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Abstract 
Automatic detection of prominence in speech is an important 
task for many spoken language applications. However, most 
previous approaches rely on the availability of a corpus that is 
annotated with prosodic labels in order to train classifiers, 
therefore lacking generality beyond high-resourced languages. 
In this paper, we propose an algorithm for the automatic 
detection of sentence prominence that does not require explicit 
prominence labels for training. The method is based on the 
finding that human perception of prominence correlates with 
the (un)predictability of prosodic trajectories. The proposed 
system takes speech as input and combines information from 
automatically detected syllabic nuclei and three prosodic 
features in order to provide estimates of the prominent words. 
Results are reported using a speech corpus with manually 
assigned prominence labels from twenty annotators, showing 
that the algorithmic output converges with the annotators’ 
prominence responses with 86% accuracy. 
Index Terms: Prominence detection, speech processing, 
speech analysis, syllabification, prominence perception 

1. Introduction 
Sentence prominence is an important property of speech where 
a speaker can convey meaning or intent that is not available in 
the linguistic message. In natural conversation, for instance, it 
is common that speakers make some words more prominent 
than others in order to draw the listener’s attention to those 
parts of the utterance that carry the most information. In 
general, a speaker may use prosody in order to convey both 
linguistic and paralinguistic information. Respectively, 
listeners utilize the prosodic information in order to interpret 
speech. Methods capable of detecting prominence have 
therefore various uses in many spoken language applications 
such as automatic speech recognition (ASR). In contrast to 
traditional supervised approaches using manually annotated 
data (see, e.g., [1,2]), we propose a method that does not 
require training using annotated prosodic information and that 
is inspired by recent findings of human perception of 
prominence in speech. In the proposed scheme, two acoustic 
correlates of prominence are extracted from speech, modeled 
statistically over time, and combined with automatically 
detected syllabic nuclei information in order to provide 
estimates of the prominent words in the utterances. 

Earlier work has suggested that prominence is a feature of 
speech that can attract human attention in a bottom-up manner 
[3]. This means that simply variations in the physical 
properties of the speech signal might be indicative of 
prominence. Such mechanism implies a rapid stimulus-driven 
response of the listener to the specific parts of the speech 
stream that are perceived to be more salient. Prosodic features, 

such as energy and F0, are good candidates for the 
representation of acoustic salience in speech as the speaker can 
modulate them relatively independently of the linguistic 
content. Bottom-up attention has been also defined in the 
literature as being a response to novel and unexpected (or 
unpredictable) stimuli [4]. In a recent study [5] it was shown 
that the temporal unpredictability of the fundamental 
frequency (F0) trajectories was connected with the perception 
of sentence prominence, thus giving support to the idea that 
unpredictability of the sensory stimulus is driving the 
listener’s attention and thereby perception of prominence (see 
also [6] for an approach based on lexemes’ prosodic features). 

In this paper, we extend the earlier findings in [5] to a 
prominence detection system. We propose a method for the 
automatic detection of sentence prominence that does not 
require explicit prominence labels for training and that can 
capture prominent words in a manner hypothesized to be 
analogous to human perception.  
1.1. Prosodic correlates of prominence 
Prominence is a prosodic phenomenon that takes place at 
different domains in speech and can be generally described as 
an accentuation of syllables within words or of words within 
sentences [7]. The acoustic realization of prominence is 
typically manifested as changes in the fundamental frequency 
(F0), energy, and duration of the syllables or words [8]. Recent 
findings give also evidence of the importance of spectral tilt 
[9] as a correlate of prominence with, however, fewer studies 
supporting its role across languages [10]. Therefore, the 
present method focuses on the use of F0, energy, and duration. 
1.2. Earlier work 
When it comes to the automatic detection of prominence, there 
is extensive literature addressing the problem from various 
angles. The problem of automatic detection is particularly 
important as it can allow automatic tagging in large speech 
corpora and also allow machines to achieve a more naturalistic 
processing of speech. The major division in the research 
directions taken in the literature can be first split into 
approaches using linguistic information [11] (such as lexical 
or syntactic structure), acoustic information [12] (such as 
energy, F0, spectral tilt) or both [3,13]. The second domain of 
division is in supervised [14,15] and unsupervised techniques 
[3,16] where the major differentiating factor is on the usage of 
annotation data to train classifiers. Finally, the third and last 
division is based on the type of the statistical model utilized in 
order to train and evaluate the data [14,17]. Majority of the 
current approaches are typically supervised operating on both 
the linguistic and acoustic content of speech [1,2,14] whereas 
limited research has been done using unsupervised or semi-
supervised methods [3,16]. For instance, Kalinli and 
Narayanan proposed a biologically inspired approach 



