
Generating Hyperdimensional Distributed Representations from Continuous-
Valued Multivariate Sensory Input

Okko Räsänen (okko.rasanen@aalto.fi)

Department of Signal Processing and Acoustics. Aalto University
PO Box 00076 AALTO, Finland

Abstract

Hyperdimensional computing (HDC) refers to the
representation and manipulation of data in a very high
dimensional space using random vectors. Due to the high
dimensionality, vectors of the space can code large amounts
of information in a distributed manner, are robust to variation,
and are easily distinguished from random noise. More
importantly, HDC can be used to represent compositional and
hierarchical relationships and recursive operations between
entities using fixed-size representations, making it intriguing
from a cognitive modeling point of view. However, the
majority of the existing work in this area has focused on
modeling discrete categorical data. This paper presents a new
method for mapping continuous-valued multivariate data into
hypervectors, enabling construction of compositional
representations from non-categorical data. The mapping is
studied in a word classification task, showing how rich
distributed representations of spoken words can be encoded
using HDC-based representations.

Keywords: hyperdimensional computing; distributed
representations; speech recognition; memory

Introduction
Hyperdimensional computing (HDC) was first introduced
by Kanerva (1988) in the context of his neurally inspired
memory model called sparse distributed memory (SDM).
HDC is based on the idea that the distances between
concepts in our minds correspond to distances between
points in a very high-dimensional space (Kanerva, 2009).
Since its introduction, HDC has been used successfully in
modeling of analogical processing (Plate, 1995; see also
Eliasmith & Thagard, 2001), latent semantic analysis
(Kanerva et al., 2000), multimodal data fusion and
prediction (Räsänen & Kakouros, 2014), robotics (Jockel,
2010), and, e.g., cognitive architectures (Rachkovskij et al.,
2013; see also Levy & Gayler, 2008; Kelly & West, 2012)
as it successfully bridges the gap between symbolic
processing and connectionist systems.

In typical systems using HDC, discrete entities wi (e.g.,
symbols, states or words) are represented with randomly
generated binary, ternary, or continuous-valued vectors yi of
huge dimensionality h, typically counted in thousands (e.g.,
Kanerva, 1988; Kanerva et al., 2000). These vectors can
have only a small number of non-zero elements (as in
SDM), or they can be fully dense. In all cases, the large
dimensionality of such vectors leads to a number of
interesting properties (see Gallant & Okaywe, 2013, for a
recent overview). Firstly, the representations are highly

robust against distortions, noise, and degradation due to the
distribution of information across numerous dimensions.

Secondly, the distribution of the mutual distances
between all possible random vectors is tightly packed
around the mean of the distances. In the case of random
hypervectors with zero mean, the pair-wise linear
correlation ρ(ya,yb) ∈ [-1, 1] between almost any two
randomly drawn vectors ya and yb is very close to zero
(Kanerva, 2009). This quasi-orthogonality of random
vectors leads to the practical property that a set of unrelated
items can be represented as the sum of the hypervectors
corresponding to the items in the set. For example, a set
{w1, w2, w3} can be coded as yset = y1+y2+y3, and this
process is usually referred to as chunking. The obtained
representation yset is much more similar to its components
than any unrelated vectors in the hyperspace, and therefore
the individual items can still be recovered from the holistic
representation if the codes of all possible items are known
(see Gallant & Okaywe, 2013, for a capacity analysis). In
addition, HDC can overcome the superposition catastrophe
of distributed representations by using invertible vector
operations such as circular convolution to bind vectors
together (Plate, 1995). For instance, correct attribute
encoding of a sentence “black cats and red balls” could be
represented with y = yblack⊗ycats+ yred⊗yballs + yand if each
unique word is assigned with a random vector and where ⊗
denotes the binding operation. Importantly, the dimension
of the representations always stays fixed during the
chunking and binding operations, ensuring that distance
metrics between representations of different granularity and
combinatorial complexity are always defined.

