
  

  

Abstract— Essential information about early brain 
maturation can be retrieved from the preterm human 
electroencephalogram (EEG). This study proposes a new set of 
quantitative features that correlate with early maturation. We 
exploit the known early trend in EEG content from 
intermittent to continuous activity, which changes the line 
length content of the EEG. The developmental shift can be 
captured in the line length histogram, which we use to obtain 
28 features; 20 histogram bins and 8 other statistical 
measurements. Using the mutual information, we select 6 
features with high correlation to the infant’s age. This subset 
appears promising to detect deviances from normal brain 
maturation. The presented data-driven index holds promise for 
developing into a computational EEG index of maturation that 
is highly needed for overall assessment in the Neonatal 
Intensive Care Units. 

I. INTRODUCTION 

Premature babies are at high risk to develop mental or 
physical disabilities. Electroencephalogram (EEG) allows 
early diagnostics of neurological disorders, and a means for 
monitoring maturation of the preterm brain. However, the 
conventional clinical EEG inspection by visual reading is 
subjective, variable and time-consuming, which calls for 
development of automated and objective tools in EEG 
assessment. Due to the recent shift in attention in neonatal 
care from cardiorespiratory functions to neurological care, 
there has been a rapidly increasing need to incorporate EEG 
assessment into neonatal intensive care units, especially 
when supported by automated quantification methods that 
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adapt to different maturational stages. Some EEG features 
are developed and used in the hospital environment [1].  

Diagnosis of premature neurological adversities and    
hence, prognosis of neurological outcome is based on the 
information in the background EEG activity. The amount of 
EEG activity changes parallel to brain maturation which is 
reflected in both amplitude and frequency content [1-3]. 
Specific patterns related to the postmenstrual age (PMA) are 
observed: normal maturation is characterized by an initially 
very discontinuous pattern that evolves into a more 
continuous pattern towards term age. In the intermittent 
pattern, also known as discontinuous pattern, very low 
voltage EEG is interrupted by high frequency bursts of 
activity, and the maturation of the baby is reflected as an 
increase in amplitude content during low voltage intervals 
(a.k.a. interburstintervals). Adverse neurodevelopmental 
outcome is often related to very low early activity, seen as 
long low-voltage periods [4-6]. For that reason, recent 
studies have focused on detection of the high-activity bursts 
[7-10] to be used for subsequent quantitative indices. 
Notably, no gold standard describing this specific EEG event 
is available, so the detection algorithms are commonly 
compared to multiple clinical raters [11], but no larger scale 
validation or systematic comparisons have been published. 
To circumvent the challenges inherent to event detection, we 
propose a more data-driven feature that is able to index the 
maturation by exploiting on the raw statistical properties of 
the feature line length that we had previously used for the 
purpose of burst detection [9]. A schematic overview of the 
presented method can be found in Fig. 1. 

 

II. METHODOLOGY 

A. Data Acquisition 
EEG signals were recorded at eight standard electrode 

locations (Fp1, Fp2, C3, C4, T3, T4, O1, O2) and reference 
electrode placed at Cz, with OSG equipment (Rumst, 
Belgium). The sampling frequency was 250 Hz. The data set 
included 22 patients. They all had 2 to 6 subsequent 
recordings in order to see maturational brain processes, with 
on average two weeks in between the recordings, which gave 
in total 84 EEG recordings. They had a median postmenstrual 
age of 33.57 weeks (27-40 weeks). The protocol was 
approved by the ethics committee of the University Hospitals 
of Leuven, Belgium. First, a pre-processing step is 
performed; a 50 and 100 Notch filter and a 1-20 Hz band pass 
filter are applied before visual selection of two hours of EEG 
without major artefacts. Two hours long EEG epochs were 
used to include different sleep states that minimizes bias due 
to differences in histograms between them. 
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Figure 1: A schematic overview of the presented method. 
 

 
Figure 2: A. Example of continuous EEG pattern, B. Example of 
discontinuous EEG pattern. 
 

B. Line Length calculation 
   Line length (LL) is a simplified form of the fractal 

dimension, reflecting the complexity of the signal. The more 
signal activity, the more of the time-amplitude plane is 
covered, and as a consequence the line length will increase. 
The LL is the running absolute sum between samples j in 1 
second segments, with sampling frequency 250 Hz (1). 

 

 
(1) 

Every 2.5 minutes, LLs are normalized by the total sum of 
LLs in that window, to average out baseline effects [9]. For 
every single channel, we calculate the LL for the whole 2 
hours of EEG recording.  

