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Abstract. When infants learn to pronounce speech sounds of their native language, 
they face the so-called correspondence problem – how to know which articulatory 
gestures lead to acoustic sounds that are recognized as native speech sounds by other 
speakers? Previous research suggests that infants might not learn to imitate their 
parents via autonomous babbling because direct evaluation of the acoustic similarity 
between the speech sounds of the two is not possible due to different spectral 
characteristics of the voices caused by differing vocal tract morphologies. We present 
a novel robust model of infant vowel imitation learning, following a hypothesis that 
an infant learns to match their productions to their caregiver’s speech sounds when 
the caregiver imitates the infant’s babbles. Adapting a cross-situational associative 
learning technique, evidently present in infant word learning, our simulated language 
learner can cope with ambiguity in caregiver’s responses to babbling as well as with 
the imprecision of the articulatory gestures of the infant itself. Our fully online 
learning model also combines vocal exploration and imitative interaction into a single 
process. Learning performance is evaluated in experiments using Finnish adults as 
caregivers for a virtual infant, responding to the infant’s babbles with lexical words 
and, after a learning stage, evaluating the quality of the vowels produced by the 
learner. After 1000 babble-response pairs, our virtual infant is seen to reach a 
satisfying vowel imitation accuracy of 70–80%. 
 
Keywords: Imitation, correspondence problem, normalization problem, vowel 
learning, speech acquisition, associative algorithm, weakly supervised learning 

1 Introduction 
 
Infants begin to vocalize early in their lives, creating sounds such as crying and 
gurgling that do not sound like recognizable native language sounds. Later, at around 
6 months of age, infants start to babble sounds that are reminiscent of native language 
sounds, and during the second year of their lives they normally produce their first 
recognizable words. Initially, infants are capable of learning phonemic systems of 
every language, but they end up converging to the language used in their 
environment.  
 Infants must overcome a large array of problems in order to converge to a 
functioning vocal system. Language learning occurs in an extremely complicated 
environment, consisting of several speakers with different voices and possibly 
different languages or accents. The infant must learn to physically control its vocal 
tract, and somehow find a way to produce vocalizations that the parents consider as 
matching to their vocalizations. This problem is complicated by the fact that the sizes 
of the vocal tracts of the child and the parents differ radically in size and morphology, 
producing completely different acoustic sounds between which a direct comparison 
cannot be performed. This problem is often called the normalization problem. 
Although there is some empirical evidence that infants tune their auditory perceptual 
systems to discriminate contrasts in their native language (Polka & Werker, 1994), 
and that linguistic (Goldstein & Schwade, 2008) and social non-imitative (Goldstein, 
King & West, 2003) feedback by parents guide infants towards more mature speech 
sound production, the mechanisms underlying learning the solution to the 
normalization problem are currently not well understood. 



 3 

 In this paper, we investigate the normalization problem in early language 
acquisition using a computational model of a child. This virtual infant does not 
initially know the acoustic outcomes of its articulatory gestures nor does it have 
perceptual categories corresponding to native language speech sounds. Instead, it 
learns a set of vocalic productions and their correspondence to adult speech sounds in 
an interactive learning scenario with an adult caregiver. We use a group of human test 
subjects to act as caregivers for the learner, responding to the infant’s vocal 
exploration with spoken words that partially match phonetic features of the infant’s 
verbal output, thereby extending the earlier work (section 1.2) by allowing uncertainty 
in the caregiver responses as well as articulatory inaccuracy in the infant’s babbling. 
We describe a novel learning mechanism that is able to cope with the above-
mentioned learning challenges, and show how the virtual infant can learn to use its 
own vocal tract to reproduce vowel sounds produced by a caregiver so that the 
caregiver recognizes the reproduction as the original vowel – i.e., how the infant 
learns to imitate vowels based on interaction with the caregiver. 
 

1.1 Learning to imitate 
 
Although imitation of human actions may appear trivial, every imitator is faced with a 
so-called “correspondence problem”. When we perceive an action performed by 
another human, for example by seeing a hand movement, we only perceive the result 
of the underlying motor commands, but not the motor commands themselves. The 
imitator has to somehow deduce how it’s own motor commands result in a similar 
action.  

According to so-called specialist theories, there are innate mechanisms 
allowing for imitation. The specialist theories are mainly supported by experimental 
findings that neonates are able to imitate facial gestures such as tongue protrusion, 
and, due to their young age, the imitation ability is not likely to be a product of 
learning (e.g. Meltzoff & Moore, 1977). However, the validity of this result has been 
questioned (see, e.g., Anisfeld, 1996; Jones, 2006): for example, tongue protrusion 
has been found to be a general response to different kinds of stimuli, such as listening 
to music (Jones, 2006). Recently, Oostenbroek et al. (2016) have shown in a 
comprehensive study of 106 infants at ages of 1, 3, 6 and 9 week that the infants did 
not imitate any of the 11 gestures studied. A study by Kuhl and Meltzoff (1996) 
shows that when infants between 12 and 20 weeks saw video recordings of a female 
talker producing /a/, /i/ or /u/ vowel sounds, their vocalic responses were reminiscent 
more of the particular vowel they heard, rather than the other two vowels, arguing for 
early vocal imitation. Infant vocalizations were classified by an experienced scorer 
into eight vowel categories /æ, a, ʌ, i, ɪ, ɛ, ʊ, u/, that were further grouped in three /a/, 
/i/ or /u/ like categories (/æ, a, ʌ/), (/i, ɪ, ɛ/) and (/ʊ, u/) correspondingly. However, 
despite their young age, these infants had already experienced significant amount of 
experience from face-to-face interaction with their caregivers, making the study 
incapable of disentangling any factors of learning during the first three to five months 
of age. However, the study still shows that adults can interpret early infant 
vocalizations as different vowels, providing the basis for contingent parental 
responses (see below). In general, it is currently unclear what proportion of the early 
imitation capabilities are truly driven by innate mechanisms.   

In contrast to the specialist theories, the so-called generalist theories claim that 
imitation abilities are learned based on general learning and motor control 
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mechanisms (see, e.g., Brass & Heyes, 2005). For instance, the generalist Associative 
Sequence Learning model (ASL, Heyes & Ray, 2000) states that imitation is enabled 
when a link between the perception (e.g. visual information) of someone else’s action 
and the imitator’s own motor commands leading to the same action are formed due to 
associative learning. These links can be formed during observation of one’s own 
actions in relation to actions performed by the model to be imitated. When actions are 
transparent, the sensory feedback of the executed and observed actions are similar 
(e.g. visually observed hand movements). However, some actions to be imitated can 
be opaque, meaning that the sensory feedback of the observed action is not similar to 
the sensory feedback when the action is performed (e.g. when learning to imitate 
facial expressions, the learner cannot see his own face and thus cannot visually 
evaluate if the motor commands performed lead to the action to be imitated). In these 
cases, associative learning can occur for example with the help of mirrors or imitative 
social partners. Several behavioral and neuroimaging studies support the view that 
prior learning strengthens the activation of corresponding motor representations when 
actions are observed, thus supporting the generalist view (see Brass & Heyes, 2005, 
for a review). 

There is also evidence that caregiver imitations may play a role in infant vocal 
imitation learning. This was probably first observed by Pawlby (1977) in a study 
where parents’ spontaneous interactions with their infants were recorded from 17 until 
43 weeks of age. Out of all imitative sequences, 79% were initiated by the infants and 
imitated by the mothers. Out of the speech sounds in all three reported age groups, 
mothers’ imitation frequency was about 10 times that of the infants’, and infants’ 
speech sound imitation frequency increased slowly when approaching the age of 43 
weeks. Pawlby concludes that “Paradoxically our study suggests that the whole 
process by which the infant comes to imitate his mother in a clearly intentional way is 
rooted in the initial readiness of the mother to imitate her infant.” (p. 220). 
 Other research suggests that infants learn to imitate their parents gradually, 
i.e., the ability to imitate vocalic sounds does not seem to be innate or is at least 
significantly reinforced over the development. Kokkinaki and Kugiumutzakis (2000) 
have studied imitative patterns between parents and their two-to-six month-old infants 
and showed that vocal imitative sequences occurred on average 3.7 times during a ten 
minute period, out of which on average 66.6% were performed by the parent; parents 
imitated their children significantly more than vice versa. Kokkinaki and Vitalaki 
(2013) have studied imitative interaction (vocal imitation, non-speech sound 
imitation, facial expression imitation and hand movement imitation) between two-to-
ten-month-old infants and their mothers and grandmothers. Vocal imitation was the 
most frequent imitation type for all studied subject groups, corresponding to 80% of 
all imitations for mothers M1 in Group 1 (Group1 infants had no frequent contact 
with grandmothers), and 75% for mothers M2 and 73% for grandmothers G2 in 
Group 2 (infants who had had frequent contact with grandmothers). Non-speech 
sound imitation frequencies were 8%, 4% and 5% for M1, M2 and G2, respectively. 
Of all imitative actions 79% (M1), 66% (M2) and 70% (G2) were produced by the 
mothers or grandmothers. The respective imitation frequencies were, on average, 3.7, 
3.0 and 3.1 imitations during a 10-minute interaction session.  
 Masur and Rodemaker (1999) studied vocal, verbal and action imitation of 
infants when they were 10, 13, 17 and 21 months old. At 10 months, parents imitated 
their children’s vocalizations rarely, but still about six times more than vice versa on 
average, and continued to exceed the infants’ imitation rate in all age groups. Between 
13 and 17 months, there was a radical increase for both infants and parents in their 
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frequency of verbal imitation (parents still exceeding the infants’ imitation rate), 
indicating that around this time period infants learn to match at least some of their 
vocalizations with parental speech, and learning to produce their first words seems to 
encourage imitative responses from their parents. 
  Recently, Yurovsky, Doyle and Frank (2016) analyzed the amount of lexical 
alignment in caregiver responses to infant vocalizations. More specifically, they 
analyzed 417 native English infant-caregiver dyads from CHILDES (MacWhinney, 
2000) with children between 12–60 months of age, measuring how much children and 
adults re-use the expressions they just heard from each other. Their main finding was 
that parents align to their children significantly more than children align to their 
parents, and that the amount of parental alignment decreases monotonically with 
child’s age, reaching adult-to-adult levels around the age of 54 months. Although their 
data did not cover infants younger than 12 months, the data supports the previous 
studies by showing that parents are consistently providing contingent responses to 
their children’s communicative attempts.  

 In total, the findings from the above studies suggest that the total amount of 
imitative feedback can be notable over the time-course of verbal development, and 
that caregiver imitation may play a central role in early language acquisition by 
providing equivalence cues between infant’s own vocalizations and the corresponding 
vocal gestures in adult language. 
 In the present work, we adopt the generalist view of imitation learning and 
investigate its potential in infant vowel acquisition by utilizing a computational 
simulation. We argue that, without some kind of innate perceptual normalization, the 
actions behind vowels spoken by a caregiver are clearly opaque. In addition, due to 
different articulatory morphologies, the vowel to be imitated is perceptually different 
from the vowel that the infant is capable of producing. No matter how much the infant 
babbles and experiments with its articulatory system, it is not able to reproduce the 
acoustic characteristics of its caregiver’s speech. Therefore, the goal is to study 
whether vocal imitation learning is possible under these circumstances when the 
infant uses generic associative learning mechanisms to link its own articulatory 
actions to the auditory perceptions of the caregiver’s imitative responses to the 
infant’s vocalization. Also, our goal is not to settle to debate between specialist and 
generalist theories, but to investigate whether the more parsimonious generalist theory 
can account for early vocal learning.  

