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Abstract 

Hyperdimensional computing (HDC) refers to the 
representation and manipulation of data in a very high 
dimensional space using random vectors. Due to the high 
dimensionality, vectors of the space can code large amounts 
of information in a distributed manner, are robust to variation, 
and are easily distinguished from random noise. More 
importantly, HDC can be used to represent compositional and 
hierarchical relationships and recursive operations between 
entities using fixed-size representations, making it intriguing 
from a cognitive modeling point of view. However, the 
majority of the existing work in this area has focused on 
modeling discrete categorical data. This paper presents a new 
method for mapping continuous-valued multivariate data into 
hypervectors, enabling construction of compositional 
representations from non-categorical data. The mapping is 
studied in a word classification task, showing how rich 
distributed representations of spoken words can be encoded 
using HDC-based representations. 
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Introduction 
Hyperdimensional computing (HDC) was first introduced  
by Kanerva (1988) in the context of his neurally inspired 
memory model called sparse distributed memory (SDM). 
HDC is based on the idea that the distances between 
concepts in our minds correspond to distances between 
points in a very high-dimensional space (Kanerva, 2009). 
Since its introduction, HDC has been used successfully in 
modeling of analogical processing (Plate, 1995; see also 
Eliasmith & Thagard, 2001), latent semantic analysis 
(Kanerva et al., 2000), multimodal data fusion and 
prediction (Räsänen & Kakouros, 2014), robotics (Jockel, 
2010), and, e.g., cognitive architectures (Rachkovskij et al., 
2013; see also Levy & Gayler, 2008; Kelly & West, 2012) 
as it successfully bridges the gap between symbolic 
processing and connectionist systems.  

In typical systems using HDC, discrete entities wi (e.g., 
symbols, states or words) are represented with randomly 
generated binary, ternary, or continuous-valued vectors yi of 
huge dimensionality h, typically counted in thousands (e.g., 
Kanerva, 1988; Kanerva et al., 2000). These vectors can 
have only a small number of non-zero elements (as in 
SDM), or they can be fully dense. In all cases, the large 
dimensionality of such vectors leads to a number of 
interesting properties (see Gallant & Okaywe, 2013, for a 
recent overview). Firstly, the representations are highly 

robust against distortions, noise, and degradation due to the 
distribution of information across numerous dimensions.  

Secondly, the distribution of the mutual distances 
between all possible random vectors is tightly packed 
around the mean of the distances. In the case of random 
hypervectors with zero mean, the pair-wise linear 
correlation ρ(ya,yb) ∈ [-1, 1] between almost any two 
randomly drawn vectors ya and yb is very close to zero 
(Kanerva, 2009). This quasi-orthogonality of random 
vectors leads to the practical property that a set of unrelated 
items can be represented as the sum of the hypervectors 
corresponding to the items in the set. For example, a set 
{w1, w2, w3} can be coded as yset = y1+y2+y3, and this 
process is usually referred to as chunking. The obtained 
representation yset is much more similar to its components 
than any unrelated vectors in the hyperspace, and therefore 
the individual items can still be recovered from the holistic 
representation if the codes of all possible items are known 
(see Gallant & Okaywe, 2013, for a capacity analysis). In 
addition, HDC can overcome the superposition catastrophe 
of distributed representations by using invertible vector 
operations such as circular convolution to bind vectors 
together (Plate, 1995). For instance, correct attribute 
encoding of a sentence “black cats and red balls” could be 
represented with y = yblack⊗ycats+ yred⊗yballs + yand if each 
unique word is assigned with a random vector and where ⊗ 
denotes the binding operation. Importantly, the dimension 
of the representations always stays fixed during the 
chunking and binding operations, ensuring that distance 
metrics between representations of different granularity and 
combinatorial complexity are always defined. 