However, a major challenge in applying HDC to many
real world problems has been that the world, as sensed by a
number of senses (or sensors), does not give rise to
inherently categorical (discrete) representations before some
learning takes place. The idea of using random vectors for
different inputs is only applicable after the data has been
clustered or quantized into a finite number of representative
states or receptive fields. Given the theoretically interesting
properties of HDC, it would be useful to be able to represent
non-categorical multivariate inputs such as speech in a
HDC-compatible form without imposing hard quantization
on the input features before further processing.

In order to address this issue, the present paper describes
a method for transforming continuous multivariate data into
quasi-orthogonal random vectors. The transformation
maintains local distance metrics of the original feature

space, allowing generalization across similar tokens, while
simultaneously mapping more distant inputs into nearly
orthogonal random vectors that is a requirement for the
efficient use of chunking and binding operations. In
comparison to the previously suggested scatter code
(Stanford & Smith, 1994), the present method is not limited
to binary vectors, enabling higher representational capacity
in vector spaces of the same dimension. The proposed
method is evaluated in a spoken word classification task
using a simple prototype memory for acoustic modeling.

S-WARP mapping for multivariate data
The core of the mapping problem is that many types of data
such as spectral features of speech do not come in discrete
and mutually exclusive categories wi ≠ wj (i ≠ j) that can be
assigned with unique random vectors but as multivariate
observations xt with varying degrees of similarity
(correlation) between the vectors. The correlation is a
problem because it significantly affects the coding capacity
of the hyperspace as the entire idea of HDC is to operate on
quasi-orthogonal representations. However, in order to
generalize between different tokens of the same category,
the correlation between the original features should be also
reflected in the derived hyperdimensional representations,
and therefore arbitrarily small differences in the input
cannot lead to orthogonal codes in the hyperspace.

Given this, the minimal set of desired properties in the
mapping y = f(x) from a low-dimensional space F to a high-
dimensional space H can be listed as follows:

1) Local similarities between input vectors must be
approximately maintained, enabling generalization
towards new input tokens.

2) Distant inputs should be coded with quasi-orthogonal
vectors, maximizing coding capacity of the
hyperspace.

3) A continuous distance metric between original vectors
should be also continuous and smooth in the
hyperspace.

4) The local/distant trade-off in the requirements in 1)
and 2) should be controllable.

The desired properties are illustrated in Fig. 1.
In order to approach a solution to the mapping problem,

let x denote a feature vector of dimension d = |x| with
feature values xi, i = [1, 2, …, d] from the feature space F.
In addition, let M denote a mapping matrix of size h x d
where h is the dimension of the hyperspace H (h >> d). In
the case of a trivial random mapping from F to H, one can
initialize M as a randomly generated binary matrix (all
values randomly set to +1 or -1) and then linearly expand
the original feature vector x as:

€

y = Mx (1)
This type of random mapping approximately preserves the
relative distances in F (the Johnson-Lindenstrauss Lemma).
However, this only makes use of a subspace S ∈ H of the
entire hyperspace due to the fixed mapping from each xi to a
set of yj, j ∈ [1, h]. In other words, M acts as a single basis
in H, and the distance metrics are linearly preserved. In

Fig. 1. An example of desired hyperspace mapping
properties in terms of distance metrics. The x-axis shows the
correlation ρ(xa,xb) ∈ [-1, 1] between two data points in the
low-dimensional input space and the y-axis shows the cross-
correlation ρ(ya,yb) between the corresponding
hypervectors. Ideally, local similarity (high ρ) is carried
over to the hyperspace while the hypervectors of distant
inputs are independent of each other. Preservation of anti-
correlations (ρ ≈ -1) can also be beneficial for some tasks.

order to achieve orthogonalization between distant inputs,
different mapping matrices Ma and Mb should be used for
feature vectors xa and xb that are far apart in the original
feature space. Simultaneously, the same mapping matrix
Mcd should be used for two vectors xc and xd that are similar
to each other in F in order to maintain similarity in H also.
The problem then is the selection of the best possible
mapping matrix Mi for each input vector xi. In addition, the
transition between matrices Mi and Mj should be smooth so
that the mapping does not introduce points of discontinuity
in the distance metrics between inputs xi and xj.

