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Abstract
Speaking style conversion is the technology of converting nat-
ural speech signals from one style to another. In this study,
we focus on normal-to-Lombard conversion. This can be used,
for example, to enhance the intelligibility of speech in noisy
environments. We propose a parametric approach that uses a
vocoder to extract speech features. These features are mapped
using Bayesian GMMs from utterances spoken in normal style
to the corresponding features of Lombard speech. Finally, the
mapped features are converted to a Lombard speech waveform
with the vocoder. Two vocoders were compared in the proposed
normal-to-Lombard conversion: a recently developed glottal
vocoder that decomposes speech into glottal flow excitation and
vocal tract, and the widely used STRAIGHT vocoder. The con-
version quality was evaluated in two subjective listening tests
measuring subjective similarity and naturalness. The similarity
test results show that the system is able to convert normal speech
into Lombard speech for the two vocoders. However, the sub-
jective naturalness of the converted Lombard speech was clearly
better using the glottal vocoder in comparison to STRAIGHT.
Index Terms: speaking style conversion, vocal effort, Lombard
speech, glottal vocoder, Bayesian GMM

1. Introduction
Speaking style conversion is the technology of converting nat-
ural speech signals spoken in a particular style to another (e.g.
whisper to shouting or normal to Lombard) while retaining the
voice and linguistic information of the original speech signal.
Speaking style conversion has multiple potential applications,
such as personalizing speech to the needs of the end-listener
and mapping speech that is difficult to understand in such a
way that the signal becomes more intelligible. In the latter ap-
plication, for example, normal speech could be converted into
clear speech for hearing-impaired listeners. Similarly, people
with normal hearing capacity could benefit from conversion
of soft speech to a more intelligible style, such as Lombard
speech [1], in noisy environments. It should be noted that in
addition to keeping the linguistic and speaker information un-
changed, a speaking style conversion system should not sac-
rifice speech quality. Therefore, this area of study calls for
advanced technologies both in signal processing and machine
learning. Speaking style conversion is related to other areas of
speech technology such as statistical parametric speech synthe-
sis (SPSS) [2], voice conversion (VC) [3], emotional voice con-
version [4, 5] and speech intelligibility enhancement [6]. The
topic can, however, be considered as a research area of its own
because it differs from all the above areas: There is, for ex-
ample, no linguistic-to-acoustic mapping as in speech synthe-
sis and the conversion is not constrained by a strict latency re-
quirement as in speech intelligibility enhancement. In the cur-

rent study, we focus on converting normal speech to Lombard
speech.

Compared to SPSS and VC, speaking style conversion has
been studied only in a few previous investigations [7, 8, 9, 10],
and the scope has been limited mainly to conversion of single
words [8], isolated vowels [9], or logatomes (pseudo-words of
one or many syllables) [7], rather than continuous speech. On
the other hand, Lombard speech has been studied extensively in
other areas of speech technology, such as SPSS [11] and intel-
ligibility enhancement [12]. To our knowledge, the only previ-
ous study on normal-to-Lombard speaking style conversion was
published in [8]. This study involves a rule-based solution that
converts single words of normal speech to Lombard speech by
modifying the original speech’s fundamental frequency (F0),
spectrum, and phoneme duration.

There are two main approaches to convert a source speech
signal into a target one. One of them is a non-parametric ap-
proach that relies on processing directly the speech signal to
achieve conversion, while the other one is a vocoder-based
parametric approach, in which features are extracted with the
vocoder, modified, and subsequently fed into the vocoder to
synthesize the target speech signal. In this work, we choose
to focus on a vocoder-based parametric approach where the
vocoder is used to extract speech features both from the source
and target styles and machine learning is used to learn a map-
ping between them.

The most widely used vocoder is STRAIGHT [13]. How-
ever, recent speech synthesis studies have shown that the so-
called glottal vocoders constitute an effective alternative to
STRAIGHT [14]. Given this, the goal of the current study
is to build a speaking style conversion system and analyze its
performance in normal-to-Lombard conversion by specifically
exploring differences between STRAIGHT and a recent ver-
sion of glottal vocoders [15]. Since the glottal vocoder aims
to parameterize two main parts of natural speech production,
the glottal excitation and vocal tract, we hypothesize the glot-
tal vocoder to be a better vocoder candidate for the normal-to-
Lombard conversion task. The speech features to be converted
include the spectral tilt, F0, energy and duration, which are all
known to be affected when natural talkers change their speaking
style from normal to Lombard [16, 17]. To transform spectral
and energy parameters, we employ Bayesian Gaussian mixture
models (BGMMs) [18], while the duration mapping is achieved
in a straightforward manner using frame-based interpolation of
the vocoder features. BGMMs have the advantage of being less
affected by overfitting than standard GMMs, which are used
frequently in voice conversion [19]. This becomes particularly
relevant in the current work, due to the limited availability of
training data of Lombard speech. To the best of our knowledge,
Bayesian extensions to standard GMMs have been applied pre-
viously in voice-conversion related research only in [20].



