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Abstract
The sound quality of real-time synthesis based on physical models has so far been inferior to
sampling techniques. In this paper we introduce new principles to make model-based sound syn-
thesis of the guitar and other plucked string instruments more attractive from the viewpoint of
sound quality. A major improvement is achieved by estimating the model parameters and the exci-
tation signal from the sound of an acoustic instrument. It is shown that the impulse response of the
body is included in this excitation. More complex string behavior, including nonlinearities in some
instruments, is briefly studied. Furthermore, different aspects of controlling the real-time synthesis
model are discussed. High-quality real-time synthesis is shown to be feasible by using a single
digital signal processor.

1   Introduction
The term physical modeling is often used for compu-
tational models of acoustic-mechanical principles
found in musical instruments. By means of physical
models it has been possible to simulate quite detailed
effects of sound generation [McIntyre et al., 1983]. It
has also been shown that remarkable reductions in
computation may be gained, e.g., by digital
waveguide techniques [Smith, 1987] that allow for
real-time synthesis on modern signal processors
[Karjalainen and Laine, 1991]. The sound quality of
isolated sounds has so far remained inferior to sam-
ple-based methods. However, model-based synthesis
has practical advantages such as a natural set of con-
trol parameters that allow wide variations of the
synthesized sound. As an example, so-called sympa-
thetic vibrations of strings are difficult to simulate in
detail by sampling and other traditional methods.

This paper introduces new ways to greatly improve
the sound quality of model-based real-time synthesis
of the guitar and plucked string instruments. Such an
approach is based on balancing three major sources
of knowledge: understanding the acoustic principles
(physical modeling), digital signal processing exper-
tise, and taking into account human perception.

First an introduction to the modeling of a plucked
string instrument is given. Models for the strings and
the body as well as their interactions are discussed.
Examples of complex string behavior are reported as
they have been found in some instruments. In Section
3 the estimation of the model parameters is studied as
a means to add reality to the sound. Finally, in
Section 4 solutions to the problem of controlling the
real-time synthesis model are presented.

2   String Instrument Model
The main elements and intercouplings found in most
plucked string instruments are as shown in Fig. 1.
Each string is a distributed subsystem that starts to
vibrate when excited (plucked or picked). The strings
are coupled to the body and may also interact with
each other (sympathetic vibrations). The body or a
soundboard is a complicated resonator that is needed
for acoustic amplification, sound radiation, and color-
ing of the sound.

2.1 Modeling of the String
The general solution of the wave equation for a string
is composed of two independent transversal waves
traveling in opposite directions (see e.g. [Fletcher and
Rossing, 1991]). At the string terminations the waves
reflect back with inverted polarity and form standing
waves. The losses in the system damp the almost pe-
riodic vibration of the string. All losses and other lin-
ear non-idealities may be lumped to the termination
and excitation or pickup points. The string itself is
then described as an ideal lossless waveguide [Smith,
1993]. The system may be modeled by a pair of delay
lines and a pair of termination filters as illustrated in
Fig. 2.
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Fig. 3 a) A plucking-position equalizer cascaded
with b) the Karplus-Strong model.

A practical implementation is a digital waveguide
with two digital filters which may often be combined
into a single oneÑcalled later the loop filterÑand
optional excitation and pickup filters. The lossless
delay line in a waveguide filter can be implemented
very efficiently by a circular buffer. This reduces the
computational load by several orders of magnitude.

An ideal pluck may most conveniently be consid-
ered as an acceleration impulse to the excitation
point, one half of which travels in each direction
[Smith, 1982]. Alternative variables for the wave
signals (and related excitations) are velocity (unit
step), displacement (triangular wave), slope (= the
spatial derivative of the displacement), and force.
The output may be taken from any meaningful point
of the waveguide, e.g., by summing (or differentiat-
ing) the velocities from the two delay lines. The ra-
diated sound pressure is approximately proportional
to the velocity (integral of the acceleration) of the
string pickup point.

As shown by Jaffe and Smith[1983], there is a rela-
tion between the model of Fig. 2 and the Karplus-
Strong (KS) model [Karplus and Strong, 1983] (see
Fig. 3b). Originally excited by a sequence of random
numbers, the KS filter formulation corresponds to the
model of Fig. 2 if a comb filter (see Fig. 3a) is cas-
caded to shape the spectrum due to the effect of
plucking position. The output of an electric guitar
pick-up can be simulated in the same manner
[Sullivan, 1990].