We propose that a deterministic mapping with efficient
use of the entire hyperspace can be achieved as a linear
combination of individual mappings. More specifically, let
us define Mi (i = [1, 2, …, v]) as a set of v random mapping
matrices. Then the mapping x à y can be written as

€

y = λiMix
i=1

v
∑ (2)

Since each individual mapping with a random matrix Mi
approximately preserves the distance metrics in a linear
manner, the weights λi can be used to control the rate of
change from one basis to another (Fig. 2). From now on, we
will refer to the formulation in Eq. (2) as Weighted
Accumulation of Random Projections (WARP). In the
absence of any external knowledge of the input, the weights
λi of each single mapping are determined by the input vector
itself:

€

λi = f (x) (3)
In other words, the hypervector is a result of v random

mappings i = [1, 2, …, v] into the hyperspace H with each
individual mapping i weighted by a value that is derived
from the vector itself that is being mapped. We will refer to
this self-regulated mapping as S-WARP.

Fig. 2. A schematic view of the mapping in Eq. (2) utilizing
a linear combination of multiple individual mappings. Each
individual mapping matrix Mi acts as a pointer to a sub-
space of H, and pairs of data points ending up in different
sub-spaces become quasi-orthogonal with a high
probability. Smooth transitions between sub-spaces are
ensured by a weighting function that is a continuous
function of the input itself.

Possibly the simplest way to implement S-WARP would

be to use the elements of the input vector x directly as the
weighting coefficients but then the mapping would be
indifferent to the sign of the input vector, i.e., y =f(x) = f(-
x). This problem can be avoided by using the absolute value
of the coefficients instead:

λi = (xi
α / x j

j
∑

α
) (4)

The additional parameter α in Eq. (4) controls the amount of
orthogonalization by controlling the rate at which the
hyperspace basis matrices Mi change when values of x
change. When α has a high value, two vectors have to be
very close in the original space F in order to end up close in
the hyperspace whereas more distant vectors tend towards
quasi-orthogonal representations (cf. Fig 1).

When the weights of Eq. (4) are used in the mapping
described in Eq. (2), all previously listed requirements are
satisfied. The mapping is also scale invariant with respect to
the resulting hypervector direction, i.e., ρ(f(xa),f(xb)) =
ρ(f(αxa),f(βxb)), where f(x) denotes the mapping operation
and α and β are constants, while the magnitude of the
resulting hypervector will be affected. This is not the case
for the previously introduced scatter code (Stanford &
Smith, 1994) where the direction of the vector changes if the
input vector is multiplied by a constant.

However, the weighting scheme in Eq. (4) still has a
shortcoming. Consider two vectors xa and xb with possibly
different signs and scale but similar relative order of
magnitudes within the set of largest elements. After
applying Eq. (4), the weights λi become similar for the two
vectors, and they are mapped using a similar set of mapping
matrices M. Since the non-linearity of the distances in the
hyperspace is caused by the use of different weights for
different vectors, the distance between the two different
vectors xa and xb using the similar weights λ becomes
linearized. With large values of α, the mapping becomes

Fig. 3. Correlation ρ(xa,xb) of random vectors in the
original space F (x axis) and the corresponding correlation
ρ(ya,yb) in the hyperspace H (y axis) as a function of α in
Eq. (6) (columns) and dimension d of the input vectors
(rows).

dependent only on the largest magnitude elements in the
input and thus the probability of linearization increases. In
practice, this phenomenon limits the maximum value of α
that still leads to a consistent mapping with a sufficiently
high probability. The risk of linearization is also dependent
on the dimension d of the original vectors.