However, a major challenge in applying HDC to many 
real world problems has been that the world, as sensed by a 
number of senses (or sensors), does not give rise to 
inherently categorical (discrete) representations before some 
learning takes place. The idea of using random vectors for 
different inputs is only applicable after the data has been 
clustered or quantized into a finite number of representative 
states or receptive fields. Given the theoretically interesting 
properties of HDC, it would be useful to be able to represent 
non-categorical multivariate inputs such as speech in a 
HDC-compatible form without imposing hard quantization 
on the input features before further processing.  

In order to address this issue, the present paper describes 
a method for transforming continuous multivariate data into 
quasi-orthogonal random vectors. The transformation 
maintains local distance metrics of the original feature 



space, allowing generalization across similar tokens, while 
simultaneously mapping more distant inputs into nearly 
orthogonal random vectors that is a requirement for the 
efficient use of chunking and binding operations. In 
comparison to the previously suggested scatter code 
(Stanford & Smith, 1994), the present method is not limited 
to binary vectors, enabling higher representational capacity 
in vector spaces of the same dimension. The proposed 
method is evaluated in a spoken word classification task 
using a simple prototype memory for acoustic modeling. 

S-WARP mapping for multivariate data  
The core of the mapping problem is that many types of data 
such as spectral features of speech do not come in discrete 
and mutually exclusive categories wi ≠ wj  (i ≠ j) that can be 
assigned with unique random vectors but as multivariate 
observations xt with varying degrees of similarity 
(correlation) between the vectors. The correlation is a 
problem because it significantly affects the coding capacity 
of the hyperspace as the entire idea of HDC is to operate on 
quasi-orthogonal representations. However, in order to 
generalize between different tokens of the same category, 
the correlation between the original features should be also 
reflected in the derived hyperdimensional representations, 
and therefore arbitrarily small differences in the input 
cannot lead to orthogonal codes in the hyperspace.  

Given this, the minimal set of desired properties in the 
mapping y = f(x) from a low-dimensional space F to a high-
dimensional space H  can be listed as follows:  

1) Local similarities between input vectors must be 
approximately maintained, enabling generalization 
towards new input tokens. 

2) Distant inputs should be coded with quasi-orthogonal 
vectors, maximizing coding capacity of the 
hyperspace. 

3) A continuous distance metric between original vectors 
should be also continuous and smooth in the 
hyperspace. 

4) The local/distant trade-off in the requirements in 1) 
and 2) should be controllable. 

The desired properties are illustrated in Fig. 1. 
In order to approach a solution to the mapping problem, 

let x denote a feature vector of dimension d = |x| with 
feature values xi, i = [1, 2, …, d] from the feature space F. 
In addition, let M denote a mapping matrix of size h x d 
where h is the dimension of the hyperspace H (h >> d). In 
the case of a trivial random mapping from F to H, one can 
initialize M as a randomly generated binary matrix (all 
values randomly set to +1 or -1) and then linearly expand 
the original feature vector x as: 

  

€ 

y = Mx      (1) 
This type of random mapping approximately preserves the 
relative distances in F (the Johnson-Lindenstrauss Lemma). 
However, this only makes use of a subspace S ∈ H of the 
entire hyperspace due to the fixed mapping from each xi to a 
set of yj, j ∈ [1, h]. In other words, M acts as a single basis 
in H, and the distance metrics are linearly preserved. In  

 
Fig. 1.  An example of desired hyperspace mapping 
properties in terms of distance metrics. The x-axis shows the 
correlation ρ(xa,xb) ∈ [-1, 1] between two data points in the 
low-dimensional input space and the y-axis shows the cross-
correlation ρ(ya,yb) between the corresponding 
hypervectors. Ideally, local similarity (high ρ) is carried 
over to the hyperspace while the hypervectors of distant 
inputs are independent of each other. Preservation of anti-
correlations (ρ ≈ -1) can also be beneficial for some tasks. 
 
order to achieve orthogonalization between distant inputs, 
different mapping matrices Ma and Mb should be used for 
feature vectors xa and xb that are far apart in the original 
feature space. Simultaneously, the same mapping matrix 
Mcd should be used for two vectors xc and xd that are similar 
to each other in F in order to maintain similarity in H also. 
The problem then is the selection of the best possible 
mapping matrix Mi for each input vector xi. In addition, the 
transition between matrices Mi and Mj should be smooth so 
that the mapping does not introduce points of discontinuity 
in the distance metrics between inputs xi and xj. 

