidden layers, a linear output 
layer, a learning rate of η = 0.1, 100 epochs, minibatch size of 
1000, mean squared error (MSE) as the cost function, and a 
configuration layout d = [64 32 16] for the hidden units per 
layer. This results in two DNNs for tilt prediction: one based 
on clean speech (DNNCt) and a second based on a clean 
together with noise-corrupted speech (DNNNt). The final tilt 
estimates are then obtained by fitting a first order polynomial 
in the spectrum of the glottal waveform as parametrized by the 
predicted LSFs. We also compare the resulting tilt estimates to 
those computed directly from speech using normal QCP. 

3. Experiments 
3.1. Material 
Two speech corpora were used in our study. The Spoken 
Dutch Corpus (Corpus Gesproken Nederlands; CGN) was 
used as the basis for the evaluations of the different acoustic 
measures. CGN is a database of contemporary standard Dutch 
as spoken by adults in the Netherlands and Flanders (see [30] 
for more details). For the present evaluations, the prosodically 
annotated subset of the Dutch news broadcast (component-k) 
part of the corpus containing prominence annotations was 
utilized, consisting of 134 news broadcasts spoken by 10 
different speakers (9 male and 1 female) (≈44.3 minutes of 
speech data). The annotations were hand-labeled using binary 
(prominent/non-prominent) markings by two trained 
annotators, containing a total of 7438 word tokens. 

A second corpus was used to provide high quality clean 
speech signals for the DNN training. For this purpose, the 
Phonetic Corpus of Estonian Spontaneous Speech of the 
University of Tartu was utilized (“EstPhon”) [31]. The corpus 
contains a total of 60 hours of conversational recordings by 
speakers from different age groups, dialectological, and social 
backgrounds. In this work, we used 1165 randomly chosen 
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utterances from the high-quality studio section of the corpus to 
train the DNNs for QCP tilt estimation. 
3.2. Evaluation 
All evaluations in this study were carried out at the word level 
on the CGN corpus. Specifically, the manually labeled 
prominence markings were used to divide the data into two 
categories: prominent and non-prominent words. As the data 
have been labeled by two annotators, all words with at least 
one prominence marking were considered as prominent (see 
[32] for a similar approach). For the evaluation, five word-
level statistical descriptors were computed for all measured 
features:  (i) mean, (ii) max, (iii) min, (iv) standard deviation 
(SD), and (v) the feature range during the word. 

In order to compare the differences in feature distributions 
for the prominent and non-prominent classes, the estimated Z-
score based effect-size r from Wilcoxon rank sum test (Eq. 
(1)) was utilized together with the symmetric Kullback–
Leibler (KL) divergence (Eq. (2)). KL-divergence was 
computed using Q = 25 discrete bins with all having a uniform 
number of samples across the entire data set. Both measures 
quantify the degree of separability of the prominent and non-
prominent classes with zero corresponding to no difference. In 
the equations, Ppr and Pnpr denote the probability density of 
the matching bins and Npr and Nnpr denote the number of 
samples for the two classes, respectively. 

 r = Z
Npr + Nnpr

  (1) 

 
DKL = Ppr∑ log(

Ppr
Pnpr

)+ Pnpr∑ log(
Pnpr
Ppr
)  (2) 

4. Results 
After training the DNNs (DNNCt and DNNNt) using the 
Estonian corpus, the annotated part of the CGN component-k 
was used to compute all features from both clean and noisy 
versions of the 134 speech signals. The noisy versions of the 
CGN signals were generated by corrupting them with additive 
babble noise (different from the one used for corrupting the 
DNN training data) with SNRs of -10, -5, 0, 5, 10, 15, 20, 40, 
and 60 dB in addition to using clean speech. It is important to 
note here that the CGN is inherently noisier than the EstPhon 
data, and therefore “clean” refers to the potentially non-ideal 
signal quality in the broadcast recordings. Since the overall 
behavior of DKL was found to be nearly identical to the effect 
size r across all conditions, we only report the latter in the 
following sections. 
4.1. Energy, F0, and duration 
Fig. 2 shows the results for energy and F0. As expected, the 
class separation between the two prominence classes is robust. 
Substantial variation between the different statistical measures 
can be also observed, and the measure for min is not 
separately shown for any of the measures as it performed 
generally poorly. The highest class separation is attained for 
the SD and range whereas the lowest for max and mean. In 
addition, range, SD, and max seem to maintain class 
separability across the entire tested SNR range while mean 
drops to near zero for low SNRs. The non-zero separability for 
low SNRs is likely due to the confounding effect of duration 
where longer words are intrinsically more likely to exhibit a 
wider range of values. The durational measure is not plotted in 
Fig. 2 as it is independent of SNR, achieving a class separation  

 

Figure 2: Prominent and non-prominent class separations (r) 
for energy and F0 plotted for mean, SD, max, and range and 
from -10 to 60 dB SNR and clean signals. 

of r = 0.72. In all, all three features have strong descriptive 
capabilities in the task of discriminating between the 
prominent and non-prominent classes.  
4.2. Spectral tilt measures 
A total of nine tilt measures are evaluated in this work. The 
results for the spectral tilt measures are divided into three 
subsections for clarity of presentation. 