1.2 Computational models of vocal imitation learning 
In this section we describe existing computational studies of speech imitation 
learning. Since real speech learning situations are very complicated and time 
consuming, most of the studies use an array of simplifications in order to keep 
experiments and simulations within realistic limits. However, simplified learning 
simulations have a risk of reducing the learning models’ cognitive plausibility when 
compared to cognitive processes in real language learning situations. 
 Among the existing studies, Markey’s HABLAR model (1994), and 
neurocomputational models of Kröger, Kannampuzha and Neuschaefer-Rube (2009) 
and Guenther (1995) offer solutions to the problem of learning the coupling between 
speech perception and production, but do not provide solutions to the normalization 
problem between different sounding speakers. Also, an imitation learning model by 
Murakami, Kröger, Birkholz and Triesch (2015) uses the same vocal tract model for 
adult and infant sounds. In a study of Westermann and Miranda (2004), a 
computational model’s vocal production is seen to adapt to an external speaker’s 
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vowel sounds during a babbling phase, but the spectral ranges of the external speakers 
and the model are similar, thus enabling direct spectral matching. 
 A number of computational studies use imitation by a caregiver as a method to 
teach the infant the mapping between the two differing voices. However in many of 
these studies (e.g. Miura, Yoshikawa and Asada, 2007; Ishihara, Yoshikawa, Miura 
and Asada, 2008; Vaz, 2009) the learner is provided with a pre-defined set of vocal 
primitives as a basis for babbling, and the caregiver responds the infant’s vocal 
productions with the same phonetic content as was produced by the infant. In one of 
the first studies in the field, Yoshikawa, Koga, Asada and Hosoda (2003) used a 
physical vocal tract model randomly producing vowel sounds, and a human 
experimenter repeating the robots’ productions. 
 Ananthakrishnan and Salvi (2011) propose a method for learning the mapping 
between an infant’s and an adult’s acoustic domains by learning a topological 
mapping between the two. The best parameters for the mapping are found using non-
imitative feedback by the caregiver. Both the caregiver’s and the infant’s speech 
sounds are synthesized, and the acoustic signals created for both are produced by a 
similar babbling procedure. In normal learning scenarios the phonetic characteristics 
of speech produced by an adult and a speech learning infant are acoustically very 
different, and using synthesized caregiver speech sounds might result in less variation 
in speech when compared to real speakers. 
 Plummer (2012) approaches vowel normalization as a manifold alignment 
problem, where the infant maps the caregiver’s and its own vowel sounds in a speaker 
independent mediating space. The manifolds are aligned using synthesized caregiver-
infant vowel pairs. Imitation is discussed as a pairing method but in the experiment 
imitation data is selected manually from the two acoustic spaces. 
 Hörnstein and Santos-Victor (2007) have taught a humanoid robot to 
recognize and reproduce Portuguese and Swedish vowels. First, the robot learned a 
neural network to map vocalic sounds to articulatory motor representations in an 
initial autonomous babbling phase. Second, the robot tried to imitate vowels spoken 
by a human caregiver with the learned mappings and the caregiver reinforced 
successful imitations with positive feedback, ultimately teaching the robot nine 
Portuguese vowel categories. Next, the robot was trained with vowel samples 
extracted from Portuguese words spoken by several speakers. During training, the 
robot produced one of its vowels at a time, and a corresponding vowel sample by a 
caregiver was played back to the infant to model imitation (see also Hörnstein, 2013). 
When a test set of vowel samples from different speakers was mapped back to the 
motor representations and classified in the nine possible vowel categories, close to 
60% vowel recognition accuracy was achieved without using visual information. This 
is one of the few studies that uses real recorded human speech when evaluating vowel 
learning performance, but the learning situation is simplified by manually reinforcing 
the robot to learn exactly nine vowel categories. 
 In the study of Hörnstein, Soares, Santos-Victor and Bernardino (2007) the 
mapping from caregiver’s speech to the robot’s motor commands is learned when a 
human caregiver imitates the babbled articulatory trajectories of the robot. However, 
the caregiver’s imitations have to be manually time-aligned to the robot’s babbles in 
order to avoid incorrect pairings. The study also offers a solution to automatically find 
nine vowel categories from the robot’s speech. In their experiments, native speakers 
first listened to a set of 900 vowel sounds generated by the robot and either approved 
or rejected the sounds as native Portuguese vowels. When agglomerative clustering 
was then applied to the approved sounds (281 out of 900), nine vowel categories were 
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found. However, the original dataset was created from the nine prototype vowels by 
adding 10% of white noise to the articulatory parameters, potentially simplifying the 
clustering task.  
 Miura, Yoshikawa and Asada (2008) approach variation in human interaction 
by using a weakly supervised learning technique to teach a virtual infant vowels 
spoken by a human caregiver. In the learning scenarios, both speak several speech 
sounds and only part of the caregiver’s sounds are imitations. The learning 
mechanism is auto-regulated so that the infant actively detects which sounds in the 
caregiver’s utterances are actual imitations. Depending on the training and the testing 
phase difficulty, the infant learns to classify five Japanese vowels in a test data set 
with approximately 60–100% accuracy. The simulation does not contain an 
articulatory exploration phase, but the infant is given 15 vowel primitives, three per 
vowel category, which all have different probabilities of being imitated correctly by 
the caregiver. 
 The importance of pairing caregiver’s imitative signals to the learner’s initial 
productions is also discussed in the study of Hörnstein, Gustavsson, Santos-Victor 
and Lacerda (2008), where an automatic imitation classifier, classifying utterances 
into imitations or non-imitation, is proposed. In vowel learning experiments, the use 
of the classifier is simulated by adding incorrect caregiver’s imitations to the set of 
correct ones, reducing the recognition rate of the learner. 
 Huckvale and Sharma (2013) have given a virtual infant a predefined set of 
phonemes to create babbles that are imitated by human caregivers. When new 
listeners evaluate the infant’s imitation of new sentences, the results indicate the 
importance of imitation by the caregivers to guide the infant’s articulation. In this 
work, caregivers’ imitations are exact reformulations of the infant’s initial utterances 
and phonetically aligned to the production data. 
 Howard and Messum (2014, see also 2011) have studied vocal learning by 
having their virtual infant first discover new motor patterns in an unsupervised 
exploration phase. After the exploration, English, French and German speaking 
participants were asked to respond to the infant’s productions naturally. The infant 
associated its motor patterns to the resulting auditory responses, thus enabling 
imitation of novel utterances. On average, 78% of the infant’s utterances were 
responded to by the caregivers, and out of the responses, 94% were reformulations of 
the original sound. In the infant’s imitation phase, the infant tried to imitate 219 
English words, 219 French words and 237 German words. Participants evaluated 
which of the infant’s productions were successful imitations, resulting in 55 accepted 
imitations on average. For analysis purposes, the accepted infant imitations and the 
corresponding adult utterances were then classified into so-called archiphoneme 
categories: 5 for vowels and 18 for consonants. The similarity between the infants’ 
and the caregiver’s archiphoneme vowel categories from the imitated utterances was 
approximately 58% on average, and for consonant categories approximately 39% 
(estimated from the figures in Appendix S4 of Howard & Messum, 2014). Their work 
suggests that self-driven articulatory exploration and imitation by human caregivers 
can be a successful method to learn speech sound production and imitation. 
 In our previous study (Rasilo, Räsänen & Laine, 2013), we trained a virtual 
infant with a simulated caregiver in two phases. In the first phase, the infant received 
only positive/negative type feedback on its babbles and converged to the same 
phonetic system as its caregiver without being given the exact number of vowel or 
consonant categories in advance. In the second phase, the infant learned to imitate 
both vowels and consonants of the caregiver by associating its babbles with imitative 
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words spoken by the caregiver. However, we assumed that the caregiver is able to 
invert the infant’s speech into exact articulations and thus guide the infants babbling 
towards the correct articulations of the Finnish phonemes. In natural situations, the 
underlying articulatory configuration stays mostly invisible for the parent, and 
caregivers have to make judgements on the infant’s babbles based on their acoustic 
characteristics. Also, synthesized caregiver speech reduced the amount of natural 
variation in speech sounds. 
 In summary, the previous computational studies suggest that imitation of 
infants’ babbles by caregivers may work as a mechanism to overcome the 
correspondence problem and help infants to later imitate their caregivers. However, 
most studies simplify real learning situations considerably. The infant may be 
provided with an initial set of phones or vocal primitives, consequently avoiding the 
vocal exploration phase, whereas human infants have to explore their range of speech 
sounds and converge to the sound system of their native language. In some studies the 
exact number of vowels spoken by the caregiver is known, which seems like an 
unrealistic assumption since unsupervised discovery of the number and characteristics 
of vowel categories from continuous speech has proven to be a very challenging task, 
and may be influenced by constraints from other modalities such as articulation or the 
lexicon (see Räsänen, 2012, for a review). In addition, the use of synthesized 
caregiver speech reduces the acoustic variability from real speech, making the 
mapping problems easier to cope with. In some studies (Hörnstein, Soares, Santos-
Victor and Bernardino, 2007; Howard and Messum, 2014; Huckvale and Sharma 
2013), where continuous babbles are created by using articulatory trajectories, the 
babbled utterances are time-aligned to the caregiver’s imitations using dynamic 
programming, so that the learner ends up with one-to-one correspondences with 
babbled speech sounds and speech sounds in the responses (not to be confused with 
linguistic alignment where the expressions used by the conversational partner are re-
used in following sentences). Time-alignment of imitation-response pairs reduces the 
ambiguity that might otherwise be present in the caregiver’s responses when 
compared to the babble (regarding ordering or durations of phonemes for instance). 
Also, none of the studies discussed use integrated vocal exploration and interaction, 
but these two processes occur in two distinct phases where the infant first explores 
and stores speech sounds (or alternatively is given a set of vocal primitives), and later 
interacts with the caregivers using these representations. However, at least in some 
studies this was done to shorten the interaction phase, not necessarily affecting the 
model performance (as in Howard & Messum, 2014). 
 In our current work we relax the requirement for the infant to know any vowel 
categories – of the caregiver or the infant itself – prior to learning and the requirement 
for an accurate time-alignment of caregiver’s imitative signals to the initial babbles. 
Although parental responses to infants’ babbles can be exact reproductions, they are 
also often expansions such as “ball” after a child babbled “ba” (e.g. Tamis-LeMonda, 
Bornstein & Baumwell, 2001) or ”Ma-ma. Yes, and da-da is working.” after a child 
babbled ”Ba-ba” (see Gros-Louis, West, Goldstein & King, 2006). In a study by 
Vigil, Hodges and Glee (2005), an average of 1.21 imitations and 8.37 expansions by 
parents were recorded in a 10 minute session with two-year old children with normal 
language development. An imitation was defined as “a repetition of partial or exact 
imitation of preceding utterance” and an expansion was defined as “repetition of the 
child’s preceding word approximation or verbalization and completes the utterance 
by adding one or more morphemes or words” (p. 114). By extending the principles of 
so-called cross-situational learning, a well-documented learning principle in infant 
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word learning (Smith & Yu, 2008), to phone category acquisition, we can allow the 
existence of additional phones in the caregiver’s imitative utterances while still 
coping with the noise in the imitations.   
 We also propose a mechanism that helps to cope with variability in the 
infants’ own productions. Chung et al. (2012) found that when asked to repeat real 
words including vowels /a/, /i/ and /u/, 2-year-old infants’ vowel productions had 
more variability than 5-year-olds’ and adults’ productions, and concluded that “The 
variability observed for the 2-year-olds’ productions suggests that they are still in the 
process of learning to produce adult-like vowels, even for productions that were 
transcribed as correct” (p. 452). It is also clearly established that children’s motor 
control for speech production is less developed than adults’, and their articulation 
shows more variability (see, e.g., Smith & Zelaznik 2004; Walsh, Smith & Weber-
Fox, 2006). In this study, we allow articulatory variation in the infants’ babbles during 
the learning phase (the infant is not able to exactly reproduce its previous 
productions), and show that auditory clustering of the infants’ own babbles maintains 
the possibility of associative vocal learning. 
 We use human participants acting as caregivers and, according to our 
knowledge, describe the first fully online vowel learning experiment where the 
articulatory exploration for vowels is intertwined with the interaction phase. The 
infant’s vowel imitation performance is also accurately measured based on the 
judgements made by the participants acting as caregivers, providing direct 
information about the rate of mutual agreement between the final vowel systems of 
the learner and the caregiver. 
 

2  Overview of the learning method 
 
The goal of our experiment is to teach a Learning Virtual Infant (LeVI) to imitate 
eight Finnish vowels occurring in words spoken by human participants who act as 
LeVI’s caregivers. This means that LeVI has to learn to map between three initially 
distinct representations: auditory representations of adult speech, auditory 
representations of LeVI’s own speech, and the articulatory gestures responsible for its 
own speech.   

From here on, a human participant is abbreviated as CG (“caregiver”). LeVI 
does not initially know anything about the auditory perceptual characteristics of its 
own possible vocalic productions or the number or characteristics of the “correct” 
Finnish vowel categories. Every participant interacts with a new initialization of 
LeVI, i.e., the interaction sessions are not dependent on each other, in order to 
measure the robustness of the learning strategy for different participants and of the 
randomized vocal exploration process. 
 The basic framework of the learning process is as follows, also illustrated in 
the flowchart in Figure 1: 
 
 Training phase:  

• LeVI babbles a random vocalic sound, or tries to reproduce a sound it has 
already once produced. These sounds are clustered into categories based on 
their auditory similarity and using a distance threshold for same/different 
auditory distinction (either a new category is created, or the babble is assigned 
to an existing category). From now on, these categories are referred to as LeVI 
auditory categories (LAC), since they are characteristic to LeVI’s vocal 
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exploration and differ from the caregiver’s native vowel categories. The 
category to which the babble is assigned is called the activated LAC in Figure 
1. From here on, in the present work we use the word “babble” to mean a 
single vocalic sound produced by LeVI. 
  After assigning the babbled sound into a LAC, its articulatory 
characteristics are compared to the articulations responsible for the previous 
babbles stored in the same LAC. LAC-specific articulatory parameters can 
have one or more subcategories (clusters) since multiple distinct articulatory 
configurations can lead to similar acoustic outcomes. Based on the distance 
and a threshold in the articulatory space (not to be confused with the auditory 
threshold above; see section 2.3), every new babble is either assigned to an 
existing articulatory category corresponding to the activated LAC or a new 
articulatory category is created.  

• CG listens to the babble, classifies the vowel into a Finnish vowel category, 
and responds by pronouncing a Finnish CVCV-word (C=consonant, 
V=vowel), where only one of the vowels is the CG’s interpretation of LeVI’s 
babbled vocalization. Every response thus contains additional phonemes and 
temporal ambiguity regarding the matching sound. 

• LeVI associates CG’s response to its own babble using a weakly supervised, 
associative, learning method. The correct associations between CG vowels and 
LACs arise across several interaction trials as the ambiguity present in 
individual trials decreases with increasing statistical evidence (= cross-
situational learning, XSL). 

 
 Testing phase: 
• Finally, after a number of training trials, LeVI tries to imitate vowels from a 

new set of CG’s CVCV-words based on the learned associations. CG is asked 
to classify LeVI’s imitative vocalizations, unaware of the original word and 
the vowels that LeVI imitated. LeVI’s imitation accuracy is measured based 
on successful imitations as judged by CG - if CG annotated the imitated vowel 
as the same vowel as in the original imitated word, the imitation was 
successful. 
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Figure 1. Flow chart illustrating LeVI's learning process 

The approach described has several challenges that need to be solved (marked with 
red color in corresponding locations in Figure 1): 

1. How should LeVI explore its high-dimensional articulatory space efficiently 
in order to find vowel sounds that are interpreted as native vowels by CG (C1 
at Figure 1)? As will be described later, uniformly sampled random 
productions from the possible articulatory parameter space produces mostly 
centralized vowels. Consequently, vowel categories that can be produced only 
in relatively small articulatory regions (such as Finnish vowels /i/ or /a/), may 
be difficult to find based on random exploration. 

2. Because CG’s responses are noisy due to ambiguity in phonetic content as 
well as variation typical of normal speech, it is not possible to learn any of the 
vowel sounds babbled by LeVI based on one babble-imitation pair. LeVI 
needs multiple imitative responses per babbled sound in order to learn robust 
associations to the acoustic cues of any vowel (C2 at Figure 1). In addition to 
vocal exploration, LeVI thus needs to also repeat earlier babbles. Repetition of 
the old babbles would benefit from concentrating on acoustic regions 
corresponding to prototypical CG’s vowel categories, rather than regions that 
may not have a clear interpretation by the caregiver. 

3. As explained above, several of CG’s responses need to be associated with 
each of LeVI’s articulatory or acoustic babbling-targets to overcome 
ambiguity. If LeVI has any trouble remembering or reproducing its old 
babbles exactly as they were during previous interactions, LeVI needs a way 
to judge which of the old babbles the new imitative response should be 
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associated with. LeVI thus needs to somehow cluster its own productions, and 
associate CG’s imitative responses in the clusters created (C3 at Figure 1). 