The effects of α and d on the mapping of Eq. (2) and (4)
are illustrated in Fig. 3, where correlations between pairs of
randomly generated original low-dimensional vectors and
the corresponding hypervectors are plotted. As can be
observed, α successfully controls the non-linearity of the
distances in the hyperspace, but the non-linearity breaks
down for a large ratio of α/d. For increasing α, increasingly
many vector pairs maintain linear or near-linear mutual
distance across the mapping.

As the largest useful non-linearity factor α of a single
hyperspace mapping is determined by the dimension d of
the input vectors, the problem can be easily solved by
simply first expanding the original d-dimensional input data
into a higher dimension h1 > d using linear random mapping
in Eq. (1) before applying S-WARP in Eq. (2). Another
option is to recursively apply S-WARP mapping with a
smaller value of α, in which case the non-linearity will
gradually increase towards a desired level.

The linear expansion approach is demonstrated in Fig. 4,
where random x of original dimension d = 10 are first
mapped into a 300-dimensional space with a randomly
generated fully dense expansion matrix E (all elements +1
or -1) according to y´ = Ex, and then the resulting y’ are
mapped into hypervectors y according to Eq. (2) with
weights according to Eq. (4). As can be observed, the
linearization problem is now absent, confirming that the
linear expansion is sufficient for avoiding the linearization
artifacts occurring with small d and/or large α. In general,
the method is successful at generating quasi-orthogonal
representations for weakly-correlated inputs.

Spoken word classification with HDC
S-WARP was studied in word recognition from speech.
Since the current goal was to study hypervectors’ capability

−1 0 1
−1

0

1

l(
y a,y

b)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

l(
y a,y

b)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

l(xa,xb)

l(
y a,y

b)

−1 0 1
−1

0

1

l(xa,xb)
−1 0 1
−1

0

1

l(xa,xb)
−1 0 1
−1

0

1

l(xa,xb)

_ = 7_ = 5_ = 3_ = 1

d=10

d=30

d=50

to code structural information of time-varying signals, the
experiment was limited to the classification of a small
vocabulary of words that had been segmented from
continuous speech using the available word-level annotation
of the data.

Data
The speech data consisted of 2397 utterances from the four
main talkers of the CAREGIVER Y2 UK corpus (Altosaar
et al., 2010). The material consists of child directed speech
with an overall vocabulary size of 79 unique words (silences
excluded). Each signal corresponding to an utterance was
segmented into individual words using the associated word-
level annotation. Separate training and testing sets were
created for each of the four talkers by choosing 80% of the
first words as the training samples (N = 10423 ±4.6 for each
talker) and the remaining 20% as the test samples (N = 2606
±1.1) in the order of appearance in the corpus. A total of 79
unique words occurred in the training data of which 71 also
occurred in the test set. All models were always trained on
the full set of 79 words.

Experimental setup
The entire word classification architecture is based on
learning a hypervector prototype mw for each word w in the
training data, where the prototype is constructed
incrementally from the short-term spectral features extracted
from the acoustic realizations of the word (Fig. 5).

The audio signal corresponding to a spoken word is first
fed to a pre-processing block where standard Mel-frequency
cepstral coefficient (MFCC) features, including delta and
delta-delta, are extracted using a 32-ms Hamming window
with a step size of 10 ms (a total of 39 coefficients including
energy). Each MFCC vector xt is then used as an input to
the hyperdimensional mapping processs (S-WARP or
scatter code), yielding a hypervector yt for the
corresponding time frame. The temporal structure of the
words is encoded with the binding operation by computing
pair-wise circular convolutions zt,k = yt⊗yt-k

P between all
vectors within 250 ms from each other (k ∈ [1, 2, …, 25])
(cf., Plate, 1995). In the convolution, the preceding vector is
always permuted with a fixed permutation (denoted with yP)
in order to encode temporal order information, since
otherwise yt⊗yt-k = yt-k⊗yt, i.e., making the representation
invariant with respect to the direction of time.

