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ABSTRACT 

A new object-oriented DSP environment called QuickSig is described. 
It is based on the latest developments in object-oriented programming (New 
Flavors on Symbolics Lisp machines). The design philosophy of QuickSig 
has been to extend the Lisp language by a layer of general DSP constructs; 
abstract data structures like signals, filters, windows, graphical presentations 
and related signal processing operations. QuickSig is targeted to be a fast 
prototyping system for algorithmic development. It is easily extendable to 
include new ways of modeling signals and signal processing, both numerical 
and symbolic. This paper describes the main features of the present system 
and some new features that are under development. 

INTRODUCTION 

Traditional digital signal processing (DSP) is based almost entirely on 
numeric computations using simple data structures like scalar numbers, 
arrays and specific file formats for signals, spectra, etc. This formalism does 
not easily exhibit the clarity of abstract concepts inherent in signal 
processing. The higher abstraction levels and symbolic manipulations of 
signals remain in the mental processes of the programmer and do not exist as 
an integral part of the program or of the programming environment. 

The integration of artificial intelligence and DSP is creating a new area 
of research that shows promising results and perspectives. Knowledge-based 
and symbolic signal processing, signal interpretation etc. are some of the 
new terms used to describe this field. Object-oriented programming is one of 
the most successful approaches as a basis for integrated signal processing 
systems. A high level of abstraction is reached where not only numeric 
computation but also rule-based logic is easily applicable. 

Object Oriented Programming 
Object oriented programming has evolved with advances in AI 

methodology and modem programming languages. New object formalisms 
are emerging and the approach is becoming a widely accepted extension to 
traditional languages like C and Pascal. Simula is often referred to as one of 
the f i s t  languages that included object-based abstraction features. Smalltalk 
[I] from Xerox is a well known "puristic" object language, where everything 
is made of object classes and instances. 

Lisp is found to be a good basis on top of which a powerful and 
practical object formalism can be implemented as an extension of the 
language. Flavors and New Flavors [2] are commercially available object 
extensions on top of the Common Lisp for Symbolics Lisp machines. 
Common Loops is an object environment from Xerox for their Lisp 
machines. In the near future these and some other object languages will be 
merged into the object standard for Lisp programming. The object 
orientation is well suited to engineering applications like knowledge-based 
signal processing. At the present time advanced object languages have started 
to emerge also in the personal computer domain, e.g. Smalltalk and Lisp 
implementations on the IBM PC and Apple Macintosh. 

A Typical Object Oriented Programming Environment 
The objects exhibit an abstraction mechanism where the implemen- 

tation details are hidden so that the user can rely on a systematic and fairly 
simple interface between the objects and the external world. The most 
common features in object languages are: 

Definition of object classes as a general model form of any instance 
object of that class. The class definition includes a list of variables internal 
to the objects. The instances keep an internal state by the values of these 
instance variables (= state variables, ivars). Instances of any object class can 
be created and deleted at runtime. Computation is localized into the objects 
by defining method functions specific and common to the instance objects of 
the class, These method functions also form a communication interface that 
hides the implementation details. 

Hierarchical inheritance of properties (instance variables, method 
functions) between classes (superclass vs. subclass) makes the object- 
oriented programs systematic and compact. In the most advanced systems an 
object class can inherit properties from multiple superclasses. The outside 
view of computation is based on calling the method functions of instance 
objects. This can be realized in two forms: (a) message passing by explicitly 
"sending messages" to be captured by objects and executed by method 
functions, or @) by generic functions (globally named functions) that call 
the local method functions with the same name according to the class type of 
the first argument. The latter syntax has good compatibility with the Lisp 
language. Generic functions are one of the starting points in the realization 
of the QuickSig system. 

SYMBOLIC AND KNOWLEDGE-BASED SIGNAL 
PROCESSING SYSTEMS 

There exist several implementations of signal processing environments 
based on object-oriented programming. The most advanced systems have 
used Flavors running on Symbolics Lisp machines. G. Kopec [3] formulated 
the concept of signals as objects. Later Kopec has introduced ISP (Integrated 
Signal Processing System) [4], SRL (Signal Representation Language) [5] 
and SDB (Signal Data Base) especially for speech processing research and 
applications. KBSP (Knowledge-Based Signal Processing System) from MIT 
was a more general approach by Myers et al. The present version of KBSP is 
called SPLICE 161. It is shown to be easily applicable to the study of 
practical problems, see Dove 171 and Milios [81. 