 
The main aspects of the learning components that were found to improve LeVI’s 
learning performance during model development are described below. The technical 
details can be found in the Appendices. The model is designed considering the 
sources of information that are realistically available for real infants during speech 
learning. The learning components used in the present work are rough preliminary 
implementations that were found to improve learning performance – the algorithms 
and their parameter values are not systematically optimized for the learning task. 
Instead, we first started from initial guesses for model parameters and used them to 
collect interaction data from nine Finnish subjects. These data were then used to tune 
the model parameters towards better performance. The final performance of the 
resulting model was then evaluated using an evaluation set of four new participants. 
In addition, seven participants from the initial set of nine speakers were asked to 
retake the training and the testing phases after the tuning of the model. We will refer 
to this set of seven talkers as the development set in the remainder of this paper. 
Results for the two groups tested are reported separately in section 4.  
 LeVI’s learning and imitation ability is always dependent on the participant. 
We did not measure how well LeVI, after learning from one participant, would be 
able to imitate vowels spoken by another participant. In addition, for automatic 
evaluation of different learning components, the words that were originally recorded 
by the participants for LeVI’s training were used as CG’s imitative responses. CG’s 
perceptual behavior was simulated by classifying LeVI’s babbles with an automatic 
classifier. Results from these simulations are discussed in Section 5.4. 

2.1 The articulatory model 
The speech production mechanism of the virtual infant used in the current 
experiments consists of a vocal tract model that is implemented as an adapted version 
of the Mermelstein’s (1973) vocal tract model. A detailed description of the model 
can be found in Rasilo (2012). In short, only stable vocal tract configurations are used 
as articulatory targets and each configuration is defined by nine vocal tract 
parameters: tongue body x and y -coordinates, tongue tip x and y –coordinates, jaw 
angle, hyoid x-coordinate, lip protrusion, lip opening and velum opening. The 
coordinates of the articulatory parameters are transformed into cross-sectional areas of 
the acoustic tube model, and synthesized using the Kelly-Lochbaum transmission-line  
(Kelly & Lochbaum, 1962). In order to give vocalizations a more natural feel, each 
vocalization is synthesized with the F0 starting at a uniformly sampled random value 
between 300 and 320 Hz, rising to a uniformly sampled random value between 0 and 
10 Hz higher than the starting F0, and finally decreasing to a uniformly random value 
between 10 and 20 Hz below the starting F0. The vocal tract length is linearly scaled 
to a length of 10 cm from the original adult values (15–18 cm) in order to represent an 
infant vocal tract and to induce non-correspondence to adult vocal tracts (see, e.g., 
Vorperian et al., 2005). We acknowledge that vocal-tract growth is non-uniform in 
reality (e.g. Vorperian et al., 2009) and linear scaling of the vocal tract to infant size is 
a rough approximation. However, the main purpose is to induce the most essential 
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acoustic differences between the adult participants’ and LeVI’s voices, and the 
linearity is not utilized in the mapping process in any manner1.  
 

2.2 Clustering of LeVI’s own productions 
As mentioned before, LeVI learns acoustic models for CG’s vowels by associating its 
own productions to the imitative responses by CG. Because of the ambiguity in CG’s 
responses, robustness of LeVI’s acoustic model for a particular vowel sound only 
arises due to repeated accumulation of acoustic information from several CG’s 
responses. The acoustic information from multiple responses has to be gathered in one 
distinct model representing the sound to be learned. If the articulatory parameters of 
individual babbles were simply associated to the responses by CG, LeVI would end 
up with pairs of individual points between the articulatory and auditory space, and an 
additional mechanism would be needed to extract any categorical structure shared by 
these pairs of exemplars (e.g., high-dimensional probability density estimation), 
assuming that the words could be converted into fixed-dimension vector 
representations in the first place.  On the other hand, if LeVI can represent its own 
speech sounds in terms of categories containing multiple individual babbles, the 
corresponding CG responses can be analyzed in the context of each category. As long 
as the auditory content in CG responses to a certain LAC is statistically biased 
towards a specific speech sound (i.e., there is an above-chance level of imitation or 
lexical alignment in parental responses), the category can gradually become 
representative of a single phoneme most consistently occurring in CG responses when 
analyzed in distributional manner. Note that this consistently occurring phoneme can 
(and should) have normal acoustic variation so that the category becomes robust to 
different realizations of the same phoneme. However, due to variation in LeVI’s 
babbles, it is not trivial how these categories should be defined.  
 To clarify via an example, if CG’s responses were associated with their 
preceding babbles (b1 – b4): b1→”kisa”, b2→”kate”, b3→”sato”, b4→”loma”, 
without any clustering the learner would end up with four unreliable word 
recognizers, one per babble, and no recognizer would react strongly to individual 
vowel sounds. If the four babbles were assigned to one category c = {b1, b2, b3, b4} 
and all four CG’s response were associated with c, statistically the proportion of 
vowel /a/ would end up dominating the category, and we could deduce that the 
category c represents the vowel /a/ in CG’s speech.  
 If LeVI were to have infinite articulatory accuracy and thus an ability to repeat 
babbles in exactly the same manner, it could associate several CG responses directly 
to the motor commands performed. When motor commands cannot be perfectly 
reproduced, as in the present simulations, it is possible that small variations in the 
articulatory domain causes relatively large changes in the acoustic output (in sensitive 
regions of the vocal tract, for example close to constrictions). If this small amount of 
noise in LeVI’s articulation causes a big shift in the babbled vowel’s spectral 
characteristics, CG may end up interpreting the vowel as a different vowel than the 
original motor command that LeVI aimed at would have produced. As a result of this 
effect, it is beneficial for LeVI to cluster its own productions in the auditory domain. 
                                                
1 In principle, the present learning framework allows mapping between any two 
arbitrary vocal systems without requiring any acoustic similarities at all. The only 
requirement is that the functionally equivalent sounds in these two systems 
consistently co-occur in similar interaction contexts.   
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We assume that caregivers interpret infants’ vocalizations based on their acoustic 
characteristics, and it is thus beneficial for infants to learn vocalic categories that are 
consistently perceived as a single phoneme by their caregivers. The clustering 
principle is illustrated in Figure 2.  
  

LeVI’s articulatory 
domain 

LeVI’s acoustic 
domain CG’s vowel 

category 
boundary (in 
LeVI’s babbles) 

 
Figure 2. Illustration of LeVI clustering its own productions. If clustering were performed in 
the articulatory domain (above), the acoustic outputs from the articulations inside an 
articulatory cluster may cross phonemic category boundaries, as interpreted by CG. If the 
clustering is performed in the auditory domain as in this work (below), LeVI can learn several 
ways to articulate each sound while CG’s interpretations of babbles from the same auditory 
category (LAC) remain more consistent. 

When LeVI babbles a vocalic sound, its articulatory and acoustic characteristics are 
stored either in a new LAC or in an already existing one. During the simulations LeVI 
ends up learning a large number of LACs, out of which some will react more strongly 
to vowels spoken by CG, and thus could be considered closer to the real native 
language vowel categories. The LACs created could be considered as “proto-vowels” 
that might evolve to the correct number of native vowel categories during further 
stages of speech learning that also includes feedback from the concurrent lexical 
learning (a topic not discussed in the present paper). We use a simple threshold on the 
acoustic distance between the babbled sound and the existing LACs, based on 
extracted two first formant frequencies, in order to determine whether a new LAC 
should be created for the latest babble. Details of the category creation process are 
discussed in Appendix A.1. 
  

2.3 Articulatory properties of LeVI’s vocalizations 
As described above, LeVI creates clusters (LACs) for its babbled sounds based on 
their acoustic representations. LACs store the articulatory and acoustic features of the 
included babbles. Since it is possible that a LAC includes several differing 
articulatory configurations, additional articulatory clusters are created for every LAC. 
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In this work, after the babble has been assigned into a LAC based on their acoustic 
distances, an articulatory distance threshold (= 40) is used to either assign the babbled 
articulatory configuration into an existing articulatory cluster or into a new 
articulatory cluster, specific to the activated LAC. The distances are calculated using 
non-normalized articulatory parameter vectors between the articulatory vector of the 
current babble and the centroids of each articulatory cluster (calculated as the mean of 
all articulatory vectors stored inside an articulatory cluster). This is a preliminary 
approximation and aims to avoid a situation where LeVI keeps trying to reproduce an 
articulatory configuration in a non-linear region, where acoustic outcomes of nearby 
articulations are unlikely to fall close to the original acoustic output. 
 Whenever LeVI tries to reproduce one of its previous babbles, it aims to 
produce an articulatory parameter vector that is the mean of all the articulatory 
configurations stored in the largest articulatory cluster belonging to the activated 
LAC. This is done because it is likely that the articulatory category with the most 
members lies in a rather stable articulatory region – small changes in articulation lead 
to small changes in the acoustic domain – and is thus the easiest to reproduce. The 
articulatory clustering is illustrated in Figure 3.  

LeVI’s articulatory 
domain 

LeVI’s acoustic 
domain 

 
Figure 3. Illustration of a LAC and related articulatory categories. LAC on the acoustic 
domain (right) and corresponding articulatory clusters (left). Each articulatory cluster can 
consist of several articulatory parameter vectors. When LeVI tries to reproduce the babble, it 
tries to produce the centroid of the articulatory cluster with the most members. 

2.4 LeVI’s vocalization behavior 
LeVI’s vocal behavior has to serve two functions. First, LeVI has to explore its 
articulatory domain in order to find new LACs. Second, LeVI should reproduce 
already existing categories in order to learn robust acoustic models for vowels 
occurring in CG’s imitative responses. In our current experiments, LeVI creates an 
exploratory babble with a probability 0.20 and a reproductive babble with a 
probability 0.80. 
 When LeVI creates an exploratory babble, it is beneficial for LeVI to try to 
expand the reach of its productions in the acoustic domain. Due to a non-linear 
mapping between articulatory and acoustic parameters, uniformly sampling 
articulatory configurations from the ranges of articulators’ parameter values leads to 
concentration of babbled sounds in the middle of the acoustic region. In order to 
produce speech sounds that also fall in the border regions of the acoustic domain (for 
example, the borders of the vowel triangle spanned by the two first formant 
frequencies), LeVI must find articulations consisting of extreme values for several 
articulators. For example, the production of /i/ requires the tongue body to be a in 
maximally frontal position, tongue tip close to the hard palate, minimally protruded 
lips and a maximally widened hyoid region of the vocal tract. Therefore LeVI has a 
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mechanism that attempts to produce new babbles as far as possible from the already 
known articulatory configurations while still respecting the physical constraints of the 
vocal tract. In order to calculate potential new articulatory configurations far from 
existing ones, LeVI makes use of pre-defined ranges for each articulatory parameter 
(in practice: configurations that lead to audible sounds). Note that even though LeVI 
knows its possible articulatory ranges, it does not know their acoustic counterparts – 
LeVI thus cannot expand its acoustic domain directly in desired directions in the 
acoustic domain since it does not know which articulations lead to which acoustic 
outputs. Details of the implementation are given in Appendix A.2. 
 Since each LAC should converge to robustly recognize a particular vowel of 
CG’s speech, LACs should have several imitative responses by CG associated to 
them. This is possible due to LeVI’s reproductive babbles. However, since some 
LACs may be better exemplars of CG’s vowels than others, LeVI should also guide 
its own babbling towards LACs that are consistently recognized as a single vowel by 
CG across several babbles. For example, if LeVI were to create a LAC in a region that 
lies in between two CG’s vowel categories, CG’s interpretations of sounds babbled 
from the LAC may not be consistent (see Figure 4). For example, if one LAC lies 
between the CG’s perceptual categories for Finnish /a/ and /o/, it is possible that CG 
sometimes recognizes a babble from this category as /a/ and sometimes as /o/. In such 
cases, LeVI should have some way of biasing its babbling towards “pure” LACs that 
get more consistent feedback. In Appendix A.3. we describe how the weights of 
LACs are obtained in order to take into account both of the above aspects, the number 
of babbles per category and biasing babbling towards categories in less ambiguous 
regions, when reproductive babbles are created.  

CG’s perceptual 
categories for /o/ and /a/ 

 
Figure 4. LACs (blue) and CG’s perceptual categories for two vowels (red), as interpreted 
from LeVI’s babbles. If LAC is created on the border of the two CG’s categories, feedback 
from CG can be inconsistent, and the resulting acoustic model noisy. If LACs fall inside CG’s 
perceptual categories, they will be consistently interpreted as the same vowel, and the models 
will converge better to recognize the corresponding CG’s vowels. 
 
In order to account for inaccuracies and variability in articulatory gestures targeted at 
the same categories (c.f., Chung et al., 2012; Smith & Zelaznik, 2004; Lee et al., 
1999), a small amount of noise is added to the articulatory parameters. We also 
include a simple learning mechanism that increases LeVI’s babbling accuracy based 
on babbling experience within regions of the articulatory domain. The implementation 
of the inaccuracy component is described in appendix A.4. 
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2.5 LeVI’s speech recognition and imitation 
 
Whenever LeVI babbles a vocalic sound, CG responds to the babble with a Finnish 
CVCV-word, where one of the vowels is the same vowel sound that the participant 
identified in LeVI’s babble2. An associative acoustic model is initialized for every 
LAC created during the interaction. Acoustic features of CG’s responses are stored in 
these models, and model identity is defined by the LAC assigned to the produced 
babble. Thus, in principle, the acoustic model cannot distinguish between the two 
presented vowel sounds or consonants after observing only one babble-response-pair 
since the model would be equally sensitive for all of the sounds. The convergence of 
the model towards the correct speech sounds occurs only through repetitive babble-
response pairs that partially correlate with the vocalizations. Therefore training of the 
recognizer can be considered as weakly supervised. 
 In this study, we use a weakly supervised Concept Matrix algorithm (Räsänen 
& Laine, 2012) to associate the acoustic features of CG’s responses to LACs. The 
algorithm approximates high-order Markov structure in speech signals as a mixture of 
bi-gram statistics at different temporal lags. In this work we use a dynamic version of 
the algorithm, DCM (Rasilo & Räsänen, 2015) since preliminary simulations with the 
algorithm indicated significant increase in the vowel learning accuracy compared to 
the original CM algorithm. In practical terms, in DCM, LeVI tries to detect where the 
babbled vowel sound lies in CG’s response based on the training obtained until the 
current training utterance, and updates the acoustic models more strongly at the 
hypothesized locations. Detailed description of the algorithm used is given in 
Appendix A.5. 
 Whenever LeVI hears speech from the participant, it recognizes the speech 
using the acoustic models of each LAC learned thus far. The recognition procedure 
gives an activation value for each LAC for each time instant in the input signal. LeVI 
can try to imitate the participant’s speech sound at a given time instant by selecting 
the most strongly activated category (see equation A-7) and reproducing the 
corresponding articulatory parameter vector in the same way as for babbling, 
described in section 2.2.3. 