2.2 String Model Implementation
An excellent early paper on the implementation of
string models was written by Jaffe and Smith[1983].
A relatively detailed model of the guitar with a real-
time implementation on a single DSP processor was
presented by Karjalainen and Laine[1991]. In the
following, we give a brief overview of the latter ap-
proach.

Fractional Length Approximation

The implementation of the string may be divided into
the design of a waveguide and one or two loop filters.
The desired pitch values to be played by an instru-
ment cannot in general be realized by integer-sized
delay lines (unless the sampling rate is varied).
Fractional delay approximation is thus needed and of-
ten the length of a string should be continuously vari-
able during sound synthesis (e.g. for vibrato and
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Fig. 4   Fractional delay approximation.

glissando effects).
Both IIR and FIR types of interpolation filters may

be utilized. A comprehensive guide to fractional de-
lay filter design is given in [Laakso et al., 1993]. The
interpolation problem is illustrated in Fig. 4 where a
band-limited discrete-time signal is known at integer
sample points but should be known at some real-val-
ued point D instead. The ideal interpolator is a shifted
and sampled sinc function of infinite length which
implies that in practice it is only possible to approxi-
mate it.

Lagrange interpolation is a good FIR type of ap-
proximation that turns out to be a maximally flat (at
zero frequency) filter. Its first-order version (linear
interpolation) is used, for example, by
Sullivan[1990]. The filter coefficients h(n) for the
Lagrange interpolator are expressed as [Laine, 1988]

h(n) =
D - k
n - kk=0,k¹n

N

Õ for n = 0,1,...,N (1)

where the approximation is computed for a fractional
delay D = floor(D) + d, d ÎÂ, and N is the order of
the filter. Advantages of this method are the simple
computation of coefficients (for real-time updating)
and good suppression of signal transients while the
length of the line is varied. The main drawback is
that the magnitude response is not flat unless d = 0.

An allpass filter with an ideally flat magnitude re-
sponse is another good alternative. See [Laakso et al.,
1992] for details on a maximally flat fractional delay
approximation by allpass filters. The price paid to get
an ideal magnitude response is a compromised phase
response and a more complex update of coefficients.
Furthermore, the allpass filter is more prone to signal
transients when the delay is varied.

We have used the waveguide principle of Fig. 2
with third-order Lagrange interpolation at a sampling
rate of 22 kHz [Karjalainen and Laine, 1991] in order
to cover carefully the frequency range up to about 5
kHz. No audible transients are generated in glide
sounds. For simplicity, the pluck point as well as the
pickup point have been assigned to integer points of
the delay line. This has not been a limitation in prac-
tice.

Implementation Issues

According to the theory of string vibration (see, e.g.,
[Fletcher and Rossing, 1991]), the damping due to in-
ternal losses, air friction, and end support movement
might be approximated by a second-order low-pass
filter in the string model loop. We have found that
even a single first-order IIR low-pass filter gives rela-
tively good results when the dc-gain and the cutoff
frequency are adjusted properly. The values of these
parameters depend on the string properties, the fin-
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Fig. 5   a) The string instrument model. b) The modi-
fied model that is functionally equivalent to (a).

gering position, and possible extra attenuation due to
a specific playing style.

To control the sharpness vs. softness of the pluck-
ing, we have filtered the excitation (an impulse in the
simplest case) by a first or second-order low-pass fil-
ter with controllable cutoff frequency.

2.3 Body Modeling
The acoustics of the guitar body has been studied
both qualitatively and quantitatively (see [Fletcher
and Rossing, 1991] for references) but detailed com-
putational models seem to be difficult to construct.
From a signal processing point of view the body and
the sound radiation to a specific direction may be
considered as a high-order filter. In general we need
many responses to simulate the directivity pattern,
actually a matrix of responses from the main vibra-
tional directions of the bridge to various radiation an-
gles.

Body Model as a Digital Filter

The transfer function from the bridge to the listener
can be measured approximately by exciting the
bridge with a mechanical impulse and by registering
the radiated sound. An analysis shows that the spec-
tral envelope of the body response of a good acoustic
guitar is relatively flat but there is a large number of
resonances starting from the lowest mode frequency
(around 100 Hz). However, not only the frequency-
domain magnitude response but also the temporal
envelope of the impulse response (ÒreverberationÓ) is
perceptually important.