We propose that a deterministic mapping with efficient 
use of the entire hyperspace can be achieved as a linear 
combination of individual mappings. More specifically, let 
us define Mi (i = [1, 2, …, v]) as a set of v random mapping 
matrices. Then the mapping x à y can be written as 

      

€ 

y = λiMix
i=1

v
∑     (2) 

Since each individual mapping with a random matrix Mi 
approximately preserves the distance metrics in a linear 
manner, the weights λi can be used to control the rate of 
change from one basis to another (Fig. 2). From now on, we 
will refer to the formulation in Eq. (2) as Weighted 
Accumulation of Random Projections (WARP). In the 
absence of any external knowledge of the input, the weights 
λi of each single mapping are determined by the input vector 
itself:  

      

€ 

λi = f (x)      (3) 
In other words, the hypervector is a result of v random 

mappings i = [1, 2, …, v] into the hyperspace H with each 
individual mapping i weighted by a value that is derived 
from the vector itself that is being mapped. We will refer to 
this self-regulated mapping as S-WARP. 



 
Fig. 2.  A schematic view of the mapping in Eq. (2) utilizing 
a linear combination of multiple individual mappings. Each 
individual mapping matrix Mi acts as a pointer to a sub-
space of H, and pairs of data points ending up in different 
sub-spaces become quasi-orthogonal with a high 
probability. Smooth transitions between sub-spaces are 
ensured by a weighting function that is a continuous 
function of the input itself.   

 
Possibly the simplest way to implement S-WARP would 

be to use the elements of the input vector x directly as the 
weighting coefficients but then the mapping would be 
indifferent to the sign of the input vector, i.e., y =f(x) = f(-
x). This problem can be avoided by using the absolute value 
of the coefficients instead: 

λi = ( xi
α / x j

j
∑

α
)    (4) 

The additional parameter α in Eq. (4) controls the amount of 
orthogonalization by controlling the rate at which the 
hyperspace basis matrices Mi change when values of x 
change. When α has a high value, two vectors have to be 
very close in the original space F in order to end up close in 
the hyperspace whereas more distant vectors tend towards 
quasi-orthogonal representations (cf. Fig 1).  

When the weights of Eq. (4) are used in the mapping 
described in Eq. (2), all previously listed requirements are 
satisfied. The mapping is also scale invariant with respect to 
the resulting hypervector direction, i.e., ρ(f(xa),f(xb)) = 
ρ(f(αxa),f(βxb)), where f(x) denotes the mapping operation 
and α and β are constants, while the magnitude of the 
resulting hypervector will be affected. This is not the case 
for the previously introduced scatter code (Stanford & 
Smith, 1994) where the direction of the vector changes if the 
input vector is multiplied by a constant. 

However, the weighting scheme in Eq. (4) still has a 
shortcoming. Consider two vectors xa and xb with possibly 
different signs and scale but similar relative order of 
magnitudes within the set of largest elements. After 
applying Eq. (4), the weights λi become similar for the two 
vectors, and they are mapped using a similar set of mapping 
matrices M. Since the non-linearity of the distances in the 
hyperspace is caused by the use of different weights for 
different vectors, the distance between the two different 
vectors xa and xb using the similar weights λ  becomes 
linearized. With large values of α, the mapping becomes  

 
Fig. 3.  Correlation ρ(xa,xb) of  random vectors in the 
original space F (x axis) and the corresponding correlation 
ρ(ya,yb) in the hyperspace H (y axis) as a function of α in 
Eq. (6) (columns) and dimension d of the input vectors 
(rows). 
 
dependent only on the largest magnitude elements in the 
input and thus the probability of linearization increases. In 
practice, this phenomenon limits the maximum value of α 
that still leads to a consistent mapping with a sufficiently 
high probability. The risk of linearization is also dependent 
on the dimension d of the original vectors.  