3 Experiments 
The learning experiments were conducted with human participants in two separate 
sessions. As explained above, the basic idea behind the experiments is that LeVI 
babbles a sound with an open vocal tract configuration and voiced excitation. The 
participant interprets the sound as the most likely Finnish vowel sound and responds 
with a CVCV word containing the same vowel. Since the algorithm is designed to 
work on-line (babbling and interaction phases are combined), we had to design the 
experiment so that time requirements for all participants would stay within reasonable 
limits. We wanted each participant to complete a training phase for LeVI, consisting 
of 1000 babble-response pairs in order to show substantial learning. After the training, 
participants were asked to evaluate vowel identities in LeVI’s imitations in a testing 
phase in order to get an accurate subjective measure of LeVI’s imitation abilities.  

The learning mechanisms of the model, including all fixed hyperparameters 
(e.g., clustering threshold values for acoustic and articulatory category creation and 
                                                
2 With the exception of two words in the 80-word training set. “söpö” and “höpö” 
have the same syllable twice but we accepted the words due to the rarity of real 
Finnish CVCV words with /ø/ and another vowel. 
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parameters chosen for the speech recognizer; see Appendix A), were fine-tuned on a 
development set collected from nine participants completing both the training and 
testing phases of the interaction with an early version of LeVI. The parameters were 
tuned in order to find parameter values leading to optimal LeVI’s imitation 
performance, while using the speech utterances recorded by the nine participants as 
CG’s responses to LeVI’s babbles in automated simulations. During development, 
CG’s behavior was simulated using the data collected, as is also done during the 
automated analysis in section 4.4. Since exhaustive grid search over all parameter 
combinations was not computationally feasible, the parameter values reported 
represent a setup that was found to provide consistent performance across CGs in the 
development data.  

In order to test the generality of the model and its parameters, the final 
performance was evaluated using an evaluation set of four new participants that 
completed both the training and test phases while all hyperparameters of LeVI were 
kept fixed. Additionally, seven of the participants of the development set retook the 
training and testing phases after the model was established, but without pre-recording 
a new set of words for the CVCV-responses. The model development and evaluation 
phases are summarized below: 
 
Model development: 

9 participants (word recordings, training + testing phases) 
Model evaluation: 

4 new participants (word recordings, training + testing phases) 
7 participants from development set (old word recordings, new training + testing 

phases) 
 

3.1 Word recording 
 
In order to save time in the training phase, all participants pre-recorded all the CVCV 
words used in the training phase. The recorded wordlist consisted of 160 unique 
Finnish words (see Appendix C for full word lists). Eighty of the words were repeated 
14 times (non-consecutively) in order to have natural variability in the acoustic word 
forms (word set #1). Thirteen of the repetitions from the word set #1 formed the 
training set for the training phase of LeVI and one production per word was left out 
for testing. An additional set of 80 words, each word spoken once, was recorded for 
testing purposes only (word set #2) in order to see if the vowel imitation performance 
is affected by the lexical word forms. Out of these 80 words, 76 were novel words not 
present in word set #1. We accepted four overlapping words (“jänö, köhä, möly, 
tykö”) between sets #1 and #2 because real Finnish CVCV words with vowel /ø/ were 
too rare to have a completely new set of words. Similarly, word set #2 includes a non-
word (“käte”) for vowel balancing purposes. However, “käte” occurs in Finnish as a 
part of longer words such as “kätevä”. Thus, every participant recorded a total of 1200 
words. The training set consisted of 1040 words, out of which words were drawn 
depending on the vowel the participant annotated, while the testing set consisted of 80 
tokens from the word set #1 and 80 tokens from the word set #2.  

3.2 Training phase 
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During the training phase, at every interaction, LeVI babbled a vocalic sound 
according to the description in section 2.4, and updated LACs accordingly (see 
section 2.2). The participants were only asked to select which vowel occurs in LeVI’s 
vocalizations. After every selection, the system selected a previously recorded word 
from the training set including the annotated vowel, and played it to LeVI. In word 
selection, the system tried primarily to select a word sample that had not been used for 
training in previous interactions (from the 1040 training word samples in total). 
However, some words may have ended up being used more than once if LeVI ended 
up babbling a certain vowel sound more times than it existed in the recorded words of 
the training set. LeVI associated CG’s response to the activated LAC using the 
weakly supervised learning algorithm. After 50, 250 and 1000 babble-response pairs 
LACs and associated acoustic models were saved in system memory. These were then 
used to evaluate LeVI’s imitation accuracy in the corresponding moments during 
LeVI’s training. The training phase procedure is illustrated in Figure 5.  
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Figure 5. The process in the training phase and testing phase. Training phase: 1) LeVI 
babbles a sound, 2) The participant evaluates the sound and 3) assigns the sound to a Finnish 
vowel category, 4) The system selects a word that has the assigned vowel, pre-recorded by the 
same participant, 5) the acoustic word is played to LeVI and LeVI updates its recognizers and 
LACs using the F1 and F2 values of the babble, the articulatory vector and the response by 
the participant. Testing phase: 1) A pre-recorded test word and one of its vowels are 
randomly selected for evaluation by the algorithm, 2) The word is recognized by LeVI and 
the most activated LAC on the vowel time instant is selected, 3) LeVI vocalizes with the 
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articulatory configuration related to the winning LAC, 4) The vocalization is played back to 
the participant for evaluation, 5) If the assigned vowel matches with the original vowel in the 
selected test word, LeVI’s imitation was successful. 

3.3  Testing phase 
The first author manually searched for the approximate locations of the vowel sounds 
from both recorded word sets for each participant. After the training phase of 1000 
annotations finished, LeVI was set to imitate the complete test set. First, LeVI 
recognized the words in the test set according to equations (A7-A10) of the Appendix 
A by using its LAC-based acoustic models for CG speech. The most activated LAC, 
winner(v), was chosen for each vowel (see equation A-11), where v is the hand-
selected time moment for the vowel sound. After recognition, LeVI imitated the 
vowels using the mean of the articulations stored in the largest articulatory cluster of 
the winning LAC (articulatory noise was not added in the testing phase, only in 
training), and the acoustic outputs of the imitations were stored. The vowels for word 
set #1 were imitated corresponding to LeVI’s status after 50, 250 and 1000 
interactions, and the vowels for word set #2 only after 1000 interactions. This led to a 
total of 640 (four times 80 words, two vowels per word) imitations. 
 After LeVI had imitated all the vowel sounds (during which the participant 
was having a five-minute break), the testing phase began. The word imitations were 
played one-by-one to the participant. The participant was unaware that the last 640 
vocalizations were imitations – the annotation procedure was equal to the training 
phase, as seen by the participant. If the participant annotated an imitated vowel as the 
original vowel in the word that had been initially recorded by the participant herself, 
the imitation was considered successful. This last phase was used to measure LeVI’s 
imitation accuracy, and thus the validity of the learning algorithm of this study. The 
testing phase procedure is illustrated in Figure 5.  

3.4 Participants 
The development set consisted of nine Finnish speaking participants (six male, three 
female, average age 29.7 years), and the evaluation set consisted of four Finnish 
speaking participants (three male, one female, average age 29.5 years). Participants 
were paid 20 euros in cash after finishing both parts of the experiment. 

3.5 Procedure 
Each participant was asked to record the word set of 1200 words using a graphical 
user interface developed in Matlab. When participants pressed “Record”, 10 words 
were presented on the screen one by one, and the participants were asked to read the 
words aloud. If they made a mistake during recording, they were asked to rerecord the 
word list. When the recording was successful, the audio was saved and a new list of 
10 words was shown. The recordings of the first nine participants were performed in 
an anechoic chamber. The second recording session for the four new participants took 
place in a sound-isolated listening room. 
 Both recordings were performed with Rode NT1-A microphones with a Motu 
Ultralite MK3 preamplifier. The duration of the recording session was about 60 
minutes per participant. Participants were asked to speak with normal speaking 
voices, recommended to have pauses and offered drinks in order to avoid fatigue. 
 The training and testing phases were performed on a different day than the 
word recording for each participant. Before the experiment, the participants were 
shown a 17-second video of random babbling by LeVI to get an idea of how the 
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infant’s voice sounded like. In the annotation phase, a babble sound lasting for 0.25 
seconds was played to the participant via headphones, and the participant was asked 
to select the vowel heard on the keyboard.3 The annotation of 1640 babbled sounds 
took approximately 40–60 minutes per participant. 

4 Results 
 
We report results separately for the seven participants from the development set (D1-
D7) who retook the annotation phase with the tuned learning model, and the four 
evaluation set participants (E1-E4) whose speech was newly recorded and who 
interacted with the final version of the model. Figure 6 shows formant frequencies of 
all the vowels babbled by LeVI in the training phase for all 11 participants. The color 
indicates which vowel was selected by the participant for the corresponding babble. 
The regions for the participants’ perceptual categories can be observed from the 
figure. The overlap of the perceptual categories on their border regions indicates that 
vowel discrimination at these regions is more difficult, at least when measured in 
terms of the two first formants. It is also visible in the figure that some babbles in the 
perceptual region for /o/ or /ø/ are annotated as /e/. Analysis of the spectra of the 
babbles indicates that a weak second formant is detected at lower frequencies in these 
cases, but the presence of a clear third formant at around 3000 Hz (typical for the 
second formant for /e/) caused participants to annotate the babble as /e/. Labeling 
mistakes (pressing the wrong key by accident) were minimal (total of 14 errors, on 
avg. 1.27 per participant, recorded with self-evaluation during the annotation phase). 
 The figure also shows that there are two blank areas in the region for vowel 
/æ/. This is likely caused by the sampling algorithm that seems to avoid articulatory 
regions that would have produced these specific formant values, possibly because a 
small change in articulatory parameters would have caused large acoustic distances in 
these regions, therefore leading to a low priority in the sampling process (see 
Appendix A.2 for details). 

                                                
3 In Finnish, all eight possible vowels have a corresponding letter on the alphabet (and 
a key on the Finnish keyboard) to make this arrangement possible. With other vowel-
wise phonetic languages like Italian and Spanish, the same arrangement should work. 
With non-phonetic languages the interaction phase should have a different 
arrangement. 
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Figure 6. All vowels babbled by LeVI in the training phases for all participants. The colors 
illustrate which vowel was selected for the corresponding babble by the participant. 

4.1 LeVI’s vowel imitation accuracy 
 
LeVI’s average imitation accuracy, calculated as the number of vowels successfully 
imitated divided by the total number of vowels at the three time instances during the 
training, is shown in Figure 7. It can be seen that LeVI learns to imitate the vowels of 
the evaluation set better than the seven participants of the development set. This 
improvement in learning is probably due to smaller amount of noise in the recorded 
signals – the word recordings of the development set have a considerable noise 
component due to a microphone picking up the fan of the recording laptop. The 
functioning of the model with the four new speakers also suggests that the model 
implementation choices and free parameter values have not been selected to suit only 
the speakers in the development set, but the model should function similarly with 
novel voices. LeVI’s imitations of the vowels in the words of the word set #2 for the 
participants in the evaluation set are also available in the supplementary material, 
where each recorded word is followed by LeVI’s imitation of the two corresponding 
vowels. 
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Figure 7. LeVI’s imitation accuracy in three phases during learning, averaged over 
participants. Held-out part of the word set #1 is shown with solid and dashed lines for the 
evaluation set and the development set respectively, and word set #2 with crosses (shifted 50 
steps to the right for clearness). Vertical bars denote ±1 standard deviations across the 
participants. 

Table 1 shows the results in more detail, including vowel-specific imitation scores as 
well as scores specific to the position of the vowel in the tested CVCV-words. For the 
evaluation set, the average unweighted accuracy was 79.4% for the first vowel in the 
CVCV words and 71.6% for the second vowel. For the development set, the 
accuracies were 73.3% and 63.4% for the two positions, respectively. For both, the 
development and the evaluation set, and for both vowels, learning of /æ/ was the most 
difficult, having an average imitation success rate of only 55.6% and 66.7% in the 
evaluation set. This is probably due to the difficulty of exploring articulations that 
lead to vowel sounds produced in the perceptual area for /æ/ in the F1-F2 domain as 
explained above. It is likely that further improvements in the exploration algorithm 
could increase imitation accuracy. 
 The higher accuracy in imitating the first vowel of the words is likely due to 
the fact that in Finnish word stress is always placed on the first syllable of a word and 
the first vowel thus undergoes less reduction in its pronunciation. Observation of the 
words for the development set showed that, in some cases, the energy of the speech 
signal during the last vowel was very small and the proportion of the background 
noise was considerably high at the ends of the words. For some participants, the word 
ends were suppressed and ended up sounding creaky without clear vowel articulation. 
This phenomenon presumably weakens recognition of these vowels, as well as 
affecting the training phase. 
 As an example of error patterns, Appendix B shows a list of vowel-specific 
errors for subject E1. For instance, when the correct vowel to be imitated was /a/, 
LeVI’s imitation was not annotated as /a/ in total six times. Out of those six times, 
three times LeVI imitated the vowel /a/ using a LAC lying approximately in the 
region for /o/. It can be seen in the appendix that many of LeVI’s erroneous imitations 
are located in areas acoustically close to the imitated vowel, except in case of /æ/ 
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where errors are more widely spread. It is thus possible that even if the absolute vowel 
imitated by LeVI were interpreted as a different vowel category, the pronunciation of 
a word using these articulatory configurations might be more easily understood by 
CG, since the context, or for example surrounding consonant sounds, would probably 
bias CG to interpret the “erroneous” vowel as the correct one. 
 
Table 1. Detailed imitation accuracy measures for evaluation (left) and development (right) 
sets, shown separately for vowels located in the first (top) or last (bottom) syllable of the 
CVCV word. 

