
From Expressive Notation to Model-Based Sound Synthesis: a
Case Study of the Acoustic Guitar

Mikael Laurson1, Jarmo Hiipakka2, Cumhur Erkut3, Matti Karjalainen3, Vesa
Välimäki3, and Mika Kuuskankare1

1Sibelius Academy, Centre for Music Technology, P.O.Box 86, 00251 Helsinki, Finland
2Helsinki Univ. of Technology, Telecommun. Software and Multimedia Lab., Espoo, Finland

3Helsinki Univ. of Technology, Lab. of Acoustics and Audio Signal Processing, Espoo, Finland

E-mail: laurson@amadeus.siba.fi, Jarmo.Hiipakka@hut.fi, Cumhur.Erkut@hut.fi, Matti.Karjalainen@hut.fi,
Vesa.Valimaki@hut.fi, mkuuskan@siba.fi

Abstract
The focus of this work is in modeling the unique sound and the playing practices of the acoustic guitar. The
results can be applied to other plucked string instruments too. A new extended notation package is used to
produce expressive control information. This tool allows the user to add to the input score instrumental
expressions and tempo functions. The system includes also a rule formalism that permits further fine tuning of
the computer-generated performance. A real-time synthesis engine has been developed based on earlier results
in digital waveguide modeling. We also describe an analysis of vibrato in acoustic guitar tones, which provides
control information for realistic synthesis.

1. Introduction
While there has been successful efforts in modeling
the sound of the classical guitar [1 and 2] there is
still a lack of efficient ways to play these models
within a musical context. The research activity has
been mostly concentrated in synthesizing isolated
tones. A few attempts have been made to
demonstrate different playing techniques in larger
musical contexts but these trials have suffered from
some fundamental problems. Typically note infor-
mation has been coded tediously by hand. The
sounding outcome is in this case hard to modify
afterwards which causes frustrations for a musician
who would want to make corrections and
improvements interactively while listening to the
results.

In our project the use of notation in expressive
control is motivated by the lack of adequate real-
time controllers, familiarity with common music
notation, and precision of control. The use of
common music notation requires no special
technical training which in turn makes it possible to
use professional players to test and verify various
physical models in a deeper way than before. This
kind of collaboration is of course crucial as it allows
to combine the best expertise both in the technical
and in the musical domains.

While common music notation provides a good
starting point in expressive control it must be
augmented in several ways in order to gain
satisfactory results. A well known problem is for
instance the fine tuning of timing during
performance which has been discussed in several
papers [3, 4 and 5]. Thus the user should have

efficient and precise tools that allow to modify the
basic rhythmical information provided by the input
score. Besides standard instrument specific
expressions (pizzicato, staccato, left-hand slurs) the
input score must also include non-standard expres-
sions. Non-standard expressions are usually not
shown in ordinary notation but it is anyway assumed
that a good player adds them according to her/his
taste and the character of the piece.

2. Expressive Notation
Package (ENP)
We have developed a new notation package
(Expressive Notation Package, ENP) to control the
model-based synthesis engine. ENP is a PatchWork
(PW, [6 and 7]) user library and it is written in Lisp
and CLOS (Common Lisp Object System). ENP’s
object-oriented approach makes the system
extendible and open. As ENP is built on top of PW,
a rich set of tools is available when preparing scores.
These allow the user to produce pitch, rhythm and
textural information either algorithmically or by
hand. ENP resembles commercial notation packages
since it requires no textual input. Besides a full set of
standard notation facilities, ENP has user-definable
extensions that allow efficient description of
interpretation.

2.1 Expressions
Expressions can be applied to a single note (such as
string number, pluck position, vibrato, or dynamics)
or to a group of notes (left-hand slurs, finger-
pedals). Groups can overlap and they may

! 34 "

vb4

"# " "
st7

" " "
st7

" " "
st7

vb4

rit2

" " "
st6

"# "# " $% &
vb5

"
vb5

rit

" "
'

" " " "
2

" " " " (#)
$ $ $ $# $

) "
st9

"""
st9

""
%

"
3
* " " "

+,
"""---)))))

Figure 1. Musical excerpt with ENP expressions.

contain other objects, such as breakpoint functions.
The latter case is called a group-BPF. Macro
expressions generate additional note events
(tremolo, trills, portamento, rasgueado).