combining bottom-up auditory attention cues together with 
high-level lexical and syntactic information achieving 83.11% 
accuracy using acoustic features only (unsupervised) and 
85.71% using both acoustic and linguistic at the word level [3] 
(see also [18,19] for studies using clustering techniques).  

In this study, we implement an approach using acoustic 
information, without prominence labels, in order to train a 
statistical n-gram model where we also make use of word 
duration information. The results are evaluated on an extensive 
set of annotated data that we collected and indicate that the 
proposed method is capable of detecting prominence with high 
agreement with the annotators’ responses. Overall, our attempt 
is aimed at creating a method that can function similar to the 
human perception of prominence with performance reaching 
that of human labelers. 

2. Methods 
The proposed cognitively inspired algorithm for the automatic 
detection of sentence prominence (CADSP) consists of two 
main blocks (Fig. 1): (i) a method for the detection of syllabic 
nuclei and (ii) a statistical model that learns the typical 
prosodic trajectories in a set of training utterances and is then 
used to provide probability estimates of the prosodic 
trajectories in a set of novel utterances with unpredictable 
points corresponding to linguistic prominence (see [5]). These 
are further described below. 
2.1. Signal envelope analysis for syllabic nuclei 
estimation 
In order to estimate the number of syllabic nuclei in each word 
(or per time unit), signal amplitude envelope is used to 
segment speech into subsequent syllables. It is well known 
that the smoothed envelope of speech correlates with the 
syllabic structure of speech with the sonorant syllable nuclei 
corresponding to the envelope maxima while the syllabic 
boundaries roughly correspond to the minima between the 
nuclei (e.g., [20], [21]).  

In order to compute the envelope, the absolute value of the 
speech signal sampled at 1000 Hz is first taken. The resulting 
signal is then low-pass filtered with a 48-ms moving average 
filter and scaled to have a maximum value of one across the 
signal length.  

Syllabic boundaries are computed from the resulting 
envelope by simple minima detection: Any local minimum 
preceded by an amplitude larger than δ = 0.04 is considered as 
a syllable boundary. Any two or more boundaries being closer 
than 80 ms to each other are considered as a one boundary at 
the midpoint of the boundaries. Finally, each local maximum 
in the envelope between the detected syllable boundaries is 
marked as a syllabic nucleus (see also [22] for a comparison 
with other methods). 
2.2. Modeling prosodic trajectories 
The aim of the algorithm is to mark words as prominent if the 
temporal evolution of the prosodic features is unpredictable 
during the words, violating the expectations of the listener (or 
the model) and thereby capturing the attention.  

Earlier research has indicated F0, energy, and duration as 
being the three features in speech that are most descriptive of 
prominence across a number of languages (see, e.g., 
[8,10,23,24]). In the current work, F0 and energy are used to 
train a statistical n-gram model that describes the typical 
temporal evolution of these features on a set of training 
utterances. This model is then used to provide expectations  
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Figure 1:  Overview of the processing steps in the algorithm. 

 
(probabilities) for the prosodic features across time on novel 
input. The effect of duration is included in the energy and F0 
features through integrating the probabilities of these features 
over word duration. 

The model consists of five processing steps (see Fig. 1): (i) 
pre-processing, (ii) feature extraction, (iii) feature 
normalization, (iv) quantization, and (v) n-gram parameter 
computation (during training) / probability estimation (during 
testing). 