 Evaluation set   Development set  

 E1 E2 E3 E4 Mean  D1 D2 D3 D4 D5 D6 D7 Mean 
Mean all 75.6 80.6 80.3 83.8 80.1 

 
76.9 73.1 79.4 68.4 80.0 60.9 72.2 73.0 

Mean, word set #1 77.5 80.6 76.9 85.6 80.2 
 

75.0 73.8 80.6 69.4 80.0 62.5 76.9 74.0 
Mean, word set #2 73.8 80.6 83.8 81.9 80.0 

 
78.8 72.5 78.1 67.5 80.0 59.4 67.5 72.0 

First vowel,  
word sets #1+#2 

              a 82.6 56.5 82.6 100.0 80.4 
 

82.6 0.0 87.0 60.9 56.5 87.0 78.3 64.6 
e 80.0 96.0 84.0 72.0 83.0 

 
80.0 88.0 88.0 36.0 92.0 28.0 84.0 70.9 

i 77.3 86.4 81.8 77.3 80.7 
 

86.4 86.4 90.9 72.7 86.4 95.5 90.9 87.0 
o 88.2 76.5 100.0 94.1 89.7 

 
88.2 88.2 64.7 100.0 88.2 47.1 47.1 74.8 

u 78.9 84.2 57.9 84.2 76.3 
 

89.5 84.2 94.7 73.7 89.5 94.7 78.9 86.5 
y 60.0 100.0 93.3 100.0 88.3 

 
86.7 86.7 100.0 86.7 80.0 100.0 100.0 91.4 

æ 48.1 37.0 51.9 85.2 55.6 
 

70.4 55.6 0.0 40.7 55.6 48.1 44.4 45.0 
ø 91.7 100.0 75.0 58.3 81.3 

 
50.0 33.3 100.0 66.7 100.0 66.7 50.0 66.7 

Vowel mean 75.9 79.6 78.3 83.9 79.4 
 

79.2 65.3 78.2 67.2 81.0 70.9 71.7 73.3 
Second vowel, 

word sets #1+#2 
              a 86.7 80.0 80.0 100.0 86.7 

 
93.3 0.0 100.0 80.0 0.0 80.0 80.0 61.9 

e 73.9 82.6 91.3 82.6 82.6 
 

60.9 95.7 95.7 56.5 78.3 21.7 91.3 71.4 
i 71.4 94.3 91.4 77.1 83.6 

 
91.4 97.1 100.0 88.6 82.9 62.9 82.9 86.5 

o 75.0 100.0 85.0 95.0 88.8 
 

70.0 95.0 100.0 75.0 90.0 30.0 20.0 68.6 
u 81.0 81.0 81.0 95.2 84.5 

 
81.0 90.5 90.5 76.2 85.7 66.7 90.5 83.0 

y 80.0 80.0 93.3 66.7 80.0 
 

86.7 86.7 100.0 93.3 100.0 73.3 86.7 89.5 
æ 71.4 57.1 61.9 76.2 66.7 

 
28.6 81.0 0.0 47.6 100.0 28.6 38.1 46.3 

ø 90.0 100.0 80.0 70.0 85.0 
 

80.0 40.0 100.0 60.0 100.0 80.0 100.0 80.0 
Vowel mean 67.4 71.9 73.0 74.1 71.6 

 
64.0 68.2 73.3 64.7 67.1 45.4 61.2 63.4 

4.2 Final LeVI auditory categories 
 
During the 1000 babble-response pairs of the training stage, LeVI formed on average 
21.72 LACs, varying between 19 and 24 depending on the participant. The number is 
higher than the number of Finnish vowel categories, but this does not pose a problem 
in the communicative context of speech: even if LeVI were to use several LACs, 
resulting in several different articulations for each vowel, communication succeeds as 
long as the caregiver interprets these as belonging to the same vowel category. As 
mentioned in the introduction, Chung et al. (2012) found that 2-year-old children had 
larger amounts of variability than 5-year-olds or adults in their /i/, /u/ and /a/ vowel 
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productions when they were asked to reproduce native words including the 
corresponding vowels. It is difficult to establish whether infants indeed have several 
auditory categories for each vowel type, but based on the study of Chung et al. (2012) 
it is clear that infants use multiple articulatory variants during imitation even when 
imitating the same vowel sound spoken by an adult speaker. The occurring variation 
may later be compressed into a more compact set of sound categories. This may take 
place for example with the help of word meanings (e.g. the child finally converges in 
the minimum set of vowels needed in the native language to discriminate between the 
words of the language), articulation efficiency constraints or acoustic characteristics 
(e.g. more resonant vowels could be preferred), or learning of more refined motor 
control. However, it has to be noted that phonemes may not be the unit of perception 
when humans listen to speech (see, e.g., Mitterer, Scharenborg & McQueen, 2013) 
indicating that we should not necessarily expect the perceptual categories of the 
learner to ever converge into linguistically motivated phonemes, but simply to learn 
proper acoustic contrasts in different contexts. This study indicates that when using a 
similar learning strategy to the one proposed, infants can converge into a functional 
communication system without the need to know the exact number of native vowel 
categories. 
 Even though the final number of LACs in this study is reasonably large, LeVI 
still ends up preferring certain LACs over others. This is simply due to the fact that 
when a LAC is created inside the participant’s perceptual category - opposed to a 
boundary region of the participants categories - the resulting babbles are consistently 
annotated in a single vowel category, and the acoustic models end up capturing the 
acoustic properties of the corresponding vowel sounds more accurately. When 
recognizing the words from the test set, the less noisy models activate more strongly 
during the corresponding vowel sounds, and are thus more likely to become the model 
with which LeVI imitates the sound. For example, for subject E1 during the imitation 
of the two word sets in the final test phase after 1000 interactions, the number of 
imitations according to all 21 LACs were (35, 15, 7, 7, 0, 14, 1, 13, 21, 18, 35, 14, 9, 
37, 12, 22, 30, 8, 10, 5, 7). The numbers are illustrated visually in Figure 8, where 
each circle represents a LAC centroid and the circle’s size is proportional to the 
amount it was used in imitation. The circles are plotted over all LeVI’s training 
babbles for E1, colored according to the annotation by E1. It can be seen that the 
LACs in between E1’s vowel categories are used less for imitation, and categories 
inside E1’s vowel categories are used rather frequently. 
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Figure 8. The circles show the locations and frequencies of LACs when imitating the vowels 
in both word sets. The bigger the circle area, the more frequently the corresponding LAC was 
used by LeVI in imitation. Circles are drawn over all training phase babbles for E1, colored 
according to the annotation by E1. 

4.3 Reaction times in babble annotation 
One of the original hypotheses was that participants would be more consistent in 
annotating LeVI’s babbles as a single vowel if the corresponding LAC would lie 
inside the participant’s perceptual vowel category. In order to get an idea of how 
confident the participants were when they annotated heard vocalic babbles in different 
regions in the acoustic domain, we measured the reaction time (RT) of the participant 
in terms of the time difference between the offset of the babbled sound and the 
moment when the participant presses a key for vowel annotation. The hypothesis is 
that longer RTs would be inversely correlated with the quality of the exemplars with 
respect to Finnish vowel categories, and that the participant should therefore require 
more time to decide which vowel should be assigned to the babble.  
 In order to illustrate RTs, we divided the F1-F2 space into 20 x 60 Hz sized 
rectangles and calculated the mean annotation time inside each of them across the 
combined development and evaluation sets. Figure 9 shows the average annotation 
time for each square, colored according to the time in seconds, as explained in the 
color bar. The black polygons indicate approximate Finnish vowel categories, 
calculated using all babbles by LeVI, annotated in Finnish vowel categories by the 
participants (i.e. from data shown in Figure 6). The black polygons correspond to the 
“bags” of a bagplot (a bivariate version of a boxplot) calculated for each vowel 
category, surrounding the depth median of the category samples (see Rousseeuw, 
Ruts & Tukey, 1999 for details). The bag polygon includes 50% of the category 
samples. The bag for vowel /e/ shows the effect of some samples having a weak 
formant peak at a lower frequency than is typical for the second formant of /e/, 
discussed in section 4. It appears that in the regions of Finnish vowel categories 
(compare also with Figure 6), the mean annotation time is generally less than one 
second, whereas in regions between categories longer annotation times are recorded. 
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Based on the visual illustration of annotation times, it seems that participants are 
faster in identifying vowel identities when LeVI’s babbles fall clearly inside the 
participants’ perceptual categories. In further models, the reaction time of the 
caregiver could be presumably used as a cue to indicate the quality of the infant’s 
babble and as an additional factor to reinforce certain babbles more than others. 

 
Figure 9. The reaction time (in seconds) for annotating a babble in a Finnish vowel category 
in different parts of the vowel triangle. The red areas, where annotation takes more than one 
second, are seen to lie approximately between the participants’ perceptual vowel categories. 
Approximate vowel category boundaries are calculated by using the data shown in Figure 6 
and marked with black polygons (see text for details).  

4.4 Detailed analysis of model components 
We also analyzed the importance of the chosen model components towards learning 
performance. Since it was infeasible to perform the analysis using human subjects for 
all the model variants, we simulated human imitative behavior by using a k-nearest 
neighbor (kNN) classifier to assign the babbles into vowel categories while still using 
the real recorded speech of the evaluation set to probe the final performance.  

We used a kNN classifier (k = 20) and 1000 LeVI babbles, manually annotated 
by the first author, as the training data for the classifier. The 1000 babbles were 
obtained with the same babbling procedure as used in the experiments described 
earlier. An analysis showed that the classifier agreed with 69% accuracy with the 
human categorization decisions on the development and evaluation sets. However, it 
has to be noted that variability may exist between participants’ classifications of the 
babbles – participants’ vowel categories and category boundaries may not be equal for 
all participants, and different participants may thus have classified a certain babble 
consistently in different vowel categories. A classifier trained with the annotations of 
one participant may thus not agree well with the classification of another participant. 
The most important aspect for training and testing is that the classifier stays consistent 
during both phases, eventually leading to participant specific imitation performances. 
When the babbles for participants E1-E4 and D1-D7 were classified by using 999 
annotated samples from the same participant and testing with the remaining one, 
80.6% agreement was reached. Thus the classifier’s participant-specific performance 
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can be considered rather reliable. When a single classifier is used during LeVI’s 
training and testing, LeVI is trained to share the vowel system known by the 
classifier, and we can expect results that are close to individual participants’ 
performances. 
 The basic model introduced in this study (“Basic method DCM” in Figure 10) 
was compared to four variants, where the basic method was modified by changing one 
of its components at a time:  
Variant 1) The importance of LeVI evaluating LACs online was studied using a 
method where all LACs have an equal probability to be babbled on each training trial, 
i.e. p(x) = 1/Nc in equation (A-3), so that LeVI’s selection of the babbled sound does 
not depend on which LACs are activated when listening to CG’s speech or how many 
times each LAC has been previously babbled (“Equal weights”).  
Variant 2) The importance of LeVI listening to CG’s speech in order to bias babbling 
towards the most activated LACs was studied by comparing the basic model to a 
variant where the numerators in equation (A-3) were set to 1, i.e., acoustic model 
activations in CG’s speech did not affect learning, but LeVI aimed to have an equal 
number of babbles in all LACs (“No listening bias”). The difference between variants 
1 and 2 is that in variant 2, LeVI actively tried to equalize the number of babbles 
assigned to LACs, where as in variant 1, the difference in the number of babbles 
between LACs may have become larger due to uniform sampling. 
Variant 3) The importance of using the Dynamic CM method, i.e. recognizing every 
training word by CG and using the information to weight learning on promising 
acoustic regions in the CG responses was studied by using an alternative method 
where a = 1 in equation (A-12), i.e. all acoustic information in CG’s responses was 
treated equally in the acoustic model updates (“CM”).  
Variant 4) Finally, we also study the effect of the articulatory precision component, 
simulating learning when cacc = 0 in equation (A-5), i.e. causing LeVI to have infinite 
accuracy when reproducing babbles (“Infinite accuracy”). 
 With each model variant the learning for the four participants of the evaluation 
set was simulated 16 times in order to get corresponding variance measures. 
Variability between runs is caused by LeVI’s random articulatory exploration as well 
as nondeterministic selection of CG’s responses. The vowels in word set #2 (see 
Section 3.1) were imitated by LeVI and automatically classified for LeVI’s imitation 
performance results every 60 babbles. It can be seen from Figure 10 that using 
automatic classification of vowels leads to a slightly better imitation performance than 
when human participants perform the classification subjectively (82.8% vs. 80.1%). 
This is due to the fact that the automatic classifier is more consistent with its 
annotations than human subjects who might annotate even the same babble in 
different categories on different listenings.  

We further analyzed model performances by using Wilcoxon rank-sum tests 
on the simulated data results for 960 babble-imitation pairs. Based on Figure 10, it 
appears that the variant with an infinite babbling accuracy outperformed the basic 
model. The learning rate with infinite accuracy appears considerably faster, however 
after 960 training samples the difference is not significant (W = 4339, p = 0.316, r = 
0.177). This variant may be considered as cognitively less plausible because of the 
evidence for variability in children’s articulatory targets for vowels (e.g. Lee, 
Potamianos & Narayanan, 1999; Chung et al., 2012). From the other variants, the 
average performance after 960 babbles is the best for the learning model used in this 
study. The statistical test shows a significant improvement for the final model when 
compared to “Equal weights” (W = 4622, p = 0.019, r = 0.416). LeVI should thus try 
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to guide its reproductive babbles so that each LAC would end up having an 
approximately equal number of productions. If each articulatory target category had 
the same probability of being produced, variability in the articulatory production of 
the targets would lead to an uneven distribution of sounds in the perceptual domain as 
variation in the articulatory realizations have different perceptual consequences in 
different parts of the articulatory space. Marginal improvement is also noticed when 
the basic model is compared against the variant “CM” (W = 4550, p = 0.044, r = 
0.355). LeVI thus seems to benefit slightly from hypothesizing the location of the 
babbled vowel in CG’s imitative utterance. Comparison with “No heard bias” is not 
significant (W = 4272, p = 0.494, r = 0.121), and using the current learning model it 
seems that LeVI does not benefit from listening to CG’s speech and guiding its 
babbling towards the most activated LACs. We hypothesize that optimizing the 
weights in equation (A-3) or improving LeVI’s recognition of CG’s speech’s vocalic 
parts in the listening phase (see section A.3) might make a difference in the learning 
rate. 