Finally, all the obtained hypervectors yt and zt,k are
additively combined to form a single hypervector yinput for
the current input, and the result is summed to the existing
hypervector model mw for the word w in order to have an
updated model m´w.

yinput = zt,k +

t,k
∑ yt

t
∑

"mw ←mw + yinput
 (7)

As a result of processing the training data, a word model mw
is the sum of all word w realizations, where each realization
is the sum of all frame-based hypervectors and their pair-

Fig. 4. Examples of cross-correlation plots for a two-stage
process where the low-dimensional input vectors are first
expanded to a larger dimension with a linear random
mapping and then used as an input to the non-linear
mapping in Eq. (2). Results for three different values of
non-linearity, namely α = 1, 3, and 9, are shown from left to
right, respectively.

Fig. 5. A schematic view of the word recognition system
used in the current experiment (training stage).

wise circular convolutions (note that the model is of same
dimension as each individual feature frame or each
individual realization of the word). During the training, the
word identity w is always known due to labeling, and the
word models mw for all W unique words are accumulated as
row vectors of a memory matrix H of size W x h. During the
recognition, the input segment is again coded into yinput and
the most likely word label w is obtained by computing the
activation distribution p with

p = 〈H〉yinput (8)
where 〈H〉 denotes H with each row normalized into a unit
vector. The hypothesis wi for the current input is determined
by finding the pi (i ∈ [1, W]) with the largest value.

The experiment was conducted using both binary scatter
code and the continuous-valued S-WARP proposed in the
current paper. The test was repeated for different values of
the non-linearity parameter s of the scatter code, for
different values of α in the present S-WARP formulation,
and with and without the linear expansion layer before the
non-linear mapping. Based on preliminary tests, the size of
the linear expansion layer in S-WARP was always fixed to
dE = 300 in order to ensure that no linearization occurs for
the studied values of α.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

l(
y a,

y b)

l(xa,xb)

_ = 1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

l(xa,xb)

_ = 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

l(xa,xb)

_ = 9

Fig. 6. Word classification accuracies (UAR %) with talker specific models (mean and one standard deviation of the results
across the four talkers). Left: Scatter code (red dashed line) as a function of the non-linearity parameter s and the reference
HMM systems with diagonal and full covariance matrices (“diag” and “fullcov”, respectively). Center: Performance of the S-
WARP with and without the linear expansion layer as a function of the α parameter and with dE = 300. Right: S-WARP
performance as a function of the linear expansion layer size dE with fixed α = 1.5. Hyperspace dimensionality is always set to
h = 4000.

In the scatter code, the integer values of each dimension of
the input space F are first sorted into numerical order and
one of the integers is mapped into a randomly generated
binary vector of dimension h. Then a code for a neighboring
integer is generated by randomly choosing b locations of the
first hypervector and flipping the corresponding bits. The
new vector is then used as a starting point for the next
integer, and the random flipping process is repeated until the
entire range of the input space is covered. In this manner,
the expected Hamming distance of two codes in the
hyperspace is equal to h/2*(1-(1-2/h)*(b*t/h)), where h is
the dimension of the hyperspace and t is the distance in the
original space, i.e., the rate of orthogonalization is
controlled by the proportion s = b/h of flipped bits per
iteration (Smith & Stanford, 1990). After the process is
repeated for each input dimension separately, the resulting
hypervectors are combined with the XOR operation
(Stanford & Smith, 1994) in order to obtain the final
hypervector describing the entire multivariate input vector.

Two other reference systems were also used. The basic
reference was exactly the same setup as the system in Fig. 5
except that the hypervectors y were replaced with the
original low-dimensional MFCC feature vectors x before the
convolution and accumulation. This provides a test for the
benefits of hyperdimensionality in comparison to operating
in low-dimensional spaces. The second reference system
was a standard Gaussian mixture -based continuous-density
hidden-Markov model (GMM-HMM), one HMM trained
for each word. For benchmarking purposes, the number of
states and Gaussians in the HMMs were optimized directly
on the test data, leading to Q = 3 states for all words and M
= 3 Gaussians per mixture. The Gaussians were initialized
using the k-means algorithm, and parameters were estimated
using the Baum-Welch algorithm with four iterations, as
this was found to perform best on the test set.