Fig. 1 gives an ENP example— measures 25-28
from “Madroños” for guitar by Federico Moreno
Torroba—which includes both standard
instrumental expressions and non-standard ones.

2.2 Fine-tuning of Timing
ENP allows fine-tuning of timing with the help of
graphical tempo functions. In order to assure
synchronization of polyphonic scores, all tempo
functions are merged and translated internally into
a global time-map [3]. Tempo modifications are
defined by first selecting a range in the score where
the tempo change should occur. After this a group-
BPF is applied to the range. The group-BPF can be
opened and edited with the mouse. In order to
facilitate the edition process, the group-BPF editor
displays — besides the tempo function — the
selected music notation excerpt in grey-scale in the
background (see Fig. 2).

Figure 2. Edition of a tempo function.

Tempo function values are given in percentage
(i.e. 100 means ‘a tempo’, 200 twice as fast, 50
half tempo). For instance an accelerando from ‘a
tempo’ to ‘twice as fast’ is achieved with a ramp
that starts from 100 and that ends at 200.

 In addition to conventional accelerandi and
ritardandi, the user can apply special rubato effects
(“give and take”) to a group. This mode is
especially useful when the resulting tempo starts to
fluctuate too wildly. As in the previous case the
user starts with a selection in the score and applies
a tempo function to it. The difference is though
that the duration of the range is not affected by the
time modification. Time modifications are only
effective inside the selected range.

2.3 Performance Rules
Besides tempo functions, ENP supports user
definable performance rules which allow to modify
score information in a similar way as in the
Swedish “Rulle” system [4 and 5]. In Rulle,
performance rules are used to calculate timing
information, dynamics and other synthesis
parameters. The main difference is though that
ENP rules use a syntax which was originally
designed for PWConstraints (for more details see
[7 and 8]).

ENP rules are written in two parts: (1) a pattern-
matching part which is followed by (2) a Lisp code
part. The pattern-matching part checks when the
rule should be applied and also extracts relevant
note information which is used later by the Lisp
code part. The Lisp expression, in turn, executes
the actual alteration.

For instance a variant of the well known “notes
inégales” rule (“in a beat of two eighth-notes the
first note is made longer than the second one”) can
be translated into PWConstraints syntax as
follows:

;; 1. pattern-matching part
(* ?1 ?2 (rtm-match? (1 ((?1 1) (?2 1)))
;; 2. Lisp-code part
(?if (write-key ?1 :dr
 (+ (read-key ?1 :dr) 0.1))
 (write-key ?2 :dr
 (- (read-key ?2 :dr) 0.1)))))

The pattern-matching part (line 1.) states that if
two notes (?1 and ?2) are adjacent and form a two
eighth-note beat, then the first note (?1) is
lengthened by 0.1 s and the second one (?2)
shortened by 0.1 s.

2.4 Calculation of Control Data
The calculation of the control information for the
model-based synthesis engine is executed in two
main steps. In the first one, the note information
provided by the input score is modified by the
tempo functions and ENP performance rules.
Furthermore some instrument specific rules (in our
case the classical guitar) are applied which further
modify the input score.

In the second step, all notes of the input score
are scheduled. While the scheduler is running, each
note sends a special method to its instrument which
in turn starts other scheduled methods which
typically produce the final control data. These
methods are responsible for creating discrete
control data (such as excitation information) or

continuous data (gain of the loop filter, filter
coefficients, or other low-level data).

If a note contains a macro expression (trill,
portamento, rasgueado) then new note instances
are created on the fly by instrument specific
methods and each new note is inserted in the
scheduler queue.

Currently ENP is able to produce control
information either as MIDI data or as a text file.

3. Guitar Synthesis Model
We have implemented a real-time, model-based

guitar synthesizer using workstation computers.
The plucked-string synthesis model is based on the
theory of digital waveguide modeling, primarily
developed by Smith [9].