 LL will have large values for active periods as can be 
seen in continuous EEG patterns (Fig. 2A). In contrast, in 
the discontinuous pattern both small values (inactive 
periods) and large values (bursts) for LL are found (Fig. 2B). 
In a next step, we take the decimal logarithm of the LL curve 
to enlarge differences between small and large LL values. 

C. Histogram Distribution 
   We decide to graphically summarize the distributions in 

histograms in order to capture the information about the log 
LL distributions at different ages. We calculate a histogram 
of log LLs with 20 predefined centers of the histogram bins 
[-3.1:0.1:-1.2]. In that way, we can compare the patients 
among each other to discover a shift in EEG content in 
function of the PMA. The number of data points in each bin 
has been used for describing this shift in the histogram 
distribution. In addition, we added several statistical 
measurements to characterize the LL histogram: mean, 
median, standard deviation, interquartile range, skewness, 

kurtosis and the 5th and 95th percentile values. We assume 
that rare outliers with long LL will not significantly 
influence the shape of the histogram. 

D. Feature Relevance 

  After observing several developmental correlations 
between our features and the postmenstrual age, we were 
interested in exploring systematically whether each single 
feature could be used as a maturational feature. To measure 
the dependence between two variables (PMA and feature), 
we can use the correlation function or the mutual 
information (MI). However, we decide to continue using the 
MI (2), since it is well know that the MI captures the general 
dependence, while the correlation function estimates the 
linear dependence [12]. 

  Amplitudes of the features and age values are quantized 
first in 8 quantization levels, after which the joint and 
individual probabilities of the amplitude levels are 
calculated. The MI is relative to the ratio of joint over 
individual probabilities, in which ai is always the age and aj 
the histogram-based signal feature. 

 
(2) 

III. RESULTS AND DISCUSSION 

Since no objective gold standard exists for correlating 
EEG to postmenstrual age, we decided to compare our data-
driven features to postmenstrual age without further EEG 
correlations. The strength in our approach is that the method 
is fully ignorant to specific features or vigilance states. We do 
not preselect epochs or EEG events based on their 
intermittent features such as burst occurrence or length of 
interburstintervals. 

A. Line Length Histogram Evolution 
   During early development, the EEG content transforms 

from a discontinuous pattern (where brain connections are 
still scarce and immature), towards a continuous active 
pattern (when brain connections are physically established). 
Line length catches their EEG reflections in a global way 
without being based on event detection. It is not necessary to 
pick up quick activity changes, though amplitude and 
frequency content is captured with the line length. As shown 
in Fig. 3A, we can see that in 5 weeks’ time the histogram 
has shifted towards the right side, which includes the longer 
line lengths. This means concretely, more bursting activity is 
present. The overall trend of this shift is represented in Fig. 
3B.  For all 84 EEG selections (2 hours), the 28 defined 
features have been calculated in every channel. In certain 
histogram bins, we cannot find any maturation, whereas 
others correlate with the postmenstrual age, and hence 
parallel with brain development (Fig. 3C). On the other side, 
we can describe the shape change with global measurements 
(Fig. 3D). We see that the mean / median is increasing, 
which is analogously to our previous findings. The 
interquartile range is decreasing, which means that the EEG 
content is more concentrated in the same range of 
amplitudes and range of frequencies. The 95% percentile of 



  

the histogram is also found to correlate with maturation, 
however the change (shift to the left) in the histogram may 
be counterintuitive at first sight. This is made more 
understandable by the idea that the bursting activity in the 
young preterm infants is of very high amplitude. The 
amplitudes of the bursts typically decrease parallel to the 
maturation. However, it implies they will have higher 
entropy and random organization.  

B. Feature Relevance 
The mutual information represents in a statistical way the 

relevance of the feature to predict the postmenstrual age. The 
information MI is zero if two variables are independent, and 
in case of strong dependence the MI is large. To build a 
maturational index, six relevant features have been selected 
based on the output of the feature relevance averaged over all 
EEG channels (Fig. 4). The selection includes three bins with 
centers -2.7, -2.2 and -1.8 (two bins decreasing and the 
middle one increasing), and 3 global measures (mean, 
interquartile range and 95% percentile). 

