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ABSTRACT

Signal windowing is a temporal weighting operation whereby a
signal is multiplied by a function that pays more emphasis on de-
sired parts of the signal and typically attenuates it outside this span,
normally to zero, in order to result in a finite support (nonzero
part). In audio and acoustics applications it is quite common that
better frequency resolution is desirable at low frequencies, while
at high frequencies better time resolution calls for a shorter anal-
ysis or processing window. In this paper methods to realize and
utilize frequency-dependent signal windowing are presented that
exhibit this desirable frequency-dependent property. Particularly
methods based on time-frequency warping and rewarping of sig-
nals are discussed. Audio examples are presented where this tech-
nique is found useful.

1. INTRODUCTION

Signal windowing is one of the most common operations in sig-
nal processing. It is motivated by the fact that finite support (span,
range) is needed either due to limited processing capacity or most
often due to non-stationary character of signals whereby they have
to be processed frame by frame to obtain temporally localized rep-
resentations.

Windowing in its traditional form is a multiplicative operation
(+) in the time domain and thus corresponds to convolution (x) in
the frequency domain, i.e.,

u(t) = w(t)z(?)

Y(w) = W(w) * X (w) M

where x(t) is a signal to be windowed, w(t) is a windowing func-
tion, and y(t) is the windowed signal. Upper case symbols denote
Fourier transforms, respectively.

The form of a windowing function w(t) can be any, but nor-
mally it is monotonically decreasing towards positive and negative
time directions from its maximum value point, and for practical
reasons achieves value 0 outside a specific span. Among most
common symmetrical window functions are Hamming, Hann(ing),
Blackman, Kaiser, and rectangular (or boxcar) window [1]. An
asymmetrical window may be one-sided, such as an exponentially
decaying (and truncated) window, or two-sided. The selection of
window type and possible parameters associated with it depend on
the criteria of each specific application at hand.

Traditional windows work in a frequency-independent man-
ner. This is a straightforward solution, and with proper overlap-
add or concatenation processing yields perfect reconstruction from
consecutive windowed signal slices. In audio and acoustics ap-
plications, however, it is often useful to apply nonuniform time-
frequency resolution. A well-known technique is the wavelet-based
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processing. In this paper we discuss other ways of controlling
resolution, particularly methods that are based on time-frequency
warping of signals and system responses. In addition to being a
practical technique, it may help understanding the relation between
warped techniques and wavelet-type processing.

Two basically different ways of frequency-dependent window-
ing are presented here: (a) frequency-domain and (b) time-domain
techniques. The first one modifies the convolution rule of Eq. (1).
The second one applies warping techniques, and it can be done
either through frequency-domain resampling or through warped
mappings. The main focus of this paper is on this last case.

2. GENERALIZED WINDOWING IN THE
FREQUENCY DOMAIN

According to the frequency-domain version of windowing in Eq. (1),
the Fourier transform of a windowed signal is obtained by (com-
plex) convolution. When this is rewritten in the discrete Fourier
transform case for frequency bin m by

N
Y(m)=Y Wn(k)X(m— k) 2

where indices are modulo N, it becomes obvious that if we wish
to obtain frequency-dependent windowing, the windowing term
W (k) cannot be a fixed vector but should be made bin-dependent.
Each bin m can be treated separately by different *window spread-
ing’ vector, designed according to the desired window for that spe-
cific bin. These vectors can be composed into an N x N matrix

i ti
w 01" operation y = Wx 3)

where x and y are the original and the windowed DFT vectors,
respectively. Furthermore, the DFT and IDFT transforms can be
formulated as matrix operations q = Fp and p = Gq where p is
a signal vector, q is a spectrum vector, and F and G are the trans-
form and its inverse transform composed of complex exponentials,
respectively. Thus the whole chain of Fourier transform of sig-
nal s, frequency-dependent windowing, and inverse transform to
windowed signal t, can be formulated as

t = GWFs = Ms @)

where M is a N x N matrix when the length of signal span s to be
windowed is N and the frequency-domain window matrix W is
also N x N. For a traditional frequency-independent window M
reduces to a diagonal matrix, i.e., to a sample-by-sample product
of signal and window.