We have tried several filter-based principles of
body modeling for sound synthesis [Karjalainen et
al., 1991]. An FIR filter model of the body response
must be 50 to 100 ms (more than 1000 taps) long to
yield satisfying synthetic sound. Linear prediction
(LPC) analysis suggests an all-pole filter model of
order 500 or more. Both of these are computationally
too expensive for real-time implementation on a
modern DSP processor. We also designed reduced-
order IIR filters that approximate the frequency reso-
lution of the human auditory system but even these
did not reduce the computational load enough.

Body Response as String Excitation

In order to overcome the inherently heavy computa-
tional load of filter-based body models, a novel
method was invented. Let us consider the string in-
strument model of Fig. 5a as a chain of linear subsys-
tems

y(n) = e(n)*s(n)*b(n) (2)

where * is the convolution operator, e(n) is the exci-
tation source (pluck in the case of the guitar), s(n) is

the impulse response of the string (from plucking
point to the bridge) and b(n) is the impulse response
of the body model (from the bridge to the radiated
sound). The input d (n) in Fig. 5a is a unit impulse.

The system of Fig. 5a can be transformed into the
form of Fig. 5b by reordering. This modification is
valid due to the mathematical fact that the convolu-
tion operation is commutative, i.e.,

e(n)*s(n)*b(n) º b(n)*e(n)*s(n) (3)

Now, if the body response b(n) is time-invariant or its
various forms can be represented (approximated) by
wavetable(s) it is possible to avoid one convolution
of Fig. 5a. This is achieved by precomputing, mea-
suring, or estimating the impulse response b(n) of the
body and storing it as a wavetable that can be read
out sequentially after each excitation event
(plucking). This reduces the computation by several
orders of magnitude. The original body model convo-
lution requires multiply-add operations on the order
of N  or log2N (using fast convolution) per output
sample, where the length of the impulse response N is
more than 1000. In contrast, wavetable synthesis re-
quires only one read operation per sample. This
makes it possible to generate high-quality synthetic
sounds of the acoustic guitar in real time on a signal
processor such as the TMS320C30.

2.4 Sympathetic Vibrations
The importance of sympathetic string vibrations (i.e.
the excitation of some harmonics of a string by the
vibration of other strings) to the quality of model-
based synthesis has been discussed, e.g., by Jaffe and
Smith[1983]. In our guitar model sympathetic cou-
plings were implemented by simply feeding a small
fraction of a string output to other strings at the
bridge position. Although this is an oversimplifica-
tion that does not model the complicated frequency-
dependent couplings of a real instrument the result is
quite satisfactory and makes the guitar synthesis
sound more realistic. This scheme is somewhat criti-
cal to the coupling coefficients since there is feed-
back via strings and excessive coupling can make the
system unstable.

2.5 Complex String Behavior
Many simplifications were inherent in the string
models presented above. In the following, three spe-
cial cases of more complex behavior and the related
modeling solutions are discussed.

Modeling the Plucking Contact

An assumption in the string models above was that
the string vibrates autonomously and the excitation is
superposed to the waves traveling along it. In reality
the plucking contact involves more complex even
nonlinear interactions.

A new idea to model this efficiently is to use a frac-
tional delay three-port [V�lim�ki et al., 1993a] at the
plucking position of the string waveguide (see Fig.
2). Such a port is composed of a fractional delay in-
terpolation out of the delay lines, reflection and inter-
action calculations, and deinterpolation back to the
delay lines. This method has been successfully ap-
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Fig. 6  Kantele string terminations: a) knot termina-
tion and b) support around tuning peg.

plied to the implementation of finger holes in wood-
wind instrument models [V�lim�ki et al., 1993b].

Beats due to Double-Length Behavior

The model-based approach described above may be
applied to the synthesis of many other plucked string
instruments such as the lute, the banjo, or the man-
dolin. Each string instrument, however, exhibits its
unique features. Here we discuss two specific effects
that have been found in an old Finnish instrument,
the kantele [Karjalainen et al., 1993]. Although of
minor importance in the guitar they should be in-
cluded in a detailed model of any string instrument.

The traditional kantele is equipped with five strings
and a body or soundboard. The termination of the
strings is special: at one end the string is wound
around a metal bar and is fixed by a knot (see Fig.
6a). Thus the effective length of the string is different
(by 0.1-0.2%) in the two main planes of vibration.
Due to this a strong beat is introduced when the vi-
brations in the two planes are summed up in the
body. Differences of the driving-point impedance of
the end supports (e.g. the bridge) in the different
planes may cause similar effects also in the guitar. It
is also known, for example, that the decay rate of vi-
bration depends on the plane of vibration [Fletcher
and Rossing, 1991].