Note that the statistical tests performed after the last training sample do not 
necessarily indicate the methods’ differences in the learning rate, that appear as 
consistent differences between the curves in Figure 10. In addition, the differences in 
performance may change if more training data were available, as performance of 
some of the variants has not saturated after 960 iterations.  Thus the statistical tests 
should be taken only as approximate indications of final imitation accuracies after 
training with the present experimental paradigm. For example the basic method might 
reach the imitation rate of the “infinite accuracy” method if more training was 
applied. Articulatory inaccuracies in babbling would in this case only slow down 
learning. 
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Figure 10. Performance of the final method and its variants in the machine-annotated trials. 
Mean performance of 16 runs for all four participants is shown with standard error bars. 
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5 Conclusions 
In this paper, we presented a novel computational model of infants’ vowel imitation 
learning. We created a model capable of learning in online interaction with real 
humans acting as the model’s caregivers in realistic and individually ambiguous 
communicative situations. Previous computational models of vowel learning have 
used several simplifications, such as synthesized training signals lacking the 
variability of normal speech, pre-defined sets or numbers of either the infant’s or the 
caregiver’s vowel categories, sets of vocal primitives, or bypassing the normalization 
problem (i.e. infants’ and caregivers’ vocal tract morphologies and thus acoustic 
productions differ, and direct comparison of their vowels’ acoustic characteristics is 
not always possible), some of which we have attempted to relax. 
 Our study builds upon the findings of the Asada group (e.g. Miura et al., 2008) 
and Howard and Messum (2011, 2014), expanding towards the ability to cope with 
more natural caregiver-child interactions and the ambiguities involved in them. Our 
learning virtual infant, LeVI, equipped with an infant sized vocal tract, started with 
only knowledge of the ranges of its own articulatory parameters and then heard an 
amount of continuous speech from its caregiver in response to its own babbles. We 
tied articulatory exploration (present in Howard & Messum, 2014, but not in Miura et 
al., 2008) and ambiguity in caregivers’ responses to babbles (present in Miura et al., 
2008; In Howard & Messum, 2014 94% of responses were reformulations) together in 
an online vowel learning model, resulting in 70–80% vowel imitation accuracy for the 
eight Finnish vowels present in CVCV words spoken by human caregivers. The 
imitation accuracy was evaluated by classifying the imitations into Finnish vowel 
categories by the same participants that acted as LeVI’s caregivers, without knowing 
the original word or vowels that the learner aimed to imitate. Also, none of the 
imitations or vocalic productions by LeVI were ever confirmed or accepted to be good 
productions by human participants – the learning was solely based on associative 
learning without strong reinforcement signals (e.g., in the work of Howard & 
Messum, 2014, participants were asked to accept or reject the proposed imitations). 
Robust vowel imitation learning thus seems to be possible with similar general 
associative learning techniques that are assumed to play a central role in infant word 
learning under the name of cross-situational learning (e.g., Smith & Yu, 2008; see 
also Räsänen & Rasilo, 2015, for an overview), and we expect that positive/negative 
type reinforcement signals would bias the learner towards even better vowel 
representations (see Goldstein & Schwade, 2008). 
 In the current study, the infant’s vocal exploration and interaction with the 
caregiver were intertwined in one learning phase. Learning is significantly faster 
when the infant aims to associate equally many caregiver’s imitative responses in all 
of its explored sound categories. LeVI also tracks the activations of LACs related to  
caregiver’s speech, and guides its own babbling behavior towards the most activated 
LACs, although detailed analysis revealed that this did not improve the model 
performance. To our knowledge, our model is the first fully online vowel imitation 
learning model, where vocal exploration and interaction are intertwined, evaluated 
using real speech signals of human caregivers.  
 When evaluated after 1000 babble-response pairs for four Finnish participants 
with good quality recordings, the model reached an average of 80.1% weighted and 
75.5% unweighted imitation accuracy across the vowel categories. For the seven 
participants of the development set whose word recordings contained additional noise 
due to a recording issue, the corresponding results were 73.0% and 68.4%, 
respectively. 
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 With our analysis of separate model components we showed that it is 
beneficial for LeVI’s learning to recognize each of its caregiver’s imitative responses 
with current LACs and to update the acoustic models more strongly on those parts of 
speech, where the babbled model is the most activated one. This can be thought of as 
a form of self-supervised learning: the supervision signal used to time-align the heard 
speech with the babbled model is created by LeVI itself based on previous learning. A 
similar mechanism may presumably be used later to update LeVI’s recognizers even 
when no babbles are produced – when caregiver’s speech is heard and recognized, 
LeVI may keep on updating its acoustic models as soon as a decision of their 
locations in the heard speech can be reliably made. 
 

5.1 Relation to behavioral research on language acquisition 
 
For practical reasons concerning the effort for the human participants, we wanted to 
show vowel learning ability in a rather short time-scale when compared to real 
learning situations. Previous experimental studies shed some light on the issue of how 
much imitative interaction is available for real speech learning infants. In a study by 
Kokkinaki and Vitalaki (2013), about 3.35 imitative interactions were observed in 10 
minute sessions with the infants, out of which about 72.5% were initialized by the 
infant and imitated by the mother (averages of Group 1 and Group 2 of infant-mother 
pairs). For example Molemans (2011) reports that 12 month-old infants produce on 
average 226 (SD = 62) utterances per 20 minutes when the children were vocally 
active. Hsu, Foger and Messinger (2001) report babbling frequencies of about 1.3 
vocalizations per minute at 6 months and Chen, Lee and Kuo (2011) about 2.3 
vocalizations per minute at 12 months of age. A rough estimate from these studies is 
then that infants would babble about five times a minute, on average, out of which 
0.335 babbles are related to imitative interactions, of which 72.5% are imitated by the 
parent, i.e. only about five percent of all infant vocalizations are imitated by their 
caregivers. Simply associating all babbled vocalizations in all subsequently heard 
speech from the parents would probably not lead to sufficient consistency for 
learning, but other cues such as pitch patterns and comparing some more general 
acoustic features might help the infant to extract the corresponding vowels or 
syllables from caregiver responses (see, e.g., Hörnstein, Gustavsson, Santos-Victor & 
Lacerda, 2008). However, if the imitation detection does not function perfectly, a 
cross-situational learning mechanism (c.f., our weakly supervised acoustic model) 
guarantees vowel learning under uncertainty in response alignments. The exact noise 
tolerance of the learning model was not measured in this work, but in principle, higher 
probability of co-occurrence of the same phonetic content in babbles and imitative 
responses, as well as larger diversity concerning all other phonemes in the responses 
should facilitate learning (see, e.g., Kachergis, Yu & Shiffrin, 2009, for factors that 
affect cross-situational learning of words). 
 If we make another rough calculation, estimating that infants would be 
involved with active interaction with their parents about two hours a day, having 
0.335×0.725 imitations by a parent per minute on average, interaction would result in 
approximately 29 imitative parental responses per day and approximately 11,000 
imitative responses in a year. If the infants were able to detect parental imitation 
reliably enough, it would be plausible that the total number of imitative interactions 
would suffice to learn vowel imitation following a similar learning strategy to the one 
proposed in this study. 



 32 

 While it is clear that parents’ interaction with infants’ vocalizations does affect 
vocal learning (e.g. Goldstein & Schwade, 2008; Goldstein et al., 2003) and that 
parents provide imitative feedback to infants’ babbles (e.g. Kokkinaki & 
Kugiumutzakis, 2000; Vigil et al., 2005; Kokkinaki & Vitalaki, 2013), it is more 
difficult to study whether imitative feedback is really a necessary condition for vocal 
learning. In a study by Schiff (1979, as cited in Sachs, Bard & Johnson, 1981) 
children with deaf parents (but using both oral and sign language) were found to have 
normal language development when they interacted at least 5 hours per week with 
hearing speakers. When comparing two-year old children with normal language 
development and children with language delay, Vigil et al. (2005) found that the 
parents of normally developing children responded more to their children’s 
vocalizations and used significantly more expansions to the children’s utterances 
when compared to the parents of language-delayed children. 
 In some rare cases infants have been raised with minimal amount of vocal 
interaction with other people. One such child, “Jim” (Sachs, Bard & Johnson, 1981), 
was raised by two deaf parents and had little interaction with hearing adults, but was 
exposed to English language through watching TV. At the age of three years and 9 
months of age Jim had a “severe articulation problem with some utterances being 
unintelligible” (p.39), but he learned language fast after the conversation sessions 
with an adult started. Although anecdotal, the example at least shows the importance 
of dynamic interaction between the learner and a proficient language user in the 
acquisition of speech. In general, based on the above studies, it seems that even a 
relatively small amount of interaction with hearing people can lead to normal 
language development whereas complete lack of interaction seems to lead to severe 
articulation and development problems. 
 

5.2 Limitations of the proposed learning model 
 
One of the limitations of our proposed model is that we assume that infants’ auditory 
domain for their own speech is represented in terms the first two formant frequencies 
of their babbles. This translates the concept of an “auditory perceptual distance” to a 
conceptually simple Euclidean distance in the F1-F2 space, but is only a proxy for 
some underlying perceptual representation for different speech sounds that infants are 
actually using. We also have experimented with using more general MFCC-vectors of 
the babbled sounds to cluster LeVI’s productions, but it appears that creation of 
hyperspherical LACs in the multidimensional MFCC domain results in less “pure” 
native sound categories when they are evaluated by humans, likely because vowel 
categories in the MFCC-space are not hyperspherical–not even after any simple 
normalization technique such as mean and variance normalization. The creation of 
MFCC-based LACs that would get consistent vowel classifications by participants 
would therefore require more sophisticated clustering methods (e.g., Gaussian mixture 
models) with a parameter estimation technique that would find the correct shape 
(covariance matrix) of the auditory clusters in the high-dimensional feature space, a 
difficult problem without any additional constraints or cues to the vowel categories.  
Another limitation is that, even though we include ambiguity in all caregivers’ 
imitative responses, this far the model performance has been tested with relatively 
little ambiguity when compared to real infants’ learning environments. 
 Also, even though LeVI is not provided with a predefined set or number of 
vowel categories (or LACs), the threshold parameter for category creation (See 
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Appendix A.1) affects the amount of LACs found. Using a large threshold value leads 
to a smaller number of LACs covering larger areas of the acoustic space. Using too 
large a threshold may prevent LeVI from learning a native distinction between some 
adjacent vowels (e.g. /e/, /i/), since the babbles from both regions may end up in the 
same LAC. Lowering the threshold increases the number of LACs and acoustic 
resolution, but also requires more babble-response pairs in total in order to learn 
robust acoustic models. In general, lower threshold values should be preferred 
towards larger values, since a large number of LACs does not necessarily degrade 
imitation performance – LeVI’s babbles that do not fall in regions of typical native 
vowels will end up getting more ambiguous responses and are thus less likely to be 
used in imitation. Again, this should be seen primarily as a technical consideration 
since it is unlikely that infants would actually categorize speech input in terms of 
discrete and disjoint cluster identities. Instead, they are more likely to have a 
perceptual mechanism that has adapted to the distributional properties of the speech 
input and where different speech sounds have different but potentially overlapping 
distributed representations in the brain. The present categorization method was chosen 
for its reasonable computational cost and because it provides a conceptually simple 
way to describe how the learner might differentially represent similar versus different 
sounds and articulatory configurations and use them as a basis for the associations 
between the two (see Section 5.3. for suggestions for more sophisticated acoustic 
perceptual organization methods).  
 In this study, we have this far only discussed the learning of native vowels. 
Learning of consonants was left out of this study due to a number of practical 
computational reasons. First, production of realistic consonant sounds with our 
articulatory model requires the use of an additional set of dynamic parameters 
controlling the movements of the articulators. In earlier synthesis experiments it was 
noticed that the parameters controlling the temporal dynamics of the articulation (e.g., 
closure duration and release time, voice onset time etc.) have an important effect on 
the perceptual quality of the consonant sounds. Also the values given for these 
dynamic parameters are dependent on the articulator, typically articulators with higher 
masses moving more slowly (see Rasilo, 2012 for a detailed description). If LeVI was 
to explore its whole range of possible articulations, consisting of combinations of 
positions and dynamic properties, the dimensionality of the articulatory space would 
vastly increase, and LeVI’s task of exploring proper articulations would become 
nearly impossible. Since our articulatory model is a rough approximation, lacking real 
physical constraints related to muscle masses or possible synchronies between 
articulators, the real-world task of infants’ articulatory exploration might be 
significantly easier – with a natural vocal tract it should be easier to find speech 
sounds that sound natural to the caregivers. Also using non-vocalic positive feedback 
on babbles of good quality might reinforce infants towards realistic babbles (see 
Goldstein & Schwade, 2008, as well as the simulations in Rasilo et al., 2013). 
 Another challenge when learning consonants concerns the acoustic model 
used for the speech sounds. Whereas vowel sounds are usually characterized by 
relatively long lasting and steady acoustic properties, stop consonants, for instance, 
are short in duration and characterized by rapid changes in the acoustic domain. Since 
the current weakly supervised approach uses vector quantization of the MFCC 
features for caregiver speech, the quality of the resulting representation is not detailed 
enough to provide detailed differentiation of different consonant sounds. Although 
good performance for weakly supervised learning of synthetic consonants was shown 
in Rasilo et al. (2013), the consonants in real speech have proven to be much more 
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problematic due to greater variation in their acoustic characteristics than when 
working with synthesized signals. In order to model the acoustic effects of real spoken 
consonant sounds, we should presumably work with shorter time windows as well as 
VQ-codebooks biased towards the subtle changes occurring during consonant sounds.  
 If the exploration and acoustic details of consonant recognition were refined, 
we hypothesize that a similar associative learning account may also underlie 
consonant learning. When babbling canonically, infants’ babbles consist of both a 
consonant and a vowel sound, and may invoke imitations by the caregiver including 
both heard phonemes. The proposed associative learning mechanism may update 
several associations on a single babble-response pair, and thus the total number of 
babbles needed to learn acoustic models for consonants and vowels would not 
necessarily increase. 
 Even though the simulations of the present study evaluate the feasibility of the 
associative learning paradigm in vowel learning, we do not claim that infants learn 
vowels as independent and discrete speech units during the early stages of speech 
acquisition. Since babbling generally consists of consonant-vowel combinations or 
more dynamic vocalizations than stable vowel sounds, it is possible that infants 
associate these dynamic constructions to imitative responses. Such learning of more 
holistic structures could explain the acquisition of e.g. progressive phonological 
idioms (see Messum & Howard, 2015). In reality, associative learning is likely to 
operate on multiple representational levels. It is possible that associations are learned 
between speech patterns of various lengths and their corresponding motor commands. 
However, in order for this kind of multi-level associative learning to work, the 
learning mechanism still needs to be able to account for the ambiguity in imitation-
response pairs, such as exemplified by this study. 
 