2. Speaking style conversion system
The speaking style conversion system is detailed in Figure 1.
Prior to the actual conversion, the training is carried out as
follows: First, a vocoder (STRAIGHT and the glottal vocoder
studied here) is used to extract speech features (hereby denoted
as vocoder features) at frame-level from both the source and
target styles. Second, a mapping between the source and cor-
responding target features is learned for each of the selected
vocoder features (here using BGMMs). Then, at the time of
application: 1) Vocoder features are extracted from the given
source-style speech signal, 2) the selected features are mapped
to the target style, and 3) given all the vocoder features (the
mapped features and the unmodified features), the vocoder syn-
thesizes a speech signal in the required target style.

The current work aims to convert normal speech to Lom-
bard speech by modifying the following attributes of the speech
signal: 1) spectral tilt, 2) F0, 3) energy, and 4) duration of
speech. Vocoder features representing the first three are mapped
using one BGMM per feature. All three vocoder features were
mapped for voiced frames, and energy was also mapped for (ac-
tive) unvoiced frames. The voicing decision was made based on
F0, while silent frames were detected using F0 and an energy
threshold criterion. For training, the alignment of normal and
Lombard frames was done using dynamic time warping (DTW)
[21]. Aligned normal-Lombard frames that were in the opposite
voiced/unvoiced categories were discarded from the training.

In order to modify the duration of the utterances, we scaled
the duration of the voiced and unvoiced regions separately. The
scaling was calculated as the mean ratio between the location
of the aligned frames of the source and target styles in their
corresponding utterance (outliers likely due to inaccuracies in
DTW were removed). The scale values obtained were 1.08 and
0.88 for voiced and unvoiced regions respectively (in line with
previous works [22]). The voiced and unvoiced regions were
stretched and compressed, respectively, using frame-based in-
terpolation. The duration modification was applied prior to
BGMM mapping; non-converted features’ duration was also
modified. Furthermore, prior to synthesis, and to reduce distor-
tions on the converted samples, the trajectories of the mapped
features were smoothed with a moving average.

2.1. Vocoders

• Glottal vocoder - We use a recent variant of the glottal
vocoder [14], which was originally developed for use in SPSS
[2]. It uses quasi-closed phase (QCP) [23] glottal inverse fil-
tering to decompose speech into a vocal tract filter and glottal
flow excitation. Based on this, a deep neural network-based
glottal pulse generation method was proposed in [15]. How-
ever, in contrast to text-to-speech, the present voice transforma-
tion task allows direct access to the original signal. Thus, in
this work we use the vocoding procedure in [15] without any
waveform modeling, but rather use the original estimated glot-
tal waveforms as such. This is similar to linear prediction (LP)
residual pitch-synchronous overlap-add (PSOLA) [24], and is
not conventional vocoding in the sense that synthesis also uses
non-parametric information. To parametrize speech, the follow-
ing features are extracted with the vocoder: 1) log-energy, 2)
harmonic-to-noise ratio (HNR), 3) F0, 4) vocal tract line spec-
tral frequencies (LSFs), denoted here as LSFV T , and 5) glottal
source LSFs, denoted LSFglott. The LSFglott (for spectral
tilt), F0 and energy vocoder features are chosen for the normal-
to-Lombard conversion.

• STRAIGHT vocoder - This is a widely known speech
vocoder that obtains a smooth spectral envelope such that the
periodicity interference is minimized [13]. Here, the features
extracted during analysis are: 1) the aperiodicity energy bands,
2) F0, and 3) the spectral envelope, represented through a Mel-
generalized cepstrum (MGC). The features mapped are F0 and
spectral tilt. Spectral tilt is modified by mapping the first two
Mel cepstrum coefficients (c1 and c2) of the MGC feature, and
keeping the other coefficients unchanged, as in [25]. Since the
STRAIGHT vocoder does not include an explicit energy fea-
ture, energy adjustment was performed on the final synthesized
speech signal. This was done at frame-level, and the signal was
synthesized using overlap-add.