The effects of α and d on the mapping of Eq. (2) and (4) 
are illustrated in Fig. 3, where correlations between pairs of 
randomly generated original low-dimensional vectors and 
the corresponding hypervectors are plotted. As can be 
observed, α successfully controls the non-linearity of the 
distances in the hyperspace, but the non-linearity breaks 
down for a large ratio of α/d. For increasing α, increasingly 
many vector pairs maintain linear or near-linear mutual 
distance across the mapping. 

As the largest useful non-linearity factor α of a single 
hyperspace mapping is determined by the dimension d of 
the input vectors, the problem can be easily solved by 
simply first expanding the original d-dimensional input data 
into a higher dimension h1 > d using linear random mapping 
in Eq. (1) before applying S-WARP in Eq. (2). Another 
option is to recursively apply S-WARP mapping with a 
smaller value of α, in which case the non-linearity will 
gradually increase towards a desired level.  

The linear expansion approach is demonstrated in Fig. 4, 
where random x of original dimension d = 10 are first 
mapped into a 300-dimensional space with a randomly 
generated fully dense expansion matrix E (all elements +1 
or -1) according to y´ = Ex, and then the resulting y’ are 
mapped into hypervectors y according to Eq. (2) with 
weights according to Eq. (4). As can be observed, the 
linearization problem is now absent, confirming that the 
linear expansion is sufficient for avoiding the linearization 
artifacts occurring with small d and/or large α. In general, 
the method is successful at generating quasi-orthogonal 
representations for weakly-correlated inputs.  

Spoken word classification with HDC 
S-WARP was studied in word recognition from speech. 
Since the current goal was to study hypervectors’ capability 
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to code structural information of time-varying signals, the 
experiment was limited to the classification of a small 
vocabulary of words that had been segmented from 
continuous speech using the available word-level annotation 
of the data.  

Data 
The speech data consisted of 2397 utterances from the four 
main talkers of the CAREGIVER Y2 UK corpus (Altosaar 
et al., 2010). The material consists of child directed speech 
with an overall vocabulary size of 79 unique words (silences 
excluded). Each signal corresponding to an utterance was 
segmented into individual words using the associated word-
level annotation. Separate training and testing sets were 
created for each of the four talkers by choosing 80% of the 
first words as the training samples (N = 10423 ±4.6 for each 
talker) and the remaining 20% as the test samples (N = 2606 
±1.1) in the order of appearance in the corpus. A total of 79 
unique words occurred in the training data of which 71 also 
occurred in the test set. All models were always trained on 
the full set of 79 words.  

Experimental setup 
The entire word classification architecture is based on 
learning a hypervector prototype mw for each word w in the 
training data, where the prototype is constructed 
incrementally from the short-term spectral features extracted 
from the acoustic realizations of the word (Fig. 5).  

The audio signal corresponding to a spoken word is first 
fed to a pre-processing block where standard Mel-frequency 
cepstral coefficient (MFCC) features, including delta and 
delta-delta, are extracted using a 32-ms Hamming window 
with a step size of 10 ms (a total of 39 coefficients including 
energy). Each MFCC vector xt is then used as an input to 
the hyperdimensional mapping processs (S-WARP or 
scatter code), yielding a hypervector yt for the 
corresponding time frame. The temporal structure of the 
words is encoded with the binding operation by computing 
pair-wise circular convolutions zt,k = yt⊗yt-k

P between all 
vectors within 250 ms from each other (k ∈ [1, 2, …, 25]) 
(cf., Plate, 1995). In the convolution, the preceding vector is 
always permuted with a fixed permutation (denoted with yP) 
in order to encode temporal order information, since 
otherwise yt⊗yt-k = yt-k⊗yt, i.e., making the representation 
invariant with respect to the direction of time.  