Due to the circularity of DFT and IDFT, frequency-dependent
windowing may cause folding problems if not applied properly.
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Figure 1: Frequency-dependent windowing of a sum of two sinu-
soids: (a) sum of sinusoids, (b) two Hann windows (solid line for
high frequencies, dashed line for low frequencies), and (c) result
of frequency-dependent windowing.

An example of using this method is given in Fig. 1 where
the sum of two sinusoids is windowed so that a Hann window is
shorter for the higher frequency than for the lower frequency.

3. GENERALIZED WINDOWING THROUGH
TIME-FREQUENCY WARPING

The idea of time-frequency warping [2] can be characterized as
follows. A sinusoid is scaled (expanded or compressed) in time
by factor B(f) depending on frequency f, which operation in the
frequency domain corresponds to remapping of frequencies (re-
sampling of frequency to keep uniform bin distribution):

Asin@rf[B(f)1] +¢) « Asin@r[8()flt+¢)  ©)

Notice that warping is not a shift-invariant operation, thus the se-
lection of time origin is of special importance. For impulse re-
sponses, time origin ¢ = 0 is an inherently determined moment,
but in the case of a general signal the selection of ¢ = 0 specifies
the only time moment where signal phase at all frequencies is not
affected due to warping.

Time-frequency warping can be realized in two ways, (a) by
frequency-domain resampling or (b) by analytical mappings. Fre-
quency resampling [3] of signal z(¢) is realized by a sequence of

operations
y(t) = FTH{R{F(=())}}

where R (-) is a resampling operator, and F(-) and F ~*(-) are the
Fourier transform and the inverse Fourier transforms, respectively.
While frequency resampling yields a high degree of freedom for
the warping function 3(f), the method is complicated and compu-
tationally expensive, and is not discussed further in this paper.

The second method of warping is based on transforms that
map the complex z-domain unit disk onto itself. Each frequency

frequency value. There exists only one such rational function type,
the bilinear conformal mapping [4]:

~1
-1 2=
=Di(z,\) = 10—
where A\, ~1 < X < 1, is a warping parameter and D,(z,\) isa
dispersive delay element. This leads to a warping function [S]:
(1 — A?)sin()
(1+ 22) cos(€2) — 2X°

©®

B(2) = a,rctan

)]

where Q = 27 f/ fs, and f; is the sampling frequency.
Mapping of a given impulse response s(n) into warped im-
pulse response 3(k) can be carried out simply based on equation

> s(k)zF =Y s(n)Di(z, —N)" ®)

and the mapping of 3(k) back into s(n) based on equation

oo oo

Z s(n)z™" = Z 5(k)D1(z, \)* ()

n=0 k=0

Mappings between sequences s(n) and §(k) are linear but not
shift-invariant. Both mappings (8) and (9) may be computed with
the same transversal warping structure but using coefficient A for
synthesis (9) and — A for analysis (8). This structure is similar to an
FIR filter but with first-order allpass elements in place of unit de-
lays, the impulse response to be mapped is used as tap coefficients,
and the mapped response is achieved by feeding the structure with
a unit impulse. Notice that both forms of (8) and (9) yield re-
sponses of infinite length even if the sequence to be mapped is of
finite length, since allpass elements D1 (z, \) are internally recur-
sive. For the selection of A value, see for example [2].

Based on warping and inverse warping, frequency-dependent
windowing is a technically easy task. The impulse response to be
windowed is first warped according to Eq. (8) into the warped do-
main, then it is windowed properly as required for the application
at hand, and finally inverse warped back according to Eq. (9). No-
tice that the inverse warped impulse response is theoretically infi-
nite in length again, so that truncation or a secondary windowing
is needed to make it finite.

For general signals for which the negative time sample values
are not zero, warping can be implemented by warping separately
for the positive time axis and backwards for the negative time axis,
and finally concatenating the results.

4. EXAMPLE: WINDOWING OF IMPULSE RESPONSES
OF ACOUSTIC SYSTEMS

Acoustic resonators and reverberating systems have often an im-
pulse response with slower decay at low frequencies than at high
frequencies. A measurement, such as an impulse response of a
room or a musical instrument body, contaminated by acoustic or
electronic noise, benefits from frequency-dependent windowing
applied prior to further processing or modeling. When the effec-
tive window length is related to the inherent system response decay
time, excessive noise at frequences where the response dies out fast
is reduced correspondingly.