The guitar model incorporates six dual-po-
larization string models, so that effects such as
two-stage decay and beating [1, 10], resulting from
the differences in the string’s vibratory motion
parallel and perpendicular to the soundboard can
be accounted for in the synthesis.

Each vibration polarization is modeled as a
simple single-delay-loop (SDL) string model (for a
derivation of SDL string models, see [9 and 10]).
In the SDL model, a delay line and a fractional
delay filter together determine the fundamental
frequency of the synthesized tone [1]. A one-pole
lowpass filter, called the loop filter, determines the
characteristics of the frequency-dependent
attenuation of the synthetic tone [1]. The input
signal to the string models is a wavetable signal
filtered according to plucking position and style
[10].

The string model includes also input and output
for sympathetic coupling implementation between
strings. The sympathetic coupling output signals
are fed through a coefficient matrix which
determines the strength of the coupling [10]. This
structure is inherently stable, regardless of the
values of the coupling coefficients.

4. Extraction of Control
Parameters
Since our aim is realistic and expressive computer-
generated performance, we have recorded acoustic
guitar sounds in an anechoic chamber, and
analyzed various control parameters from the
sound signals. The loop-filter parameters for each
string and fret position were estimated using the
method described by Välimäki et al. [1]. The
excitation signals were extracted according to the
technique proposed by Välimäki and Tolonen [11].

Other analyzed features are related to different
plucking styles (apoyando, tirando, and
rasgueado), vibrato, re-plucking of a string that is
already sounding, damping of tones, and
portamento effects. Furthermore, dynamic
variations of different control parameters were
measured to obtain information of how much tone-
to-tone variations there are in musical pieces
performed by a professional guitar player. The

coupling parameters for the model of sympathetic
vibrations were also estimated from the recordings.

As an example, we document the analysis
results of vibrato in acoustic guitar tones. The
player was asked to perform slow and fast vibrato
on various strings and fret positions. The time-
varying fundamental frequency of each tone was
then analyzed using the autocorrelation method.
Fig. 3 shows examples of typical fast and slow
vibrato. Note that in both cases the fundamental-
frequency variation converges to a nearly
sinusoidal waveform soon after the starting time t0.
We call the time between the starting time and the
converge transient time tt. Its value is typically
around 0.5 s. According to our analysis the lowest
frequency obtained during vibrato is the nominal
fundamental frequency of the tone without vibrato.
The maximum deviation of the fundamental
frequency depends on the string and fret. The
starting time of vibrato naturally depends on the
score. For the professional player used in our
experiments, the mean vibrato rates were 1.4 Hz
and 4.9 Hz for the slow and the fast vibrato,
respectively. The amplitude of vibrato is
systematically smaller in the fast case than in the
slow one.

In the sound synthesis, we can generate vibrato
by deviating the delay-line length with a sine wave
plus a small amount of lowpass filtered noise—to
bring about the small random fluctuations seen in
Fig. 3. The frequency and amplitude of the sine
wave may be set according to our analysis results.

0 0.5 1 1.5 2 2.5 3194

195

196

197
 Slow Vibrato Pattern, 5th String, 5th Fret

Fr
eq

ue
nc

y
(H

z) Measured
Nominal
Fitted

0 0.5 1 1.5 2 2.5 3194

195

196

197
 Fast Vibrato Pattern, 5th String, 5th Fret

Fr
eq

ue
nc

y
(H

z)

Time (s)

Measured
Nominal
Fitted

Figure 3. Two examples of fundamental-frequency
deviations during vibrato.

5. Control Protocol
We have designed a control protocol that allows
detailed control of the advanced guitar model in a
portable way. Our protocol has no MIDI-like
limitations in addressing and parametrization.

5.1 Addressing Scheme
The addressing scheme of our protocol is a hi-
erarchical system, quite similar to the familiar
URL-addresses and file-system structures. Any
address path in our system consists of a slash-

separated list of identifiers, with the network
address as a prefix.

The addressing scheme makes it feasible to
divide the synthesis model or an ensemble of
models into functional substructures that are
controlled independently. In the case of the guitar
model, natural substructures are the string models
and the guitar body model. A reference to the first
string of the guitar model may begin, e.g., with the
string ‘guitar/string1/’, followed by a parameter or
an operation name. Similarly ‘guitar/body/
res1/freq’ may be the path of the center frequency
of the first separate body model resonator.