Finally, all the obtained hypervectors yt and zt,k are 
additively combined to form a single hypervector yinput for 
the current input, and the result is summed to the existing 
hypervector model mw for the word w in order to have an 
updated model m´w.  

 
yinput = zt,k +

t,k
∑ yt

t
∑

"mw ←mw + yinput
   (7)  

As a result of processing the training data, a word model mw 
is the sum of all word w realizations, where each realization 
is the sum of all frame-based hypervectors and their pair- 

 

Fig. 4.  Examples of cross-correlation plots for a two-stage 
process where the low-dimensional input vectors are first 
expanded to a larger dimension with a linear random 
mapping and then used as an input to the non-linear 
mapping in Eq. (2). Results for three different values of 
non-linearity, namely α = 1, 3, and 9, are shown from left to 
right, respectively.   
 

 
Fig. 5.  A schematic view of the word recognition system 
used in the current experiment (training stage).  
 
wise circular convolutions (note that the model is of same 
dimension as each individual feature frame or each 
individual realization of the word). During the training, the 
word identity w is always known due to labeling, and the 
word models mw for all W unique words are accumulated as 
row vectors of a memory matrix H of size W x h. During the 
recognition, the input segment is again coded into yinput and 
the most likely word label w is obtained by computing the 
activation distribution p with 

p = 〈H〉yinput      (8) 
where 〈H〉 denotes H with each row normalized into a unit 
vector. The hypothesis wi for the current input is determined 
by finding the pi (i ∈ [1, W]) with the largest value.  

The experiment was conducted using both binary scatter 
code and the continuous-valued S-WARP proposed in the 
current paper. The test was repeated for different values of 
the non-linearity parameter s of the scatter code, for 
different values of α in the present S-WARP formulation, 
and with and without the linear expansion layer before the 
non-linear mapping. Based on preliminary tests, the size of 
the linear expansion layer in S-WARP was always fixed to 
dE = 300 in order to ensure that no linearization occurs for 
the studied values of α.  
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Fig. 6.  Word classification accuracies (UAR %) with talker specific models (mean and one standard deviation of the results 
across the four talkers). Left: Scatter code (red dashed line) as a function of the non-linearity parameter s and the reference 
HMM systems with diagonal and full covariance matrices (“diag” and “fullcov”, respectively). Center: Performance of the S-
WARP with and without the linear expansion layer as a function of the α parameter and with dE = 300. Right: S-WARP 
performance as a function of the linear expansion layer size dE with fixed α = 1.5. Hyperspace dimensionality is always set to 
h = 4000. 
 
In the scatter code, the integer values of each dimension of 
the input space F are first sorted into numerical order and 
one of the integers is mapped into a randomly generated 
binary vector of dimension h. Then a code for a neighboring 
integer is generated by randomly choosing b locations of the 
first hypervector and flipping the corresponding bits. The 
new vector is then used as a starting point for the next 
integer, and the random flipping process is repeated until the 
entire range of the input space is covered. In this manner, 
the expected Hamming distance of two codes in the 
hyperspace is equal to h/2*(1-(1-2/h)*(b*t/h)), where h is 
the dimension of the hyperspace and t is the distance in the 
original space, i.e., the rate of orthogonalization is 
controlled by the proportion s = b/h of flipped bits per 
iteration  (Smith & Stanford, 1990). After the process is 
repeated for each input dimension separately, the resulting 
hypervectors are combined with the XOR operation 
(Stanford & Smith, 1994) in order to obtain the final 
hypervector describing the entire multivariate input vector. 

Two other reference systems were also used. The basic 
reference was exactly the same setup as the system in Fig. 5 
except that the hypervectors y were replaced with the 
original low-dimensional MFCC feature vectors x before the 
convolution and accumulation. This provides a test for the 
benefits of hyperdimensionality in comparison to operating 
in low-dimensional spaces. The second reference system 
was a standard Gaussian mixture -based continuous-density 
hidden-Markov model (GMM-HMM), one HMM trained 
for each word. For benchmarking purposes, the number of 
states and Gaussians in the HMMs were optimized directly 
on the test data, leading to Q = 3 states for all words and M 
= 3 Gaussians per mixture. The Gaussians were initialized 
using the k-means algorithm, and parameters were estimated 
using the Baum-Welch algorithm with four iterations, as 
this was found to perform best on the test set.  