C. Accuracy 
For each of the six most descriptive features, the mean 

linear fit is determined through all the data points. Next, the 
residual error is calculated for each of the data points, which 
is the deviation from this curve in vertical direction; PMA 
will not change. After normalization - necessary to compare 

the errors the different features - the residual errors are 
averaged over the six features and subsequently over the 
consecutive EEG recordings of the same patient. In a last 
step, we took the mean over Fp1-Fp2, C3-C4, T3-T4 and O1-
O2, to extract significant information about the different 
brain regions. The results for each individual patient can be 
found in Table 1. Outliers (>0.015) are underlined. EEG 
maturation was not appropriate for age by clinical labelling in 
patient 4, 8 and 22 and mildly abnormal in patient 7 and 21. 
We can distinct clearly patient 8 and 22 based on this 
method. Patient 4 had a very abnormal first recording, 
however, with a good maturational trend towards term age. 
This is confirmed in the individual analysis of the histograms. 
Patient 14 is an outlier. It could be explained by the fact that 
the 3rd EEG selection contains continuous active sleep parts 
and some longer periods of high voltage slow wave sleep 
(continuous EEG). Therefore, it looks 'more mature' than his 
actually 37 weeks PMA.   

This new maturational index can be used in addition to 
other known maturational features, like the lengths of the 
interburstintervals, bursts, synchrony and frequency 
parameters [9, 13]. In addition, we were able to reduce the 
number of electrodes while maintaining the diagnostic 
power, using only central electrodes. The EEG grow chart 
composed with the help of computer-aided analysis will 
reduce the costs for the time-consuming clinical assessment. 

 
Figure 3: Concept of EEG content change by means of histogram change. A. Example histograms for one patient with 3 consecutive recordings, B. 
Schematic presentation of the trend change in the histogram shape, C. 20 defined bin heights (%) in function of the postmenstrual age (weeks) for 
channel C3, D. 8 defined statistical measurements in function of the postmenstrual age (weeks) for channel C3.  
 



  

 TABLE 1: MEAN RESIDUAL ERROR USING THE 6 RELEVANT FEATURES, 
AVERAGED OVER THE CONSECUTIVE RECORDINGS FOR DIFFERENT 
REGIONS OF THE BRAIN 

 Region of the brain 
Frontal Central Temporal Occipital 

PT 1 0,011 0,010 0,011 0,013 
PT 2 0,015 0,008 0,010 0,013 
PT 3 0,008 0,012 0,010 0,010 
PT 4 0,012 0,013 0,013 0,012 
PT 5 0,008 0,010 0,012 0,012 
PT 6 0,010 0,011 0,011 0,011 
PT 7 0,017 0,016 0,017 0,015 
PT 8 0,014 0,015 0,016 0,015 
PT 9 0,009 0,006 0,008 0,007 

PT 10 0,014 0,013 0,014 0,011 
PT 11 0,009 0,006 0,005 0,009 
PT 12 0,014 0,012 0,010 0,010 
PT 13 0,015 0,013 0,014 0,013 
PT 14 0,019 0,017 0,018 0,015 
PT 15 0,007 0,007 0,007 0,009 
PT 16 0,008 0,014 0,013 0,008 
PT 17 0,009 0,009 0,009 0,006 
PT 18 0,007 0,007 0,005 0,008 
PT 19 0,015 0,012 0,011 0,011 
PT 20 0,011 0,011 0,010 0,009 
PT 21 0,011 0,016 0,014 0,018 
PT 22 0,015 0,020 0,018 0,018 

 

 
Figure 4: Feature relevance for maturation for the 28 predefined 
features. The grey features have been selected for further analysis. 

IV. CONCLUSION 

The developed algorithm reveals an interesting 
maturational parameter, in addition to the traditional 
heuristic features, such as the bursts / interburstintervals and 
the synchrony. No preselection of data epochs is required if 
no major artefacts are present, which simplifies analysis 
procedure and removes one key subjective step in the 
preprocessing. Our method would also allow more global 
assessment by integrating over longer time periods, which 
would be challenging if not impossible to evaluate visually 
as is done in the conventional clinical EEG reading. In 
addition, our approach would allow objective and 
quantitative follow-up of the individual maturation over 
time, which opens a more sensitive means for discovering 
relative dysmaturity and/or neurological morbidities.    

Our method was using linear regression to assess accuracy 
in developmental assessment, however future work with 

nonlinear regression with the postmenstrual age might 
provide better accuracy as suggested by the partly non-linear 
evolution of many of our features (see Fig2C). The residual 
error is calculated over the sequential recordings, some 
information about a single record can be lost. Therefore, a 
closer look to the individual histograms can add some 
information. We also want to acknowledge that LL maybe 
sensitive to the choice of filter settings, which could be 
optimized for the purpose as recently described [7].  
Furthermore, we want to combine the retrieved maturational 
indexes in an EEG premature growth chart. Confidence 
bands, related to normality, with polynomial regression 
models will be defined. In this way, automated analysis 
would improve the neonatal assessment and be of high value 
in the clinic.  
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