A simple solution to the modeling of these effects
is to use two digital waveguides, one for each vibra-
tion plane.

Nonlinearity due to Longitudinal Forces

The tension of a string changes along with transverse
displacements in a nonlinear way so that new partials
may be generated if this longitudinal force can pass
to the body. In the kantele this effect is very promi-
nent since there is no bridge and the string is directly
supported by the tuning peg (Fig. 6b) so that the ten-
sion variation is transferred to the soundboard by peg
bending. The following relation has been derived in
[Karjalainen et al., 1993] for the time-varying longi-
tudinal force f

  
f (t) ~ sy

2 (x, t) + sz
2 (x, t)[ ]0

l

ò dx (4)

where sy(x) and sz(x) are the slopes in the two main
planes (y,z) of the string vibration in position x, and
 l is the length of the string.

This case is taken as an example where substantial
difficulties arise in keeping the string waveguide
ideal since the force is proportional to the integral of
the string slope squared. The distributed nonlinearity
is computationally very expensive so that a simple
localized approximation is needed for real-time syn-
thesis [Karjalainen et al., 1993].

3 Estimation of Model Parameters
The problems in sound quality of former physical
models of plucked string instruments were caused by
too simple excitation signals, loop filters, and body
models. In most waveguide synthesis models the
body has not been considered at all. The input to the
model has been either white noise [Karplus and
Strong, 1983] or an impulse filtered with a low-order
filter, and the coefficients of the loop filter have been
adjusted by hand [Adrien and Rodet, 1985],
[Karjalainen and Laine, 1991]. More complicated
excitation signals and loop filters are difficult to de-
vise without help of measurements. Thus the attempt
to estimate the string model from the sound of a real
instrument is well motivated.

3.1 Subproblems in Estimation
The system identification of the waveguide string in-
strument model shown in Fig. 5a can be divided into
the following subproblems: (1) Estimation of the
body model B(z), (2) estimation of the string model
S(z) which leads to the estimation of the loop filter
Hl (z)  and the delay length L  when the Karplus-
Strong model is employed, and (3) estimation of an
excitation sequence e(n) or filter E(z).

When using the modified string instrument model
of Fig. 5b the estimation problem is simplified. Now
only the loop filter Hl (z)  and the delay L have to be
estimated. Once they are available, the excitation
signal x(n) can be extracted by inverse filtering the
recorded guitar sound. The inverse filter A(z) can be
solved by inverting the transfer function of the string
model S(z):

A(z) =
1
S(z)

= 1- Hl (z)z
-L (5)

where the delay z-L  in the denominator of the last
form has been omitted. Extraction of the excitation
signal for the KS model using inverse filtering has
also been proposed by Laroche and Jot[1992].

The residual produced by the inverse filter is a
short burst that corresponds to the combination of the
pluck sound, the impulse response of the body, and a
prediction error due to defects in the string model.
Typically, the residual dies away with a time constant
of about 50 ms. In practice the excitation signal x(n)
is formed by truncating about 100 ms from the very
beginning of the residual so that the transient part of
the guitar sound is included.

3.2 Estimation of the Loop Filter
The problem of calibrating the loop filter Hl (z)  ac-
cording to a recorded sound of a vibrating string was
carefully studied by Smith in the beginning of 1980's
(see [Smith, 1982] and [Smith, 1983]). He reported
results attained by using a system identification ap-
proach and modified linear prediction. The former
method results in an IIR loop filter and the latter in
an FIR filter. The methods were shown to perform
well at low frequencies but the variance of the esti-
mates was very large at the high end. Our experi-
ments have shown that these methods often lead to
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unstable loop filters which cannot be used for synthe-
sis unless made stable.

Deconvolution

In [Smith, 1982] it was also proposed that the fre-
quency response of the loop filter could in principle
be computed using deconvolution. In the frequency-
domain deconvolution means division of spectra.
This is equivalent to multiplication where the magni-
tude values of the other spectrum have been inverted.
In this operation large values become small and small
values enormously large, and as a result the noise is
amplified. Smith[1982] reports that this technique
can yield extremely noisy estimates for the magni-
tude response of the loop filter.