When the control protocol is used over a
network interface, the network address of the sound
synthesizing host may be appended in front of the
parameter address, using the format
‘//net.address.here:port/’. The protocol assumes that
the network transport layer provides a back-channel
so that acknowledgement messages and later
perhaps the synthesized sound itself can be sent
back to the controller device. A rather similar
addressing mechanism has been previously
presented by Wright and Freed [12], but without
the network address part.

5.2 Parameters
The hierarchical control protocol makes it possible
to control an arbitrary number of different
parameters. Most of the controllable parameters in
our guitar model are directly related to the DSP-
level parameters of the model. The parameter
names are intended to be clear enough to be
human-readable. Also the parameter values are
transferred as ASCII strings and conversion is thus
necessary in the receiving end.

The parameter names can generally be arbitrary.
Some parameters, however, have a special meaning
in our system, in that they interact across the
hierarchy levels. An example of such parameters is
‘amplitude’, which must be implemented by the
synthesis system so that the ‘amplitude’ values
cumulate. The same approach has previously been
described for the ZIPI proposal [13].

Acknowledgements
This collaboration between Sibelius Academy and
Helsinki University of Technology has been made
possible by the funding provided by the Academy
of Finland. The authors are grateful to Mr. Klaus
Helminen who played the acoustic guitar samples
used in this study.

References
[1] V. Välimäki, J. Huopaniemi, M. Karjalainen,
and Z. Jánosy. Physical Modeling of Plucked
String Instruments with Application to Real-Time
Sound Synthesis. J. Audio Eng. Soc., Vol. 44, No.
5, pp. 331-353, May 1996.
[2] Z. Jánosy, M. Karjalainen, and V. Välimäki.
Intelligent Synthesis Control with Applications to a
Physical Model of the Acoustic Guitar. In Proc.

ICMC'94, pp. 402-406, Aarhus, Denmark, Sept.
1994.
[3] D. Jaffe. Ensemble Timing in Computer Music.
Computer Music J. , Vol. 9, No. 4, pp. 38-48,
1985.
[4] A. Friberg. Generative Rules for Music
Performance: A Formal Description of a Rule
System. Computer Music J., Vol. 15, No. 2, pp. 49-
55, Summer 1991.
[5] A. Friberg, L. Frydén, L.-G. Bodin and J
Sundberg. Performance Rules for Computer-
Controlled Contemporary Keyboard Music.
Computer Music J., Vol. 15, No. 2, pp. 56-71,
1991.
[6] M. Laurson and J. Duthen. PatchWork, a
Graphical Language in PreForm. In Proc.
ICMC'89, pp. 172-175, 1989.
[7] M. Laurson. PATCHWORK: A Visual
Programming Language and Some Musical
Applications. Doctoral dissertation, Sibelius
Academy, Helsinki, Finland, 1996.
[8] M. Laurson. PWConstraints. Reference
Manual. IRCAM, Paris, France, 1996.
[9] J. O. Smith. Physical Modeling Using Digital
Waveguides. Computer Music J., Vol. 16, No. 4,
pp. 74–91, 1992.
[10] M. Karjalainen, V. Välimäki, and T. Tolonen.
Plucked-String Models: From the Karplus-Strong
Algorithm to Digital Waveguides and Beyond.
Computer Music J., Vol. 22, No. 3, pp. 17-32, Fall
1998.
[11] V. Välimäki and T. Tolonen. Development
and Calibration of a Guitar Synthesizer. J. Audio
Eng. Soc., Vol. 46, No. 9, pp. 766-778, Sept. 1998.
[12] M. Wright and A. Freed. Open SoundControl:
A New Protocol for Communicating with Sound
Synthesizers. In Proc. ICMC’97., pp. 101-104,
Thessaloniki, Greece, Sept. 1997.
[13] K. McMillen, D. L. Wessel, and M. Wright.
The ZIPI Music Parameter Description Language.
Computer Music J., Vol. 18, No. 4, pp. 52-73,
1994.