As a pre-processing step, the speech data are 
downsampled to 8 kHz. The two prosodic features are then 
computed: F0 contours for the voiced segments are extracted 
from each utterance using the YAAPT algorithm [25] with a 
25-ms window and 10-ms step size while energy is computed 
using the same window length and step size as follows: 

E = x[n] 2

n=n1

n2

∑ ,     (1) 

where x is the speech input and n1, n2 define the beginning and 
end of the analysis window respectively. 

In order to ensure comparability of the features across 
utterances and talkers, F0 and energy are min-max normalized 
according to Eq. (2). 

f '(t) = f (t)−min( f )
max( f )−min( f )

     (2) 

In the equation, f denotes the feature value at time t while 
max(f) and min(f) refer to the maximum and minimum values 
of the feature, respectively, during the given utterance (see 
[1]). 

The extracted features for each time frame are quantized 
into Q discrete amplitude levels, f’(t) à at ∈ [1, 2, …, Q], in 
order to allow discrete probability modeling of the data. In the 
present study, Q = 32 quantization levels were computed using 
the k-means algorithm with a random sample initialization. 
The number of levels was selected as a compromise between 
the best approximation of the feature contours and the least 
number of discrete levels possible.  

For the statistical modeling of the temporal evolution of 
the feature trajectories, n-gram probabilities are computed 
from the relative frequencies of different n-tuples in the 
training data: 

Pψ (at | at−1, ...,at−n+1) =
Cψ (at,at−1, ...,at−n+1)
Cψ (at−1, ...,at−n+1)

,   (3) 
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Figure 2:  Example output of the algorithm for the utterance 
“There is a clean yellow cow and a cookie”. Top panel: 
original signal waveform where red marks the word perceived 
as prominent by the majority of the listeners and yellow marks 
the syllabic nuclei. Bottom panel: word scores produced by 
the proposed algorithm. 

 

where C denotes the frequency counts of the discrete n-tuples 
and ψ the feature in question. The probability P’(t) of the 
features at time t is computed according to Eq. (4), i.e., by 
summing the log-probabilities over the two features ψ of 
interest. This formulation assumes that the features are 
independent of each other.   

!P (t) = log Pψ (at | at−1, ...,at−n+1)( )
ψ

∑    (4) 

Standard n-grams were chosen due to their relative 
simplicity and scalability. Analysis is limited to n-gram orders 
of n = 2, 3, and 4. Bi-grams (n = 2) represent the shortest 
temporally ordered segment while four-grams (n = 4) are the 
longest sequence for which probabilities can be reliably 
estimated from the dataset used in the experiments. 

In order to measure the overall predictability of the 
prosody during each word, F0 and energy-based word-level 
prominence scores S(wi,j) are computed for each word wi,j in 
utterance i by integrating the instantaneous feature 
probabilities over the duration of the entire word:  

S(w) = !P (t)
t=t1

t2

∑ .     (5) 

Here, temporal boundaries, t1 and t2, are extracted from the 
word-level transcription of the speech database but could be 
also obtained automatically, from, e.g., an ASR system. 

In order to use a subjective measure of the syllable 
duration, the average duration of the syllables within a word 
are computed by dividing the word duration tw by the number 
of nuclei ν detected for that word (tν = tw/ν). As duration is one 
important correlate of prominence in speech, each acoustic 
feature based word score in the utterance is weighted by the 
exponent of the average syllable duration (see Fig. 2). Longer 
syllabic durations lead typically to increased perception of 
prominence and therefore the exponential function is good for 
the non-linear mapping of the durational nucleic information. 

S '(w) = S(w) ⋅etν      (6) 
The prominence classification H(wi,j) for each word j in 

utterance i is then determined based on whether the word-level 
score S´(wi,j) falls below a threshold ri:  

H (wij ) =
1, S '(wij )< ri ,
0, S '(wij ) ≥ ri ,
"
#
$

    (7) 

where the threshold is defined at the utterance level as 
ri = µi −σ iλ      (8) 

and where hyperparameter λ controls the sensitivity of the 
prominence detector. 