Instead of using the deconvolution of two spectra
as the estimate for the frequency response, we have
tried averaging over several of them. The estimate for
the spectrum of the loop filter is then expressed as

ÃHl (e
jw ) =

1
M

Y(e jw , tm + P)

Y(e jw , tm )m=1

M-1

å (6)

where the terms Y(e jw , tm )  are the windowed
Fourier spectra computed at the instant tm , M is the
number of these spectra, and P is the period-length of
the guitar sound. This method gives estimates with
reasonably small variance at low frequencies.
However, the results at high frequencies are fully
unreliable.

A Robust Algorithm

We introduce a new, more robust technique for the
estimation of the magnitude response of the loop fil-
ter. This straightforward algorithm consists of the fol-
lowing steps:
1) Compute the short-time Fourier transform (STFT)

of the guitar sound to be resynthesized;
2) Measure the magnitude of each detectable har-

monic in the STFT frames and form a sampled
envelope curve for every harmonic;

3) Fit a straight line on a logarithmic (dB) amplitude
scale to each sampled envelope curve;

4) Compute the corresponding loop gain for each
slope;

5) Design a digital filter to match the magnitude
spectrum that is formed by the collection of loop
gain estimates at different frequencies.

In Step 1 we have computed the STFT (using FFT)
using a Blackman window with 50% or 75% overlap
with the adjoining windows. Pre-emphasis (e.g., dif-
ferentiation) should be applied to the original signal
before the analysis to flatten its spectrum. It is wise
to use zero-padding in the FFT to increase the reso-
lution of the magnitude response.

The amplitude of the overtones can be measured by
finding the highest amplitude value near the assumed
frequency of the harmonic and by using parabolic
interpolation to find the peak value [Serra, 1989].
The analysis should be started only after the attack
transient of the guitar sound has died, i.e., after the
envelope of the recorded signal shows exponential
decay. The higher harmonics of a guitar sound atten-

uate quickly and after a while they can not be de-
tected because of the background noise. For this rea-
son, the measurement of harmonics can be terminated
some 200-500 ms after the attack.

In Step 4 the gain g of the loop filter (at the fre-
quency of the overtone in question) can be computed
as

g( f k ) = 10
b k L

20H for k =  1,  2,  ...,  K (7)

where bk  is the estimated slope of the kth harmonic,
f k  the frequency at which it occurs, H the hop size

used in the STFT analysis, K the number of harmon-
ics to be extracted, and L the length of the delay line
of the string model. The length L is determined as the
ratio of the sampling frequency to the fundamental
frequency of the analyzed sound and it is assumed to
be real-valued.

Finally, the loop filter can be designed using the re-
sulting magnitude response as a prototype. Here we
assume that the slightly inharmonic nature of the gui-
tar sound is not perceptually as relevant a feature as
the attenuation rate of the harmonics. If the disper-
sion in the string were tried to be modeled as well the
frequency of each harmonic should be accurately
measured and the phase should be accounted for in
the filter design.

Analysis of Decay Rates of Harmonics

It appears that, disregarding the attack, the sound of a
classical acoustic guitar (plucked by finger) includes
an insignificant amount of energy at the frequencies
above 3 or 4 kHz. Due to this observation, it is not
important to try to estimate the magnitude response
of the loop filter at much higher frequencies. The
brightness will be provided to the synthesized guitar
sounds by the excitation signal which includes the at-
tack transient of a real pluck. At high frequencies the
loop filter is only designed to have sufficient amount
of damping so that the high-frequency components
included in the excitation will die out rapidly.

In Fig. 7 an example of the time envelopes of the
four lowest harmonics of a guitar tone are displayed.
Straight lines are fitted to these curves in a least
squares sense. It is seen that in this case the fitting
succeeds fairly well for most harmonics. In certain
tones the string and body can interact in a complex
way causing some envelopes to be bumpy. The
strangely oscillating envelope of the third harmonic
in Fig. 7 is an example of this behavior.

We want to point out that it is our aim to design a
low-order loop filter for our real-time synthesis
model. For this reason the magnitude spectrum
should preferably be relatively smooth, i.e., adjoining
harmonics should not have very different slopes since
the magnitude response of a low-order filter can not
fit the corresponding spectrum. It is thus recom-
mended to choose well-behaving tones for calibration
of the model.