2.2. Bayesian GMM mapping

For the current work of style conversion, a BGMM between the
two styles is trained for each vocoder feature. Vocoder features
from the source style, xs, and target style, xt, are concatenated
to obtainD-dimensional training data x = [xs, xt]

T . Let X =
[x1, ..,xN ] be modeled by a BGMM with K Gaussians with
parameters {θk}Ki=1 and weights {πk}Ki=1, the likelihood of X
is defined as

p(X|θ,π) =
K∑

k=1

πkN (θk) (1)

In the Bayesian setting we consider a prior on the model pa-
rameters and aim to infer their posterior distribution. The
prior on the weights was chosen as the Dirichlet distribution
i.e. π ∼ Dir(α0), where α0 is a K-dimensional parame-
ter. We consider full covariance Gaussians parameterized by
the mean µ and precision Λ, i.e. θk = {µk, Λk}. The con-
jugate prior is chosen for θ as the Normal-Wishart distribution
i.e. θk ∼ NW(m0, β0,W0, ν0), where mean m0, scale ma-
trix W0, real values β0 > 0 and ν0 > D − 1 are parameters
of the NW distribution [18]. Latent variables {zi}Ni=1 denote
the Gaussian to which each of the N data points {xi}Ni=1 are
assigned.

There is no direct analytic solution for the posterior distri-
bution of the BGMM parameters. This paper uses variational
inference method [18] that approximates the analytically in-
tractable posterior with a tractable distribution called variational
distribution q(z,π,µ,Λ). This is done by making the follow-
ing independence assumption:
q(z,π,µ,Λ) ≈ q(z)q(π,µ,Λ) = q(z)q(π)

K∏
k=1

q(µk,Λk)

(2)
Kullback–Leibler (KL) divergence to the true posterior is
then minimized to find the variational distribution. Since
we use conjugate priors, q(π) is another Dirchlet distribution
Dir(α), and q(µk,Λk) another Normal-Wishart distribution
NW(mk, βk,Wk, νk) [18]. In practice, the final update equa-
tions are similar to the expectation–maximisation (EM) algo-
rithm that iterates between finding the probabilities q(z) (called
responsibilities) based on the current model q(π)q(µ,Λ), and
updating model parameters based on the current responsibili-
ties.

During application, the new source vocoder feature, ys,
needs to be mapped to the target, yt. Let us first calculate the
probability of data y = [ys, yt]

T given data X (modeled by
the BGMM), p(y|X), called as the posterior predictive

p(y|X) =
1

α̂

K∑
k=1

αkSt(y|mk,Σk, νk + 1−D)

where, Σk =
1 + βk

(νk + 1−D)βk
W−1

k

(3)



Duration
modification

Duration
modification

Duration
modification

Duration
modification

BGMM
mapping

BGMM
mapping

BGMM
mapping

Vocoder features
extraction

normal
speech

Vocoder
synthesis

converted
Lombard
speech

spectral tilt

energy

F0

remaining
vocoder
features

spectral tilt′

energy′

F0′

remaining
vocoder
features

SIGNAL-LEVEL FRAME-LEVEL SIGNAL-LEVEL

Figure 1: Block diagram of the proposed speaking style conversion system. Prior to the conversion, the Bayesian Gaussian mixture
models (GBMMs) are trained using pairs of normal and Lombard speech utterances.

That is, a mixture of multivariate Student’s t-distributions St

with kth component having means mk and covarianceΣk; and
αk is the kth term in α and α̂ =

∑
k αk [18].

Let us consider the parameters of the kth multiavariate Stu-
dent’s t in Eq. (3) as block matrices mk = [ms, mt]

T and
Σk =

[
Σss Σst
Σts Σtt

]
. Now the MMSE estimate of xt can be cal-

culated, similar to a GMM mapping [26], as

ŷt =

K∑
k=1

p(k|ys,X)[mt +ΣtsΣ
−1
ss (ys −ms)] (4)

where p(k|ys,X) is the marginal probability of the kth compo-
nent in Eq. (3), and the other term is the mean of the kth com-
ponent in the conditional over the posterior predictive in Eq. (3)
(see Section 10.7 of [27]). MATLAB codes for the BGMM
mapping are available under an open source license1.