Signals as Objects 
In signal abstractions by objects of the ISP and SPLICE systems a 

signal is seen as a function or mapping from the index (integer) domain into 
the sample value domain. It is possible to avoid the limited interval of 
numeric samples by assuming some function or default value that extends 
the explicitly supported range of the signal virtually to include all index 
values between -- and +m. Signals are created by objects called systems that 
are like function generators. 
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There are several fundamental properties of signals in the SPLICE 
system. Signals are seen as immutable objects that cannot be changed. The 
delayed or deferred evaluation paradigm means that the numeric sample 
values are computed only when needed. The concept of deferred array is used 
to buffer the computed values for possible future use so as to avoid 
recomputation. The interval of the buffer array may change according to the 
needs of computation and the buffering is transparent to the user. 

AN OVERVIEW OF THE QuickSig SYSTEM 

QuickSig is an experimental DSP programming environment that is 
general (not application specific) and more engineering oriented than 
SPLICE. It is based on the latest object formalism (New Flavors, 
Symbolics Inc. [2]) which is close to the emerging object standard. 
Common Lisp has been the main programming language due to its 
flexibility and powerful representation features. The QuickSig kernel can be 
considered as a signal processing extension to the Lisp language. 

The current size of QuickSig is more than 10 000 lines of Lisp code 
written in Common Lisp and New Flavors. QuickSig is easily extendable. 
The hardware environment is the Symbolics 3670 Lisp machine with 470 
Mbytes of disk memory (160 MBytes of virtual memory) and a UNIBUS- 
option for interfacing peripherals like 16 bit A/D and D/A converters for 
full-range audio signal input and output. 

One of the main features in object-oriented signal processing of the 
QuickSig system is to retain the simple syntax of Lisp, like in scalar 
computations, e.g., 

in the domain of signal processing. In the case of signal objects we can 
define the function "add to mean additive mixing of the signals, sample by 
sample, i.e., 

whatever the internal representations of the signals sigl and sig2 may be. 
This generic function add can be applied as well to scalar numbers as 
combinations of scalars and signals. 

(c  1 2 )  => 3 ,  

(add sigl sig2) => sig3 (a new signal object), 

QuickSig consists of object classes that inherit properties from more 
simple ones and add new features (especially method functions to be more 
specific). The object hierarchy starts from spun and scale-spun which describe 
integer- or real-valued intervals. Based upon them comes the object class 
signal with an array to keep the samples corresponding to its span. 
Windows, correlates, m-signals (multi-channel signals), s-signals (signal- 
valued signals) and more complicated objects are inherited from the signal 
class, see Fig. 1. The QuickSig system contains also objects and functions 
for digital filters and LPC processing, a graphical user interface, signal 
databases, block diagram compilation and event-based symbolic signal 
representations. , ~ ~ ~ I I ~ - .  ~ - . - .  I 

M-SIGNAL S-WINDOW S-SIGNAL S-POLY . fl 

SIGNAL (s-array) 
4 

SCALE-SPAN (scale, scaler) 

4 
SPAN (beg, size) 

Fig.1. A part of the QuickSig object inheritance hierarchy. 

SPAN AND INTERVAL PROCESSING 

Span is a low level object class which provides a foundation for the 
signal object system. A span object has two primary integer-valued pro- 
perties: beg (the fist  index included) and size (the number of index positions 
included in the span). Some related secondary properties are end (= beg+size, 
not included) and stop (= end-1, is included). Span objects are convenient for 

index range computations in signal processing operations and they can be 
created by the form (&-span beg end), e.g. 

where setq assignes the symbol spanx with a new span object. There are 
access functions with the names beg, size, end and stop that can be used to 
read or change the properties of an object spanx, e.g., 

(setq spanx (make-span -3 20)) 

(end spanx) 
(setf (size spanx) 120) sets the size of spanx to be 120. 

returns the end index of spanx 

An important part of span processing consists of set-theoretical span 
computations with intersection-span (see Fig. 2). union-span, correlation- 
span and convolve-span, e.g. 

where spl and sp2 are objects inherited from span. To-span is optional and is 
created if not given. The function returns the span that results when 
convolving signals with spans spl and sp2. 