5.3 Summary and discussion of the model’s implications 
 
We hypothesized that the learning infant would benefit from listening to the 
caregivers’ speech and weighting its reproductive babbles towards activated acoustic 
perceptual vowel categories. During the training phase, LeVI weights its reproductive 
babbles towards LACs that are activated often when listening to several utterances in 
CG’s speech (see Appendix A.3). However, closer analysis revealed that this 
component did not increase the final learning performance. Based on these 
experiments, it would thus seem that LeVI should only focus on its own babbles – 
exploring the articulatory and acoustic spaces – rather than use CG’s speech to guide 
babbling. CG’s responses are merely used for acquiring (noisy) correspondence 
information for the babbled sound. However, this effect may also be an artifact caused 
by the methodology used. During the training phase, LeVI does not aim to imitate 
CG’s individual utterances. When CG’s utterances are imitated in the testing phase, 
we observed that the imitations are biased towards native language categories (see 
Figure 8). Consequently, weighting LeVI’s babbles towards imitations of CG’s 
individual utterances slowly over time would presumably lead to LeVI’s babbling to 
shift towards more native-language like vowels, as well as speed up learning as less 
time would be spent on productions that do not seem to frequently appear in CG’s 
speech. More research is needed to explore this idea further. 
 Because of the ambiguity in caregivers’ responses and inaccuracies in infants’ 
babbles, in order for cross-situational learning to work it is necessary for the infant to 
group its babbles somehow into distinct representations (“categories”) (see section 2.2 
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for explanation). In order to have a maximal correspondence (and thus a maximal 
cross-situational learning rate) between the infant’s interpretation of its own vowels 
and the caregiver’s interpretation of the infant’s vowels, it is beneficial that the 
caregiver and the infant interpret vowel sounds in the same domain and based on the 
same features. Since caregivers interpret infants’ babbles in the acoustic domain 
(articulations are not visible), it appears that it is beneficial for the infant to perform 
perceptual grouping of its babbles in the acoustic domain as well (as opposed to 
categorization in the articulatory domain, see section 2.2) and use that grouping as the 
basis for further babbling. It is beneficial to explore new acoustic regions and aim at 
repeating previous acoustic productions, because acoustic characteristics are directly 
available to the caregiver. 
 In general, we found that the following components to be critical in achieving 
successful imitation capability if no innate knowledge is available:  
 

1) The learner has the capability to babble sounds via articulatory exploration. 
2) The learner is capable to perform some type of categorization of its own 

vocalizations so that sets of similar babbles can be associated with sets of 
caregiver responses (the entities analyzed during the associative learning). 

3) There is contingent (linguistically aligned) caregiver feedback following 
babbling, i.e., responses in which certain adult speech sounds occur more 
frequently after certain type of babbling. This can range from strict speech 
sound imitation to above-chance recurrence of the same sounds in the context 
of larger words or phrases. 

4) The learner has a statistical associative learning mechanism that can keep 
track of the distributional characteristics of the babble-response pairs, thereby 
learning the sound mapping between the learner and the caregiver. 

 
In addition to these basic principles, our model incorporates several technical 
solutions that were found useful in practical implementation of the model, and that 
could be improved even further in the future work: 
 

1) It may be beneficial for the learner to aim to explore the full range of its 
possible acoustic productions, in order to find vowel sounds that may lie in the 
borders of the full vocal range and possibly have a small region in the 
articulatory domain for their production. We found that for example finding a 
pure Finnish vowel sound /i/ by uniformly random articulatory exploration 
was slow because corresponding articulatory configurations were limited to a 
very small proportion of the complete articulatory domain, where several 
articulators take extreme values from their corresponding ranges. Since there 
is an initially unknown relation between articulatory configurations and 
acoustic outputs, the learner cannot directly explore the acoustic space. In this 
study we have sped up acoustic exploration by giving the learner a bias to try 
out articulatory configurations that lie far away from previously produced 
ones. This is seen to lead to faster exploration of the acoustic space.  

It is currently unclear how infants actually succeed in vocal 
exploration, but due to a number of different biomechanical constraints and 
covariances between different articulatory movements (not implemented in the 
present model), it is likely that the space of possible articulatory gestures is 
constrained enough to be explored within a reasonable time in real life. In 
addition, factors such as novelty/reward signals from somatosensory feedback 
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may bias articulatory gestures towards extreme values of the articulator 
positions – regions where small articulatory changes are typically associated 
with large acoustic changes. Finally, real canonical or variegated babbling is 
dynamic instead of static. Instead of resulting in one articulatory configuration 
and “one sound” for each babble, there is actually a trajectory of articulatory 
positions and corresponding auditory outputs for each voiced sound segment 
between the surrounding consonants in CVCV-type babbling. This may speed 
up exploration significantly as long as the infants are capable of tracking the 
articulatory-to-sound correspondences along different sections of these 
trajectories.   

2)  The current model categorizes LeVI’s productions into discrete and 
disjoint categories using the Euclidean distance between the babbled vowel 
sounds in the F1-F2 domain. Although sufficient for proof-of-concept, future 
work could consider more sophisticated clustering methods together with 
more general acoustic features such as Mel-spectrum. However, there are 
some challenges related to the use of non-formant acoustic features since the 
sound categories tend to be more spherical in the F1-F2 domain than in, e.g., 
MFCC domain. If Gaussian mixtures are used to define vowel categories, a 
good prior on feature covariances or a proper way of estimating covariance 
from the data is needed. Estimation of a covariance matrix for a 
multidimensional acoustic category requires multiple samples from the 
category, but in the learning scenario the identity of the category of a produced 
babble is not known to the infant. One option would be to first store a number 
of babble-response pairs before attempting to learn a mixture model for the 
data in a batch or mini-batch-like mode. Alternatively, more advanced 
methods such as on-line variants of non-parametric Bayesian mixture models 
(e.g., Hoffman, Blei, Wang & Paisley, 2013) could be used to solve the 
auditory clustering task with various feature types without imposing definite 
constraints on the shape and size of the clusters.  

Also, additional constraints on the clustering could be utilized besides 
purely auditory cues. For instance, the acoustic variability of speech sounds in 
caregiver responses could be reduced by using contextual information. For 
example, if the infant babbles a different variant of a sound resembling the 
phoneme /ɒ/ on two different occasions and the caregiver responses both with 
the word “dog” where the vowel varies slightly on the two occasions, the 
infant can use the referential information to deduce that both of the caregiver’s 
phoneme variants belong to the same category and perhaps both babbled 
sounds have the same category identity as well. This aspect has not been 
considered in the current study but should be explored in further research. 

3)  In our simulations, participants respond to LeVI’s vocalic babbles with 
CVCV utterances containing two different vowel sounds, one matching with 
the participant’s interpretation of the babble. We showed that ambiguity in the 
caregivers’ responses can be reduced by predicting the acoustic outcome in the 
response after babbling, and associating the predicted portion of the response 
to the babbled sound with increased weight. This is seen to speed up imitation 
learning. In this study this is implemented by recognizing caregivers’ 
responses using LeVI’s current category representations. If the babbled vowel 
category is recognized in the response, the category’s recognizer parameters 
are updated with more weight at the location identified. 
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4)  We have used an associative learning algorithm that accumulates 
statistics of acoustic features occurring in caregivers’ responses into a category 
that corresponds to the acoustic characteristics of LeVI’s babbles. Future work 
should consider associative learning of consonants as well. The CM algorithm 
used in this study has not been successfully used in learning acoustic models 
for consonants due to rapid changes in the consonant acoustics. The generic 
MFCCs extracted from 25-ms time windows and vector quantized to discrete 
categories lose information that would be important for consonant 
discrimination. The use of phoneme-specific Hidden Markov Models (HMMs) 
with continuous observation vectors would probably bring additional power in 
order to discriminate between consonant categories, but training standard 
generative HMMs is challenging in a weakly supervised manner where only a 
subset of the data is representative of the class to be learned. Ideally, there 
would be at least a small number of representative samples to initialize the 
training (see e.g. Sun, Van hamme & Zhang, 2014). 

In order to also learn consonants, a more realistic vocal tract model 
would presumably facilitate learning. Implementing realistic constraints and 
dynamics on articulatory movements, possible correlations between 
articulators as well as sophisticated articulatory-to-acoustic synthesis would 
lead to realistic babbling patterns and presumably facilitate the exploration 
effort by the infant as well as the evaluation by participants.  

 
Finally, our model provides a number of predictions regarding child language 
learning. First of all, the present work suggests that the development of speech 
production is tightly coupled to the amount of contingent feedback from the parents, 
higher levels of phonetic and lexical alignment in parental responses leading to faster 
learning. However, parents do not have to imitate their children exactly as associative 
statistical learning can overcome ambiguities in the parental responses through 
accumulation of cross-situational evidence. This also means that less consistent 
parental alignment can be compensated with larger amount of interaction experience, 
making the mechanism robust to variation in infant-caregiver dynamics. Expansions, 
rather than exact imitations, may play a role in learning about the acoustic variation of 
phonemes in different contexts and thereby improve the robustness of their 
perception.  
 In addition, the present study suggests that learners can acquire several 
different articulatory configurations to produce the same speech sounds, as long as the 
alternatives are accepted as valid speech sounds by the caregivers in the given 
communicative context. The model also predicts that infants first learn to imitate 
speech sounds that are part of their own babbling repertoire. Thus, the infant cannot 
imitate adult speech sounds whose infant counterparts it has never produced before. 
However, if the infant were able to gradually align its own acoustic productions to 
adult productions, as well as its articulatory configurations to their acoustic 
counterparts (i.e. learn in more and more detail about the non-linear articulatory-to-
acoustic mapping based on increasing babbling experience), it might be able to 
interpolate between known productions and hypothesize likely ways to imitate sounds 
that it has not previously produced. If this is the case, interpolation should be easier in 
close proximity to known productions or in articulatory regions where the 
articulatory-acoustic mapping is more linear. Such a gradual alignment process has 
not been implemented in this study and is left for future research. 
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A third prediction is that the vocal exploration phase and imitation learning do 
not have to take place sequentially, but that the awareness of the triad consisting of 
articulatory gestures, acoustic sounds corresponding to these gestures, and adult 
sounds corresponding to the same gestures and sounds can start to develop jointly as 
soon as the infant becomes engaged in babbling in social contexts. 

5.4 Concluding remarks 
With this computational study of vowel imitation learning we would especially like to 
direct modelers’ attention to the non-ideal learning conditions that human infants face 
in the same task. Speech learners have to cope with large amounts of variation in the 
caregivers’ utterances as well as their own articulatory productions. When associating 
vocalic productions to caregivers’ responses, we have shown that weakly supervised 
associative learning may bring robustness to acoustic variation in the responses (a 
similar technique was used in Miura et al., 2008). However, the productions 
themselves may have variation due to inaccuracy in articulation, or alternative 
articulations for similar acoustic sounds may be found during vocal exploration. We 
have dealt with these problems by allowing the infant to create auditory categories 
based on the acoustic outcomes of babbles (in Miura et al., 2008, pre-defined vowel 
categories were used). If vocal exploration is also included in the learning process, 
effective exploration techniques are needed so that both exploration and associative 
learning are possible with a limited amount of interaction. We have introduced a 
method that helps to explore the acoustic space of the infant’s vocalizations faster 
than uniform sampling from the infant’s articulatory domain. 
 It may be difficult to find out if learning components similar to those 
suggested here are present in real human speech learning, but the vowel learning 
framework presented aims to restrict all the information used by LeVI to information 
that a real human infant would have an access to as well. As well as some previous 
studies (Huckvale & Sharma, 2013; Howard & Messum, 2014), we show that vowel 
learning is possible without learning a normalizing mapping between the caregiver’s 
and the infant’s voices – the learning occurs based on a general associative learning 
mechanism that simply associates speech features of the caregiver’s speech with vocal 
productions by the infant.  
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Appendix A. Model implementation details 
 

A.1. Creation of LeVI auditory categories 
 
LeVI creates perceptual auditory categories, LACs, in the acoustic domain based on 
the two first formant frequencies of the babbled sounds. The formants are extracted 
using  linear predictive coding (LPC) with autocorrelation method on the impulse 
response of LeVI’s vocal tract. The impulse response is first resampled to 12000 Hz 
sampling frequency and LPC of order 10 is used. By taking into account the 
approximate maximal values of F1 and F2 produced by LeVI (see Figure A-1), we 
normalize all formant vectors by dividing F1 values by 1500 and F2 values by 4500, 
in order to form approximately spherical LACs. The normalized formant values form 
a formant vector fn. 
 The Euclidean distance of the babbled fn is calculated to the normalized 
formant values of all Nc centroids of the existing LACs, fn

c . 
 D(c) = d(fn, fn

c ), c =1…Nc  (A-1) 
 
If for any centroid, D falls below a preset threshold of 0.10, the new babble is 
assigned to the LAC given by argminc (D(c)) , otherwise a new LAC is created at 
location fn. 
 

A.2. Vocal exploration 
 

When LeVI babbles an exploratory babble, it aims to extend the acoustic space 
covered by its previous acoustic productions by babbling an articulatory configuration 
far from already babbled configurations. The articulatory space is divided into a grid 
of articulatory parameter combinations. We define 25 sampling points from the two-
dimensional regions for the tongue tip and tongue body parameters, and five points 
uniformly for jaw angle, hyoid x-coordinate, lip protrusion and lip opening 
parameters (see Rasilo, 2012). Velum is sampled either fully open or fully closed. 
After rejecting configurations that have a vocal tract constriction smaller than 0.1 cm2 
in cross-sectional area, we are left with 238,080 possible articulatory configurations in 
a set P, which LeVI uses as a base for its exploration. In order to illustrate the F1-F2 
range of the productions, Figure A-1 shows the acoustic outputs of all the sampled 
parameters in the F1-F2 domain. 
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Figure A-1. Formant values of all the sampled vocal tract configurations. 

When LeVI decides to explore and create a new babble, it compares the N articulatory 
parameter vectors it has already produced to a subset of P. LeVI chooses to babble an 
open configuration from an articulatory region that has a small density of neighboring 
articulatory parameters stored during previous babbles. In practice, we calculate the 
inverse squared distance, or “gravity” G of all N articulatory configurations babbled 
this far (known articulatory vectors k=[k1, k2, …, kn]) to a random subset of 20,000 
possible configurations (S) drawn randomly from the set P (the whole set is not used 
for the sake of faster computation in the following distance calculation), by using a 
formula 

 G(s) = 1
d(kn,S s )

2

n=1

N

∑ , s =1…20,000  (A-1) 

 
where d is the Euclidean distance between articulatory vectors. The selected 
exploratory babble is chosen to be the open configuration with the least gravity from 
all known configurationsb = Sargmin(G ) .  