The values of the loop gain at the frequencies of
the 11 lowest harmonics of a guitar tone (B string,
7th fret) are illustrated as circles in Fig. 8. Typically
these gains show the low-pass nature of the string
damping, i.e., the loop gain decreases as the
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Fig. 8 Estimated magnitude spectrum (circles) and
magnitude response of a 1st-order IIR filter.

frequency increases. As can be seen in Fig. 8 the
practical situation deviates slightly from this simple
assumption.

In this example the envelopes of the higher har-
monics were extremely noisy because the relative
level of those harmonics was very low. Thus the cor-
responding loop gains could not be estimated.

3.3 Loop Filter Design
The final step in the model estimation procedure is to
design a loop filter to match the estimated magnitude
response (see Fig. 8). It would be easiest to design an
FIR loop filter. Then the filter could also have a lin-
ear phase response, if necessary. In practice it has
been noticed that a fairly high-order FIR filter is re-
quired to accurately model the frequency-dependent
damping of the string. Therefore we decided to use a
recursive filter instead.

All-Pole Modeling using LPC

As a first method we matched an all-pole model
using linear prediction (LPC) to the power spectrum
of the loop gain. A practical problem in this
procedure is that the target spectrum is known only in
a small set of points at the low end of the frequency
band and the LPC analysis is seriously disturbed if
the magnitude response is set to zero in the rest of the
band. A solution to this inconvenience is to assume
exponential attenuation for the power spectrum at the
high end. The exponent should be proportional to the
order of the all-pole filter to be fitted. Otherwise this
kind of trick will increase the approximation error at
the important frequency band. It can be concluded
that the LPC method is very critical and successful
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Fig. 9  a) Original guitar tone, b) the inverse
filtered signal, and c) the resynthesized signal.

results can be obtained only with careful manual
adjustment.

Iterative IIR Filter Design

The most efficient structure for the loop filter is
obviously an infinite impulse response (IIR) filter
with both poles and zeros. As an example we
designed a first-order IIR filter for the case of Fig. 8
using an iterative algorithm that alternately adjusts
the filter coefficients to reach the minimum of the
approximation error. The magnitude response of an
IIR loop filter matched to the given points is shown
in Fig. 8. In this example the loop filter is

Hl (z) =
0.9152 + 0.1889z-1

1+ 0.1127z-1 (8)

It can be seen that such a low-order filter is not able
to model the gain of each harmonic but merely has
the same general shape as the desired spectrum.

In the design of this filter we used an error weight-
ing function that penalizes the errors at the points
near unity. This guarantees that the resulting magni-
tude response will not exceed unity and that the
match will be best for the lowest harmonics whose at-
tenuation rate can be heard easily. Due to the lack of
reliable gain estimates at high frequencies we used
zero values in the target spectrum to bring about the
low-pass behavior.

3.4   Resynthesis
The waveform of the guitar tone analyzed in Fig. 7,
its residual after inverse filtering, and the resynthe-
sized version are shown in Fig. 9. The loop filter of
Eq. (8) was used for this example. The excitation
signal in the resynthesis was formed by truncating the
first 100 ms of the residual of Fig. 9b. It can be seen
that the attack of the resynthesized signal is nearly
identical with the original one. The resynthesized
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tone sounds definitely like the guitar but when com-
pared with the original it can be perceived that it
attenuates a little more rapidly. Nevertheless this
approach results in much more realistic synthesis
than the earlier models that used artificial excitation.
Naturally the resynthesis can still be enhanced by a
more carefully designed or higher order loop filter.

Although in principle a different loop filter and ex-
citation should be used for each tone we tried synthe-
sis using the same excitation and loop filter but a dif-
ferent delay line length and found the result convinc-
ing. This means that only a relatively small number
of excitation signals need be stored. This is an advan-
tage of the model-based guitar synthesizer over sam-
pling synthesis where a large amount of sampled data
has to be stored to achieve good sound quality on a
wide playing range.

4   Control of the Model
The current model of the guitar has a large number of
parameters many of which must be updated every
time a note is played. In most situations it is imprac-
tical to control all of them directly but to send basic
control information only and compute the unsupplied
values automatically. At this stage the current musi-
cal context can be also taken into account.
Furthermore, the physical model of a human per-
former (e.g. limited speed of finger movement)
should be included to achieve realistic results.

In the following we discuss some methods of con-
trolling the real-time synthesis model. The control
interfaces used here translate the control input (e.g.
notes) into model parameters (see Fig. 10).