4.2.1. H1-H2, H1-F3, and 1LP 

The first set of tilt measures can be seen in Fig. 3 (H1-H2, H1-
F3, 1LP). Similar to the case for energy and F0, the 
descriptors for range and SD provide the best overall 
separability across all measures. However, contrary to energy 
and F0, the estimates converge to zero for low SNRs (< 5 dB) 
for all descriptors. It can be also noticed from Fig. 3 that the 
features behave slightly differently across the different 
statistical descriptors. Specifically, whereas 1LP appears to 
provide the best class separation for mean, max, and SD, this 
does not hold for the range where H1-F3 and H1-H2 are 
better. Overall, the best performing feature in this group is H1-
F3 using range as the descriptor (r = 0.43 for clean speech). 

 
Figure 3: Prominent and non-prominent class separation (r) 
for H1-H2, H1-F3, and 1LP plotted for mean, SD, max, and 
range and from -10 to 60 dB SNR and clean signals. 
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Figure 4: Prominent and non-prominent class separation (r) 
for first cepstral coefficient, regression line fit, and energy 
ratio plotted for mean, SD, max, and range and from -10 to 60 
dB SNR and clean signals. 

 
Figure 5: Prominent and non-prominent class separation (r) 
for QCP, DNNCt (clean), and DNNNt (clean+noisy) plotted for 
mean, SD, max, and range and from -10 to 60 dB SNR and 
clean signals. 

4.2.2. Cepstral, regression line slope, and energy ratio 

The performance of the second analysis group can be seen in 
Fig. 4. As with the previous tilt measures (section 4.2.1), in 
this case too, there is substantial variation in the performance 
across different statistical descriptors. Between the three 
measures, the spectral fit slope appears to be the most volatile 
and also the worst performing feature for mean, SD, and max. 
Here too, the best performance is attained for range and for the 
cepstral tilt estimate (r = 0.42 for clean speech). 

4.2.3. DNN-based source tilts and direct QCP-based tilt 

The performance of the DNN-based tilt estimates together 
with the direct QCP tilt estimation can be seen in Fig. 5. For 
SD, max, and range, the performance differences between the 
methods can be observed where the DNN-based tilt estimates 
outperform the direct QCP-based estimation. Overall, the 
DNN-based approach provides more robust estimates for tilt 
with increasing noise level than the direct QCP on the same 
data. Here too, the best performance was obtained for feature 
range for both DNNs (DNNCt and DNNNt). 

 
Figure 6: Prominent and non-prominent class separation (r) 
for all evaluated features for the range descriptor. Top: clean 
signals. Bottom: averaged r for SNRs between -10 to 15 dB 
where vertical red bars denote the standard error. 

5. Discussion and Conclusions 
The analysis of the tilt estimates provided insights into the 
behaviour of the measures for prominence. Specifically, it was 
observed (i) that the tilt measures behave differently for the 
distinct statistical descriptors, (ii) there are differences in the 
performance (class separability) for the distinct tilt measures 
in clean speech, and (iii) noise degradation greatly impacts 
prominence class separation from around 10 dB SNR, largely 
diminishing the differences between the estimators. The 
results also support the finding that tilt is an important 
correlate for prominence, at least for Dutch (see, e.g., [10,33], 
see also [34]).  

Fig. 6 presents a comparative overview of all the features 
evaluated in this study. It can be seen that energy, F0, and 
duration are the most robust across all features. Across the tilt 
measures and for the clean speech signals, both DNN-based 
tilt estimators seem to perform best followed by H1-F3 and 
the first cepstral coefficient. With additive noise, the best 
performing tilt estimates remain the DNNs and cepstral tilt. In 
addition, another finding from the current evaluation is that, at 
least for tilt, the statistical descriptor that offers the most 
discriminative power in the case of prominence is the range of 
the feature (max-min) during each word. With respect to the 
DNN-based tilt estimation, it was shown that the DNN can 
provide better tilt estimates for the task improving over a 
direct GIF estimation of the tilt from the speech signal. One 
limitation of the present evaluation is that all measures were 
examined over voiced frames (over words), thereby 
intrinsically binding them to the F0 estimation procedure. This 
means that for decreasing SNR, the potential number of 
voiced frames will reduce, inevitably also reducing the 
number of samples for the measures. In future investigations, 
the measures should be also computed for each frame over the 
entire word or using the clean speech voicing estimates for the 
noisy versions of the signals. 
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