Performance of the selective sampling method, when compared to uniform 
sampling from all possible open configurations, is illustrated in Figure A-2. On this 
run, only for illustrative reasons, LeVI samples a new exploratory configuration at 
200 consecutive babbles, and the process is run 10 times in total. On each run, the 
area covered by the convex hull of the F1-F2 values of the babbles produced this far is 
compared to the area covered by the convex hull of the F1-F2 values of the set P. The 
selective sampling method has constantly a larger proportion of the acoustic domain 
covered, indicating that the selective sampling method produces articulatory vectors 
that lead into more spread out acoustic outputs than the uniform sampling. Taking into 
account the fact that in many languages important vowel categories lie in the borders 
of the acoustic space, the selective sampling thus helps LeVI to find meaningful 
vowel categories – as interpreted by human listeners – better than just sampling 
uniformly from its articulatory range. 
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Figure A-2. Mean and standard deviation of the proportion of the acoustic area (in F1-
F2 domain) covered by the discovered babbles towards the total area that can be 
produced with the articulatory model. 10 runs where LeVI produces up to 200 
exploratory babbles are averaged. 
 

A.3. Repeating existing LACs 
 
As explained in Section 2.4., LACs that fall inside CG’s perceptual categories, and 
thus end up getting consistent feedback from CG, end up having acoustic models that 
are more refined towards the corresponding CG’s vowel category. When recognizing 
CG’s speech, these models thus provide higher likelihoods than the more noisy 
recognizers that fall in between CG’s perceptual categories. In order to try to bias 
LeVI’s babble towards the pure LACs we use the following procedure: Every 20 
interactions, LeVI listens to and recognizes a number  (here 80) of spoken words by 
CG (randomly drawn from the training set, defined in section 3.1), detects local 
energy envelope maxima4 with a minimum distance of 40 windows (200 ms) between 
consequent maxima, and sees which LACs have the highest activation at the given 
locations. From the set of 80 words, LAC activation frequencies are counted in a 
vector a = [a1, a2, !, aNc

]  each element ax indicating how many times LAC x 
was activated. However, if some elements of the vector get a value of 0, we increase it 
to one in order not to completely forget the LAC. 
 We similarly count the number each LAC has been babbled this far in total 
into a frequency vector f = [ f1, f2, !, fNc

] . Since we want LeVI to babble LACs 
with low frequency more, and LACs with high activation in CG’s speech more, we 
calculate the probability of LeVI choosing to babble LAC x as: 
 

                                                
4 The aim of this technique is to work as a really simple detection mechanism for 
vowel locations. In further versions, voice activity detection or other more 
sophisticated methods could be used for improved accuracy.  
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 p(x) =
ax( )0.3

fx

an( )0.3

fnn
∑  (A-3) 

 
where the latter division normalizes the sum of probabilities to one, and the 
exponential component of 0.3 reduces the contribution of the activation component 
relative to the frequency component. 
 When LeVI chooses LAC c to be babbled based on the calculated 
probabilities, it aims to babble again the mean of the articulatory parameter vectors 
that are stored in the biggest articulatory cluster related to LAC c (see Figure 3). 
 

A.4. Accuracy of LeVI’s reproductions 
 
When LeVI creates a reproductive babble, we introduce an inaccuracy term so that 
LeVI cannot reach the intended articulation exactly but with certain accuracy 
depending on babbling experience on the related articulatory region. Note that in the 
reproduction phase babbled articulatory vectors are not anymore tied to the previously 
simulated open configurations (set P in Appendix A.1.) but can have arbitrary values 
from their related ranges.  
 In our rough model of the effect of articulatory experience, LeVI’s babbling 
accuracy in the articulatory domain depends on the number of babbles it has 
previously produced in a limited hyperspherical region surrounding its intended 
articulatory vector i = [i1,   i2,  … .  i9]. In this work, we calculate the number of 
previously produced babbles, Nneighbours that are on a distance of less than 0.2 units 
from the intended target, when calculated as an Euclidean distance between the 9-
dimensional articulatory vectors, whose each element is normalized linearly to lie in 
the range [0,1] (using the allowed ranges explained in Rasilo, 2012). An articulatory 
accuracy coefficient cacc is then calculated as 

 cacc =10
−
Nneighbours−1

20  (A-4) 

 
and the final babbled articulatory vector b = [b1,   b2,  … , b] after implementing the 
inaccuracy is 

 bx = ix +U −0.1, 0.1[ ] ⋅cacc for all, x =1...9  (A-5) 
  

where U[-0.1, 0.1] is uniform random noise drawn from the given range. Here, 
because of the added noise, the final articulatory configuration is not guaranteed to be 
open, or the articulatory parameter values to lie on allowed ranges. For practical 
reasons, we round parameter values that lie outside their allowed ranges to the nearest 
allowed values (for tongue tip and tongue body parameters, to the nearest point in the 
given polygon borders, see Rasilo, 2012). If the resulting area function has a cross-
sectional area of less than 0.1 cm2 at any tube section, the randomization process 
(equation A-5) is repeated until the openness condition is met, in order to have an 
audible, vocalic, output sound. 
 In order to illustrate the effect of the inaccuracy component in the formant 
domain, we have given LeVI an intended articulatory target vector in the regions for 
Finnish vowels /e/ and /i/ and created 20 babbles for both targets with the proposed 
mechanism. Figure A-3 shows the two first formant values of all the babbled vowels. 
The color scheme changes from bright red to blue from babble one towards babble 20. 
It can be seen that the inaccuracy between the target (black crosses) and actual 
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babbles is rather large during the first babbles, but decreases when the number of 
babbles increases. Inaccuracy in the babbling process also may help to expand the 
vowel region of LeVI and possibly to discover new LACs especially in the border 
regions of the vowel space, where small articulatory inaccuracy may lead to big 
enough change in the acoustic domain - because of articulatory inaccuracy the 
acoustic distance threshold for creating new LACs (see Section A.1) may be 
exceeded. 

  
Figure A-3. Illustration of the effect of the articulatory inaccuracy component. LeVI tries to 
reach articulations underlying the acoustic targets marked as black crosses. When 
approaching 20 trials, the accuracy of reaching the targets is seen to increase. 

If LeVI creates a LAC that is difficult to reproduce, for example by finding an 
articulatory vector in a highly nonlinear articulatory region where close by babbles 
end up always a long acoustic distance away, it is better for LeVI to forget it and 
concentrate on more beneficial articulations. We delete a LAC if LeVI’s success rate 
of reproducing it falls below 10%. Success rate of LAC c is measured by the number 
of intended babbles from c that end up in the acoustic region corresponding to c 
divided by the total number of intended babbles for c. Note that the numerator is not 
always equal to the total number of times LAC c has been babbled, since also random 
exploration or noise when trying to reproduce other LACs may lead to an acoustic 
output in the region of c. 
 

A.5. Associating CG’s responses to LeVI’s babbles 
 
The acoustic characteristics of CG’s imitative responses are associated with LACs 
using a weakly supervised learning algorithm, the Concept Matrix algorithm (Räsänen 
& Laine, 2012) as a framework. In this study, a dynamic adaptation (DCM) of the 
algorithm is used. 
 

A.5.1 Pre-processing of participants’ speech signals 
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The CM-algorithm works with Vector Quantized (VQ) speech features, where each 
spectral slice of the speech signal is represented as an integer number. The speech 
signals are compressed in an unsupervised manner into sequences of integers from 
which bi-gram statistics are calculated. For each participant, recorded speech signals 
are first pre-emphasized with a first order high-pass filter with α = 0.95. Then MFCC 
features are extracted from the complete training speech data in windows of 25 ms of 
length with a 5 ms overlap. The first MFCC coefficient (spectral tilt) is discarded, and 
the remaining 11 MFCC coefficients are used as the basis for VQ. Out of all obtained 
feature vectors, a set of 50,000 is selected and clustered with standard k-means 
algorithm into 150 clusters. Now all training and testing data are transformed into 
integer values lying between 1 and 150, according to the closest cluster centroid in the 
obtained codebook. 
 VQ represents the unsupervised reorganization of the infant’s auditory 
perceptual system to perceive some fundamental units in CG’s speech. In practice we 
thus assume that prior to learning LeVI is exposed to an amount of CG’s speech for 
this reorganization to take place. 
 

A.5.2 The DCM algorithm 
 
Every LAC c has an acoustic model that describes the probability of the LAC, given a 
sequence of acoustic observations. The basis for the model is a tensor Fc of size 
N×N×L, where N =150 is the alphabet size for the discrete observations (VQ-indices) 
and L is the number of used lags  l = {l1, l2, …,lL} at which pairs of observations are 
analyzed. The matrix stores frequencies of transitions between VQ-indices at different 
lags. When a sequence of VQ-indices, V = [v1, …, vt-1, vt, vt+1, …, vt+m], corresponding 
to a spoken word by CG, is observed after babbling the LAC c, the elements in the 
matrix Fc  are updated on every time instant for every lag as 
 

 fvt ,vt+l ,l
c ← fvt ,vt+l ,l

c + a  (A-6) 
 
for all values of l. Here the values inside the brackets represent matrix elements for 
notational simplicity. In this work, lags l = {-10, -9, …, -1, 1, 2, …, 10} were used. In 
the basic CM algorithm a would always be one, Fc corresponding to a frequency 
matrix of transitions so that all information in the input signal would be assigned to 
the babbled LAC with equal weight. In the DCM method used in this work, the value 
of a depends on the result of recognizing the utterance as described below. 
 In order to use co-occurrence statistics for recognition, the statistics need to be 
normalized into conditional probabilities. In contrast to work described in Rasilo & 
Räsänen (2015), preliminary simulations with vowel learning revealed that 
conditional probabilities of (lagged) element pairs lead to better performance than the 
use of transition probability statistics. The joint probability of a pair of VQ-indices 
observed in the context of production c at a given lag l becomes 

 P vi,vj l,c( ) ≡ fvi ,vj ,l
c / fvi ,vj ,l

c

i=1

N

∑
j=1

N

∑  (A-7) 

 
Assuming that all articulatory productions c are equally likely, the conditional 
probability of concept c when a given transition is observed becomes: 

 P c vi,vj, l( )∝P vi,vj l,c( ) / P vi,vj l,c( )c∑  (A-8) 
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When recognizing a given VQ-sequence, an instantaneous activation value for each 
concept at every time instant is acquired by 

 A c, t( ) = P c vt,vt+l, l( )
l∈l
∑  (A-9) 

 
Finally, the activation sequences are smoothed by summing activations in a sliding 
window of N = 20 time steps (200 ms) 

 Asmooth (c, t) =
1
Lt

A(c, t + k)
k=−N /2+1

N /2

∑  (A-10) 

 
where Lt is the total number of lags that could be used on time instant t. Lt may be 
smaller than L in the beginning and end of the sequence where not all lags can be 
used. 
 From the smoothed activation values, we can choose the winning LAC as the 
most activated one for each time window as 
 

 winner(t) = argmaxc(Asmooth(c,t)) (A-11) 
 
In this work, when LeVI is to imitate a speech sound produced by CG, LeVI imitates 
using the articulations related to the winning LAC on the given time instant.  
 As we use the dynamic version of the CM algorithm in this work, during the 
training phase, we recognize each CG’s imitative response with LACs acquired this 
far, and see if the babbled category is the winner at any time instant. If the babbled 
LAC is detected in the utterance, the recognizer for the babbled LAC c is updated 
more strongly surrounding the winning locations of this model (see Rasilo & 
Räsänen, 2015 for more details). This helps LeVI’s recognizers to converge to the 
corresponding acoustic transitions more rapidly, and leads to less noisy recognizers in 
the end of training (see section 4.4 for proof of the effect). Based on this dynamic 
update procedure, the update term in equation (A-6) becomes 
 

 a =
2, if c ∈ {winner(t − s), ..., winner(t + s)}
1, otherwise

#
$
%

&%
 (A-12) 

Where s is a predefined spreading term. In this work we use s = 10, meaning that the 
babbled LAC is updated with double activation at the time instants where the LAC 
wins as well as up to ten windows before and after the winning time instants. 
 An example of LACs’ smoothed activation curves for a Finnish word “vino”, 
taken from the final experiment for one participant after 1000 babble-response pairs, 
is shown in Figure A-4. The figure shows the activation value of each of the 23 
discovered LACs over time. It can be seen that some LACs (presumably lying in the 
acoustic regions for /i/ and /o/) have high activation during the vowel sounds in the 
speech signal. 
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Figure A-4. Original waveform for the Finnish word “vino” (above), and the 
activations of LACs during the word (below). Each color represents one LAC. 
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Appendix B. Analysis of errors made by P1 
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Figure B-1. Erroneous imitations by LeVI located in the F1-F2 domain when evaluated by 
participant P1. The index of the small image shows the vowel by CG that LeVI intended to 
imitate. The number shows how many times and in which area the LAC with which LeVI 
imitated the vowel was located, if CG did not annotate this imitation as the original vowel. It 
can be seen that errors are often made by imitating with a sound that is acoustically close to 
the vowel sound to be imitated. The colors show all the babbles in the training phase 
annotated as the corresponding vowel.  
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Appendix C. Word lists 

 
Word set #1 (13 tokens of each 

for training, 1 for testing) 
Word set #2 (testing) 

mitä jyvä kytö home 
lasi puhe koje menu 
näky haju meri täry 
kova pipo taru täti 
puna talo tosi repo 
setä lisä toki hile 
halu käsi lime kesy 
väri muki vilu pora 
lelu väsy savu näre 
runo sade juro sulo 
melu sika räsy viro 
jäte tipu kyse vety 
käpy nenä tina köli 
jänö minä kajo väli 
susi lohi muro köhä 
kisu kani joku kumi 
kesä kipu vino hiha 
vale side täpö pako 
kuti särö hitu keto 
höpö piha karu pore 
tykö pesu kela pöpi 
säde syli heti töni 
lumi sinä lupa taso 
syvä koti pyhä mäti 
köhä hepo käte jänö 
kone näkö vanu jako 
kuje joki vähä sitä 
kylä pöty väre kulo 
läpi veli latu kota 
hyvä kato loru säle 
vesi katu möly tykö 
pöly romu kymi mökä 
levä söpö mesi tavu 
levy mato väki tuli 
kynä meno sysi hovi 
hame sose mikä hyve 
peli hely kate peti 
kuka käki hake vävy 
möly lepo tupa hämy 
kuva juna risa jyrä 
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