Figure 2 depicts the impulse response and magnitude response
presentations for an acoustic guitar body, as measured by mechan-

valueO (pointld onO theld unit[d circle) willd belI mappedd uniquelylwiGmputbehit at the bridge and registering the radiated acoustic
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Figure 2: Measured response of an acoustic guitar body: (a) im-
pulse response and (b) magnitude response.

Figure 3: Time-frequency representation of the guitar body re-
sponse.

response in front of the sound hole. Figure 3 illustrates the same re-
sponse as a time-frequency plot (spectrogram). This shows clearly
the difference in decay time between low and high frequencies. In
the warped domain (A = 0.6), the decay rate is balanced as shown
in Fig. 4 so that all modes attenuate approximately equally fast.

If the measured (body) impulse response is more noisy, as
depicted in Figs. 5a and 5b, warping and windowing can be uti-
lized to improve the overall signal-to-noise ratio of the signal. Fig-
ures 5¢ and 5d demonstrate this by showing the result of applying
a frequency-independent rectangular window (truncation) to the
warped domain impulse response and synthesizing it back to the
original time domain.

5. APPLICABILITY OF KAUTZ STRUCTURES IN
FREQUENCY-DEPENDENT WINDOWING

Kautz filters [7], or generalized transversal filters can be seen as an
extension to the transversal warping structure where each transver-
sal element may be different. For a given set of desired poles {z;}
in the unit disk, the corresponding rational orthonormal functions
are of the form

Iz Ay 27 -2
Gi(2) = P gl_zjz_l, i=0,1,.... (10
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Figure 4: Time-frequency representation of the guitar body re-
sponse in the warped domain.
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Figure 5: Noisy measurement of body response: (a) impulse re-
sponse and (b) its magnitude spectrum. Enhanced version of
the body response after frequency-dependent windowing through
warping for noise reduction: (c) impulse response and (d) magni-
tude response.

The Kautz filter is formed by replacing the kernel elements z —*
of an FIR filter with functions (10), which reduces to a transversal
structure composed of a transversal all-pass backbone and all-pole
tap-output filters. In general, the tap-output signals are complex
valued, but for sets of real and complex conjugate poles we may
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Figure 6: Kautz domain windowing enhanced guitar body re-
sponse: (a) impulse response and (b) magnitude response.

use a modified real Kautz structure [6].

Kautz filters, applied as analysis structures, define orthonor-
mal signal transformations s(n) — ¢(2) for any choice of poles
(2:)$2 in the unit disk. Due to the orthonormality, signal energy
is preserved and any truncation 8(n) = Y°1 c(i)gi(n) in the
Kautz domain defines a least-square optimal approximation with
respect to the poles, i.e., a synthesis operation, where {g:(n)} are
impulse responses or inverse z-transforms of functions (10). This
is clearly a form of frequency-dependent windowing where desired
frequency allocation and “feature extraction” is managed through
the choice of poles and the (rectangular) windowing length in the
Kautz domain.

We demonstrate the applicability of the proposed approach in
noise reduction with two examples. In Fig. 6 we have chosen a
Kautz domain window length 160 and optimized the pole posi-
tions with respect to the noisy response of Fig. Sa. Our pole opti-
mization method is able to find quite well the true resonance struc-
ture (Fig. 2) from the noisy data, providing a significantly noise-
reduced synthesized response. As another example we try to ex-
tract the sine wave from the noisy signal of Fig. 7a. The Kautz
filter is chosen according to the (approximate) knowledge of the
fundamental frequency. Displayed in Fig. 7b is the Kautz trans-
formed signal from which we have chosen the window length 60
producing the synthesized signal of Fig. 7c. In this case of a Kautz
structure with identical blocks we have a clearer interpretation of
the windowing since the choice of poles and window length (mod-
ulo block size) is essentially separated.

6. SUMMARY AND CONCLUSIONS

This paper presented methods to apply frequency-dependent win-
dowing to impulse responses and signals. The first formulation is
specified in the frequency-domain and it can be realized as a time-
domain matrix multiplication. The second method is to use first
time-frequency warping, then conventional windowing, and finally
inverse warping. A case study shows that frequency-dependent
windowing can be used for example to enhance noisy impulse re-
sponses of acoustic systems.
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Figure 7: (a) Noisy sine wave, (b) its Kautz domain representation,
and c) enhanced synthesized signal.
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