3. Experiments 
The performance of CADSP was tested on continuous English 
speech. In order to evaluate algorithmic output, 20 naïve 
listeners were invited to mark prominence. Their annotations 
were compared against the prominence hypotheses generated 
by the CADSP algorithm. Overall performance was evaluated 
using standard measures for accuracy and inter-rater 
agreement that are further described below. 
3.1. Material 
The CAREGIVER Y2 UK corpus [26] was used in the 
experiments. The style of speech in CAREGIVER is acted 
infant-directed speech (IDS) spoken in continuous UK English 
and recorded in high quality within a noise-free anechoic 
room. The talkers were not separately instructed on the use of 
prosody or prominence (see [26], for details). In overall, the 
CAREGIVER Y2 UK corpus contains speech from 10 adult 
talkers with a total duration of approximately 8.7 hours. 
Specifically, the corpus contains data from 4 primary talkers 
(2 male, 2 female) producing 2397 utterances each and 6 
secondary talkers (3 male, 3 female) producing 600 utterances 
each. A subset of 300 unique utterances was chosen for the 
listening tests from one male and one female primary talker 
(Speakers 3 and 4), yielding a total of 600 sentences for 
evaluation (test set). All single-word sentences were excluded 
from the data and there were 5.9 words per sentence on 
average. The corpus was chosen for this study as there are 
extensive speech data available per speaker that is beneficial 
for the training and evaluation purposes (e.g. testing different 
n-gram orders) and was also readily available to us. In 
addition, the prominence markings collected for the corpus 
have agreement rates equivalent to those of studies in adult-
directed American English (see [27] for more details). 
3.2. Data collection 
A total of twenty subjects (11 male, 9 female, age range 20-61 
with a median of 30 years) participated in a listening 
experiment where they were asked to mark perceived 
prominence in the test set. The participants were recruited 
among the students and personnel of Aalto University and 
University of Helsinki, Finland. The majority of the 
participants (N=14) were L1 (first language) Finnish speakers, 
while the remaining (N=6) were L1 UK English speakers. 
English was the L2 (second language) of all Finnish listeners 
and each Finnish listener in the experiment reported to be a 
professional-level English speaker (see also [27]). Six of the 
L1 Finnish subjects also took the LexTALE proficiency test on 
English as a post-hoc control procedure, achieving an average 
score of 92.08/100 in the test, corresponding approximately to 
C1 & C2 in the Common European Framework (CEF) 
language proficiency levels [28]. No significant differences 
were observed in the coherence of the annotations between the 
two L1 groups [29]. All participants reported normal hearing. 
3.3. Evaluation 
Precision (PRC), recall (RCL), their harmonic mean (F-value), 
and accuracy (ACC) were used as the primary quality 
measures and were defined as: 

RCL = tp / (tp+ fn)     (9) 
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Figure 3:  Prominence detection performance. Blue sold line 
marks F0, black dashed line marks energy and red dashed-
dotted line marks the combined performance of energy with 
F0. 
 

PRC = tp / (tp+ fp)                  (10) 
F = (2×PRC×RCL)/(PRC+RCL)                (11) 
ACC = (tp+ tn)/(tp+ fp+ fn+ tn)                (12) 

where tp denotes the true positives, tn the true negatives, fp the 
false positives, and fn the false negatives. 

Standard Fleiss kappa [30] was used in order to measure 
the pairwise agreement rates between the algorithm and the 
annotators. Also, it allows comparison of our results with that 
of other similar studies in prominence detection (see, e.g., 
[31,32]). Overall, Fleiss kappa measures the degree of 
agreement between two or more annotators on a nominal scale 
of κ ∈ [-1,1] and yields κ = 0 if the number of agreements is 
equal to what is expected based on chance-level co-
occurrences in the data and κ = 1 if all annotators fully agree.  