3. Experimental setup
3.1. Data

Recordings from 10 Finnish speakers [28], with 4 female and 6
male speakers, were used for the current study. The recordings
involved each speaker reading a text of 90 words, approximately
one minute in duration. The same text was produced in two
speaking styles, normal and Lombard speech. In order to elicit
Lombard speech, the speakers heard background noise in their
headphones while they were being recorded [28]. The record-
ings of each speaker, split into 11 utterances for each speaking
style and down-sampled from 48 kHz to 16 kHz, were used in
our experiments.

3.2. Normal-to-Lombard speech conversion

During feature extraction, analysis frames of 25 ms with a 5-
ms frame shift were employed. For the glottal vocoder, the
LSFglott and LSFV T features were 10 and 30-dimensional,
respectively, the HNR feature consisted of 5 frequency chan-
nels, and F0 (as well as the glottal closure instants used in QCP)
was computed using the REAPER tool [29]. In the STRAIGHT
vocoder, the features consisted of 21 aperiodicity energy bands
and the first 40 MGC coefficients (without the log-energy co-
efficient c0). As in the glottal vocoder, F0 was extracted using
REAPER [29]. The durations were modified using cubic spline
interpolation for all features of the two vocoders, except for
glottal vocoder’s glottal excitation pulses, where nearest neigh-
bour interpolation was applied.

1https://github.com/shreyas253/BGMM Mapping

For the mapping, BGMMs were trained for each speaker
and each vocoder feature using the utterances of the remain-
ing speakers in the dataset (both females and males) as training
data. Specifically, frame pairs of normal and Lombard speech
of the corresponding feature to be mapped were used in train-
ing each BGMM. Since the Bayesian approach does not suf-
fer from overfitting with even a large number of Gaussians,
this number was fixed to K = 100 for all the vocoder fea-
tures as significant improvements in terms of root-mean-square
(RMS) error were not observed for larger values during a sep-
arate 10-fold cross-validation. Furthermore, the BGMM com-
ponent means and precisions were modelled with prior distri-
bution NW(µ0, β0,W0, ν0), whose parameters were set sim-
ilar to those recommended in [30]: µ0 and W0 were set to the
dataset mean and precision, β0 = 1, and ν0 = D + 2. The
concentration parameter α0 was set to the all ones vector.

3.3. Evaluation

Two listening tests were conducted to evaluate the quality of
the samples obtained with the conversion system for the two
vocoders, using the modified BeaqleJS evaluation framework
[31]. 13 listeners took part on the first test, while 12 of the
same listeners took part on the second test; all the listeners were
Finnish natives.

The first evaluation was a similarity test, in which the
perceptual similarity between the converted Lombard speech
(vocoded either with the glottal vocoder or STRAIGHT) and
natural Lombard speech was evaluated. The listeners were
asked to rate, using a continuous scale from 1 to 5, how
much a converted speech sample resembles a natural Lombard
speech sample (1: none, 2: little, 3: moderately, 4: much, 5: very
much). In rating the test sample, the listeners were given a non-
converted reference which was generated by vocoding the cor-
responding sentence produced using normal speaking style. The
listener was allowed to listen to the samples as many times as
he/she wished. For this task, 16 utterances were randomly se-
lected from the dataset (4 females and 4 males; 2 utterances
per speaker). Therefore, since the listeners rated the conver-
sion system for the two vocoders, each listener rated 32 test
cases, which were presented in random order. Prior to the actual
test, each listener had a training session in order to familiarize
him/her with Lombard speech. In this training session, a subject
was able to listen to a few sample pairs of normal vs. Lombard
speech. The utterances of the training session were not used
later in the test. Furthermore, the listeners were asked to adjust



Figure 2: Similarity test results, given in a scale from 1 to 5
that rates the resemblance of the converted sample to Lombard
speech (1: none, 2: little, 3: moderately, 4: much, 5: very much).

the volume to a loud yet comfortable level during the training
session and to keep the chosen volume unchanged during the
actual test.