Classification performance was evaluated in terms of
unweighted average recall (UAR) computed across the
words occurring at least once in the test data (the mean of
word-specific classification accuracies).

Results

Fig. 7. The effect of hyperspace dimensionality h on the
classification accuracy for linear (Eq. 1) and S-WARP (Eq.
2) mappings.

Fig. 6 shows the average results for the speaker-dependent
models across all four speakers. The S-WARP template
system performs at a level comparable with the HMM
system using full covariance matrices, with S-WARP
achieving an UAR of 97.2% (α = 1, dE = 300, h = 4000)
while the HMM reaches on average an UAR of 97.1%.
Without the linear expansion layer, S-WARP achieves an
UAR of 96.6%. The scatter code achieves best performance
of 92.3% correct recognitions at s = 0.00175 (h = 4000)

The word recognition accuracy using the original MFCCs
is 67.9% with convolutional encoding of temporal
dependencies. If only the sum of the individual MFCC
vectors xt is used as a model for each word (i.e., no temporal
convolution), the performance drops to 31.4%. This means
that the S-WARP and scatter code -based HDC
representations are able to maintain information about not
only the average spectrum of a word, but also the evolution
of the spectrum across the word duration and a typical
variability of this trajectory across different realizations of
the word. The latter aspects are lost in a low-dimensional
average MFCC template.

The results also reveal that the degree of distance metric
non-linearity in the mapping has an effect on the overall

0 1 2 3
x 10−3

85

90

95

100

s

re
co

gn
iti

on
 ra

te
 (%

)

scatter code

GMM−HMM (fullcov)

GMM−HMM (diag)

0 2 4 6 8
85

90

95

100

_

re
co

gn
iti

on
 ra

te
 (%

)

S−WARP direct mapping

S−WARP with LinExp

100 200 300
85

90

95

100

dE

re
co

gn
iti

on
 ra

te
 (%

)

S−WARP with LinExp

0 500 1000 1500 2000 2500 3000 3500 4000
60

70

80

90

100

hyperspace dimensionality h

re
co

gn
iti

on
 ra

te
 (%

)

S−WARP

LinExp

results. This is revealed by the scatter code results (Fig. 6,
left) and in the effects of α and dE that control the
orthogonalization in S-WARP (Fig. 6 middle and right).
Note that the use of Eq. (2) with α = 1 and the original data
dimensionality of d = 39 (the MFCC coefficients) already
leads to a relatively large degree of non-linearity, and
therefore the performance of S-WARP without the linear
expansion layer is already optimal at α = 1. However, if α is
fixed and dE is gradually decreased from the default value
of, the performance drops significantly (Fig. 6, right).

Finally, Fig. 7 shows the effect of hyperspace
dimensionality on the results when using standard non-
orthogonalizing random mapping and the proposed S-
WARP mapping. As can be observed, the S-WARP
outperforms the linear mapping with a clear margin but both
benefit from an increasing hypervector dimensionality. This
is expected as the chunking and binding operations assume
that the data lies in a sufficiently high dimensional space.

Conclusions
The current work describes a new method for converting
multivariate inputs into continuous-valued hyper-
dimensional random vectors. The method attempts to solve
the conflicting requirements of similarity preservation and
decorrelation by performing recursive application of self-
modulated random mappings. This leads to
orthogonalization of the input data in a manner that still
allows detection of the degree of similarity in the inputs.
This is a highly relevant property for any cognitive system
utilizing distributed representations, since no learning can
occur without a consistent mapping from sensory input to
internal representations in the memory and without the
ability to measure similarity between the representations. In
contrast to standard (deep) neural networks, the proposed
approach does not involve learning and therefore the quality
of the distributed representations is not dependent on the
amount of training data available for training of the mapping
network. On the other hand, S-WARP does not learn
abstracted features from the data, but simply makes non-
categorical data available for use in HDC –based systems.