In this work, Fleiss kappa was measured on the word-
level. For each word occurring in the test set, a binary decision 
between non-prominence and prominence was considered. 
From the set of twenty annotators, an annotation reference was 
generated based on majority agreement where 22.8% of all 
words were prominent. The overall agreement rate on the 
prominence markings of words in the reference set was then 
used as the primary performance measure. 
3.4. Results 
The experiment was run in a cross-validation setup where data 
from 9 speakers were used for training and one for testing. 
Three orders of the n-gram model (n = 2, 3, and 4) were used 
for training on a set of 9594 utterances from 9 speakers (≈7.2 
hours of data) and testing on the held-out set of 300 annotated 
utterances (≈30 minutes of data) on one of the two annotated 
speakers, leading to two runs of the experiment. None of the 
test signals were used in training. To compare against a 
baseline, a random reference was also generated where h 
words were randomly marked as prominent in each utterance 
in the test set, where h denotes the number of hypotheses 
generated by the algorithm. The reference was run over 10 
iterations and the results show that random selection of 
prominent words gives κ = 0.01 (σ = 0.01) indicating no 
agreement. 

In terms of the individual features’ performance, F0 
(ACC=86.20%) and energy (ACC=86.16%) seem to be 
equally descriptive in determining prominence (see Table 1). 
Syllable duration alone has much lower F and kappa measures, 
indicating that its function independently of the other features 
does not explain prominence as accurately. Several feature 
combinations were also tested and the best performance was 
achieved for energy and F0 (ACC=86.95%). N-gram order 
does not have a large effect on the results and therefore the 
results in the table are pooled across the n-gram orders  

Table 1. Prominent word detection performance for the 
individual features and their combination (for λ = 0.7) pooled 
over the three n-gram orders (n = 2, 3 and 4) and averaged 
across speakers. 

ACC F PRC RCL Fleiss Kappa

86.95% 71.99% 73.25% 70.78% 0.61
±0.18 ±0.39 ±0.13 ±0.87 ±0.04

86.20% 71.22% 73.60% 69.00% 0.60
±0.39 ±0.99 ±1.01 ±0.97 ±0.01

86.16% 70.15% 71.02% 69.31% 0.59
±0.34 ±0.57 ±1.21 ±0.05 ±0.09

80.72% 53.90% 56.85% 51.23% 0.37
±0.15 ±0.10 ±0.17 ±0.10 ±0.01

Syllable 
duration

F0+EN

F0

EN

 
 

(σ <0.005 between n-gram orders). It is suggested to use low-
order n-grams if there is only little speech data available for 
the model training in order to enable reliable estimation of the 
probabilities. For high order n-grams (> 4), the performance 
deteriorates as the training data becomes too sparse even for a 
large corpus. 

Figure 3 shows the performance of the algorithm as a 
function of the detection threshold λ. It can be seen that for λ > 
0.5 the algorithm converges to its highest performance 
reaching an accuracy of 86.95% and Fleiss kappa of 0.61. This 
level of performance compares well with other approaches that 
do not use prosodic labels (see, e.g., [3,11,12,14,17]). For 
instance, Kalinli and Narayanan [3] report accuracy of 83.11% 
while Chen et al. achieved 77.30% [13], both on BU-RNC 
database [33] using only acoustic features on word level. 
Similarly Tamburini and Caini [12] achieved 80.6% on TIMIT 
database using acoustic features on syllable level. Direct 
comparison of the results is not possible due to the use of 
different speech corpora. Nonetheless, the results (BU-RNC 
and CAREGIVER) may be at least partly comparable as they 
are described by similar inter-annotator agreement rates (see 
[27] and [33] for more information). As this study was 
conducted on a specific speaking style, we can currently only 
conclude that the proposed approach seems to model and 
perform well on IDS. Future work will include evaluation on 
more speaking styles and languages. 

4. Conclusions 
A computationally simple method for the automatic detection 
of sentence level prominence was presented in this paper. The 
aim was to build a system that functions in a manner 
analogous to the hypothesized human prominence perception 
mechanism presented in [5]. We proposed to use the 
cumulative word-level unpredictability of the most important 
acoustic correlates of prominence coupled with a syllabic-
nuclei-based weighting scheme in order to detect prominent 
words. Performance of the system was tested by comparing 
the algorithmic output with that of the perception of 
prominence by human listeners and evaluated in a number of 
different experiments. The model showed accuracy of 86% 
with the annotators’ responses providing initial promising 
results for the method. In future work, the algorithm needs to 
be further evaluated with other types of speech and in more 
languages in order to ensure generalizability. 
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