Classification performance was evaluated in terms of 
unweighted average recall (UAR) computed across the 
words occurring at least once in the test data (the mean of 
word-specific classification accuracies). 

Results 

 
Fig. 7. The effect of hyperspace dimensionality h on the 
classification accuracy for linear (Eq. 1) and S-WARP (Eq. 
2) mappings. 
 
Fig. 6 shows the average results for the speaker-dependent 
models across all four speakers. The S-WARP template 
system performs at a level comparable with the HMM 
system using full covariance matrices, with S-WARP 
achieving an UAR of 97.2% (α = 1, dE = 300, h = 4000) 
while the HMM reaches on average an UAR of 97.1%. 
Without the linear expansion layer, S-WARP achieves an 
UAR of 96.6%. The scatter code achieves best performance 
of 92.3% correct recognitions at s = 0.00175 (h = 4000)  

The word recognition accuracy using the original MFCCs 
is 67.9% with convolutional encoding of temporal 
dependencies. If only the sum of the individual MFCC 
vectors xt is used as a model for each word (i.e., no temporal 
convolution), the performance drops to 31.4%. This means 
that the S-WARP and scatter code -based HDC 
representations are able to maintain information about not 
only the average spectrum of a word, but also the evolution 
of the spectrum across the word duration and a typical 
variability of this trajectory across different realizations of 
the word. The latter aspects are lost in a low-dimensional 
average MFCC template. 

The results also reveal that the degree of distance metric 
non-linearity in the mapping has an effect on the overall 
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results. This is revealed by the scatter code results (Fig. 6, 
left) and in the effects of α and dE that control the 
orthogonalization in S-WARP (Fig. 6 middle and right). 
Note that the use of Eq. (2) with α = 1 and the original data 
dimensionality of d = 39 (the MFCC coefficients) already 
leads to a relatively large degree of non-linearity, and 
therefore the performance of S-WARP without the linear 
expansion layer is already optimal at α = 1. However, if α is 
fixed and dE is gradually decreased from the default value 
of, the performance drops significantly (Fig. 6, right). 

Finally, Fig. 7 shows the effect of hyperspace 
dimensionality on the results when using standard non-
orthogonalizing random mapping and the proposed S-
WARP mapping. As can be observed, the S-WARP 
outperforms the linear mapping with a clear margin but both 
benefit from an increasing hypervector dimensionality. This 
is expected as the chunking and binding operations assume 
that the data lies in a sufficiently high dimensional space. 

Conclusions 
The current work describes a new method for converting 
multivariate inputs into continuous-valued hyper-
dimensional random vectors. The method attempts to solve 
the conflicting requirements of similarity preservation and 
decorrelation by performing recursive application of self-
modulated random mappings. This leads to 
orthogonalization of the input data in a manner that still 
allows detection of the degree of similarity in the inputs. 
This is a highly relevant property for any cognitive system 
utilizing distributed representations, since no learning can 
occur without a consistent mapping from sensory input to 
internal representations in the memory and without the 
ability to measure similarity between the representations. In 
contrast to standard (deep) neural networks, the proposed 
approach does not involve learning and therefore the quality 
of the distributed representations is not dependent on the 
amount of training data available for training of the mapping 
network. On the other hand, S-WARP does not learn 
abstracted features from the data, but simply makes non-
categorical data available for use in HDC –based systems. 

The present work also shows that both S-WARP and 
scatter code –based HDC representations can be used to 
encode the complex time-frequency structure of spoken 
words by utilizing the chunking and binding operations of 
HDC systems. However, a more systematical approach to 
encoding temporally evolving multivariate inputs should be 
investigated in future work. In addition, it should be noted 
that despite its mathematical simplicity, the large number of 
vector operations in S-WARP makes its computational 
complexity non-trivial for large-scale experiments. 
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