The second evaluation was a pairwise comparison test, in
which the naturalness of converted Lombard speech samples
from the glottal vocoder and STRAIGHT were compared by the
listeners. In this evaluation, the subjects listened to two versions
of the same sentence, denoted as A and B, that represented the
conversion conducted using the glottal vocoder or STRAIGHT,
presented in a random order. The listener was asked which one
sounds more natural. In addition, the listener was allowed to
indicate if he/she had no preference to either. The listener could
listen to the samples as many times as he/she wished. In this
task, the listeners evaluated 24 test cases; the 24 utterances were
selected randomly from the dataset (4 females and 4 males; 3
utterances per speaker).

4. Results
A boxplot of the similarity test results is shown in Figure 2: the
central red line indicates the median, the boxes’ edges are the
25th and 75th percentile, and the whiskers extend to the most
extreme data points. Outliers are marked as red crosses. These
results reveal that the speaking style conversion system is able
to transform normal speech towards Lombard speech for the
two vocoders. However, there are some gender specific distinc-
tions: the median rate for the glottal vocoder-based system is
slightly larger than the median rate for STRAIGHT in case of
male speakers, while for female speakers the median rates have
almost the same value.

Table 1 shows the results of the pairwise comparison test
for naturalness of the speech; the results are shown as percent-
ages of preference between the converted samples based on the
glottal vocoder and STRAIGHT. The results show that the con-
verted samples from the glottal vocoder case were clearly pre-
ferred in terms of naturalness (98.61% for males, and 97.92%
for females) over those of STRAIGHT. Furthermore, there was
also a very small number of cases in which the listeners had no
preference between the two vocoders.

5. Conclusions
In this work, we proposed a speaking style conversion system to
perform conversion from normal speech (source speaking style)
to Lombard speech (target speaking style). In this system, a
normal speech sample is converted by mapping (a selected set
of) its speech features, extracted with a vocoder, into the corre-
sponding features of Lombard speech using BGMMs, and sub-

Table 1: Results of preference task on naturalness, presented in
percentages [%]. No pref. stands for ’No preference’.

Glottal
vocoder STRAIGHT No pref.

Male 98.61 0.69 0.69
Female 97.92 0.00 2.08

sequently using the vocoder with these features to synthesize
speech in the target speaking style (Lombard speech). The con-
version system involved a recently developed glottal vocoder
that decomposes speech into a vocal tract filter and glottal flow
excitation. This vocoder was compared in the proposed normal-
to-Lombard speech conversion to the widely used STRAIGHT
vocoder.

Two subjective listening tests were employed to evalu-
ate the conversion quality of the proposed system for the two
vocoders. First, a similarity test evaluated the resemblance
of the converted Lombard speech to natural Lombard speech.
The results revealed that the conversion system was able to
achieve conversion from normal to Lombard speech for the two
vocoders. Both vocoders achieved the same level of resem-
blance to natural Lombard speech for female speakers. How-
ever, for males, the glottal vocoder was rated higher in resem-
blance than STRAIGHT. A possible explanation for this is that
male voices are generally easier to parameterize accurately with
glottal vocoders than female voices due to their lower pitch
[32, 33], which makes the estimation of the glottal source with
QCP more accurate. Second, a preference task compared the
naturalness of the converted samples from both vocoders. The
results showed that the converted samples obtained with the
glottal vocoder were clearly more natural than those obtained
with STRAIGHT.

While both vocoders managed to obtain similar ratings for
Lombard-likeness of the speech, the converted samples from
STRAIGHT vocoder presented artefacts (such as buzzing) that
were more disruptive to the human ear in terms of naturalness
than the artefacts present on the converted samples with the
glottal vocoder. This would partly explain the clear preference
of the listeners towards the glottal vocoder’s samples.

Finally, it should be noted that the similarity test results
showed that the rate of resemblance to natural Lombard speech
of the converted Lombard samples did not reach a high level
for any of the vocoders. The difference between natural nor-
mal speech and natural Lombard speech is prominent and there
are many acoustical properties that change from one style to an-
other. In the present work, the features selected for conversion
were spectral tilt, F0, energy, and duration. The changes in the
vocal tract are also key in Lombard speech, but these were not
included in the current system to maintain simplicity. In conse-
quence, further studies should involve vocal tract modifications
that might increase the resemblance of the converted samples
towards Lombard speech. In addition, while the BGMMs used
in the present study provide a robust alternative for the map-
ping between speaking styles when the amount of training data
is limited, the use of other alternative methods such as standard
GMMs and DNNs should be explored and compared in the fu-
ture together with larger amounts of training data.
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