4.1 Control Situations
In a usual live performance situation the control in-
terface has to respond immediately to an incoming
control event. This implies that it cannot take future
events into account which leads to poor control of
note transitions. If strictly real-time performance is
not needed introducing a reasonable processing delay
solves this problem. Furthermore, in guitar synthesis
control this method makes optimal string allocation
possible.

Using off-line preprocessing of the input the musi-
cal context can be analyzed in detail and an internal
representation or a new MIDI sequence can be gener-
ated. If the input is a music description language the
synthesis can be controlled explicitly by including
special information into the score. However, most
parameters can be adjusted automatically in this case
as well.

4.2 Control Interfaces
We added various control interfaces to our new
model in order to try it in both real-time and off-line
situations. The interfaces are written in Common

Lisp / CLOS. Built upon a set of low-level functions
(used for updating the model parameters) we imple-
mented an object-oriented sequencer which allows
for automatic performance generation (see also
[Friberg, 1991] or [Bresin et al., 1992]). For MIDI
access from Lisp, we use Hyperlisp [Chung, 1992].

The Lisp Sequencer

The input of the Lisp sequencer is a score description
language with Lisp syntax that enables mixing of
high-level (notes, chords, sequences) and medium or
low-level control information (like string used for the
note, pluck type, the timing of the arpeggios, or the
binding of successive notes).

The sequence of notes is transformed into a low-
level control sequence in four passes: parse, perform,
expand and play. Each pass can be explicitly con-
trolled by supplying specialized functions.

MIDI Control

MIDI events are processed in real time by calling
CLOS method functions specialized both for the
event type and the instrument class. For additional
flexibility each string can have method functions of
its own that are called after a note assignment by the
guitar object.

For a more realistic live performance using a MIDI
keyboard we developed a new concept similar to
[Garton, 1992]. The MIDI interpreter provides differ-
ent performance styles (e.g. classical, flamenco,
blues, pop, or jazz). In addition to the appropriate
timbre these presets provide most of the characteris-
tic playing techniques of the given style, like differ-
ent strokes, strums, hammer-on, pull-off, slide,
tremolo, harmonics, pluck position change, mapped
to keys, key combinations or controllers, all easily
playable from a keyboard. The styles are used to-
gether with enhanced MIDI control modes. In Solo
mode the interpreter can assume that only a single
note is intended to be played at one time, thus certain
playing techniques (e.g. bend, slide, hammer-on, or
pull-off) can be recognized. The Strumming mode is
used for chord playing essential in many styles.

String Allocation

A special problem of controlling the guitar synthesis
is the selection of the appropriate string for a given
note since on the real guitar a note could usually be
played on many strings resulting in a different sound
quality. Another consideration is that not all possible
note combinations can be played since the strings
have different playing ranges (see Fig. 11). For real-
istic simulation it should be taken into account that
the fret range used for the notes of a chord or for suc-
cessive notes is limited.
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A simple solution is that a note is assigned to the
highest free string that can play it. From the guitar-
player's viewpoint this is a strategy of playing each
note as close to the first position as possible. This
strategy does not take into account the playability of
a given sequence of notes and sometimes it even re-
fuses to play a chord that could otherwise be played
in a higher position or in different note order.

If real-time performance is not needed a back-
tracking algorithm for optimizing the movement of
the fingers can be used. This approach makes it also
possible to automatically add synthetic fret-noise at
sudden position changes.

5   Summary
Improvements and extensions to earlier physical
models of plucked strings were introduced. The main
contribution of this work is that more natural syn-
thetic sounds than before which imitate the acoustic
guitar can be produced in real time. This was
achieved by interpreting the guitar as a cascade of
linear subsystems: the excitation, the string, and the
body. Thereafter the parts in the chain were reordered
in order to use the body response as the input. The
input can be, e.g., a measured body response or a sig-
nal obtained by inverse filtering a recorded guitar
sound.

We also discussed how to estimate a digital filter
that models the frequency-dependent attenuation in
the delay loop of a waveguide string model.
Modeling of more complex behavior of the string,
like double-length behavior and nonlinearities, was
studied.

We have implemented the described guitar model
on a single TMS320C30 signal processor using the
QuickC30 software environment [Karjalainen, 1992]
running on an Apple Macintosh computer. This DSP
system can run a six-string guitar model in real time
at a sampling rate of 22.05 kHz. The synthesis model
can be controlled either from MIDI or by a special
Lisp-based sequencer.
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