The present work also shows that both S-WARP and
scatter code –based HDC representations can be used to
encode the complex time-frequency structure of spoken
words by utilizing the chunking and binding operations of
HDC systems. However, a more systematical approach to
encoding temporally evolving multivariate inputs should be
investigated in future work. In addition, it should be noted
that despite its mathematical simplicity, the large number of
vector operations in S-WARP makes its computational
complexity non-trivial for large-scale experiments.

Acknowledgement
This research was funded by the Academy of Finland and
by Tekes D2I program. The author would like to thank Unto
K. Laine, Sofoklis Kakouros and Jukka P. Saarinen for their
useful comments on the manuscript.

References
Altosaar, T., ten Bosch, L., Aimetti, G., Koniaris, C.,

Demuynck, K., & van den Heuvel, H. (2010). A Speech
Corpus for Modeling Language Acquisition:
CAREGIVER. Proc. LREC’2010, Malta.

Eliasmith, C. & Thagard, P. (2001). Integrating Structure
and Meaning: a distributed model of analogical
mapping. Cognitive Science, 25, 245–286.

Gallant, S. I., & Okaywe, T. W. (2013). Representing
Objects, Relations, and Sequences. Neural Computation,
25, 2038–2078.

Jockel, S (2010). Crossmodal Learning and Prediction of
Autobiographical Episodic Experiences using a Sparse
Distributed Memory. Ph.D. dissertation, Department of
Informatics, University of Hamburg.

Kanerva, P. (1988). Sparse distributed memory. Cambridge,
Mass.: Bradford/MIT Press.

Kanerva, P., (2009). Hyperdimensional Computing: An
Introduction to Computing in Distributed Representation
with High-Dimensional Random Vectors. Cognitive
Computation, 1, 139–159.

Kanerva, P., Kristoferson, J., & Holst, A. (2000). Random
Indexing of Text Samples for Latent Semantic Analysis.
Proc. 22nd Annual Conference of the Cognitive Science
Society, Mahwah, New Jersey, pp. 1036.

Kelly, M. A., & West, R. L. (2012). From Vectors to
Symbols to Cognition: The Symbolic and Sub-Symbolic
Aspects of Vector-Symbolic Cognitive Models. Proc.
34th Annual Conference of the Cognitive Science
Society, Austin, TX, pp. 1768–1773.

Levy, S. D., & Gayler, R. (2008). Vector Symbolic
Architectures: A New Building Material for Artificial
General Intelligence. Proc. Conf. on Artificial General
Intelligence 2008, IOS Press, Amsterdam, pp. 414–418.

Plate, T. (1995). Holographic reduced representations. IEEE
Trans. Neural Networks, 6, 623–641.

Plate, T. (2000). Analogy retrieval and processing with
distributed vector representations. Expert Systems: Int. J.
Knowledge Eng. and Neural Networks, 17, 29–40.

Rachkovskij, D. A., Kussul, E. M., & Baidyk, T. N. (2013).
Building a world model with structure-sensitive sparse
binary distributed representations. Biologically Inspired
Cognitive Architectures, 3, 64–86.

Räsänen, O., & Kakouros, S. (2014). Modeling
Dependencies in Multiple Parallel Data Streams with
Hyperdimensional Computing. IEEE Signal Processing
Letters, 21 899–903.

Smith, D. J., & Stanford, P. H. (1990). A Random Walk in
Hamming Space. Proc. IEEE Intl. Conf. on Neural
Networks, San Diego, California, pp. 465–470.

Stanford, P. H., & Smith, D. J. (1994). The
Multidimensional Scatter Code: A Data Fusion
Technique with Exponential Capacity. Proc. Int. Conf.
on Artificial Neural Networks (ICANN’94), Sorrento,
Italy, pp. 1432–1435.