(convolve-span s p l  sp2 [to-span]) 
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spand 1-4 

intersection of spanl and span2 

Fig 2. Processing of the intersection-span of two spans 

The scale-span object class inherits all propreties and method functions 
of span and adds the properties scale and scaler. Scale keeps a symbol to 
denote a scale like time, frequency, position, etc. Scaler is a real-valued 
number to relate index values to continuous scale points (e.g. l/sample- 
frequency for time scale signals). Secondary properties beg-point, end-point, 
stop-point and scale-size correspond to the index properties on the real- 
valued scale and can be accessed by method functions like 

sets the stop index so that the stop-point will be 0.5 rounded to the nearest 
index. There are method functions to create and copy scale-spans and to check 
the scale-compatibility of two scale-span-inherited objects. 

(setf (stop-point scale-spanx) 0.5) 

Interval is still another kind of range object that has the primary 
properties beg-point, end-point and scale with the corresponding access 
functions. Intervals are not related to index numbers in any way. They can 
be manipulated e.g. by method functions union-interval, intersection- 
interval, scale-span-to-interval and interval-to-scale-span. The need for 
intervals and scale-spans as separate objects arises from the difference 
between discrete indexes and real-valued points as well as from the roundoff 
error when converting between them. 

SIGNAL OBJECTS 

Signal, the main object class of the QuickSig system is inherited from 
scale-span and includes a new property s-array (sample array) to keep the 
samples for the defined span range. By default the signal samples outside this 
range are considered to have the value 0.0 if scale is defined (NIL if scale is 
NIL) even if these default values are not stored explicitly. 

Signals in QuickSig, contrary to SPLICE, are not immutable. This 
violates the pure functionality and mathematical elegance of signals as 
functions but introduces more practicality because a signal can be changed 
and reused as many times as is needed. In many cases the result of operating 
on a signal can be directed back into the same signal object. All properties of 
a signal may change. An important feature is the ability to dynamically 
change the span of a signal, explicitly or implicitly, as a result of a signal 
processing operation. 
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Basic Functions for Signal Manipulation 

One of the most powerful forms is by the syntax: 

where the arguments after &key are optional keyword arguments. A typical 
example of signal generation is: 

The QuickSig system has several functions for the generation of signals. 

make 'signal &key function funscale span scale scaler, 

(setq sigx 
(make 'signal :function #'(lambda (x) (sin (* 2 pi 1000 x))) 

:span (make-scale-span -1.0 1.0) 
:scaler (1 1.0 16000))) 

This r e m s  a sinusoidal time signal (time is the default for scale) with a 
sampling frequency of 16 a, a span range from -1.0 to 1.0 (seconds) and a 
frequency equal to 1 kHz. If the keyword funscale is used instead of 
:function, the domain 0 I x < 1 of the function will be mapped to 
correspond to the specified span. 

There are functions for copying a signal (make-copy), signal "editing" by 
functions cut-signal (cut and retum a part), insert-at-point, s-reverse (to 
reverse the signal samples within a span), s-concat (concatenation of signals) 
and s-sort (sorting of samples), changing the span explicitly (span-adjust), 
shifting (shift, scale-shif), changing the sampling frequency (up-sample, 
down-sample by an integer ratio) and testing properties (real-p and 
compatibility of two signals by scale and scaler). The access to individual 
samples is by the functions at and at-point, e.g. 

(at-point sigx 0.5) returns the sample at time 0.5 seconds, 
(setf (at sigx 100) 1.0) assigns the sample value 1.0 to the index 

position 100. If a value outside the span is requested the default (0.0) is 
returned. If a sample is stored outside the existing span, the span and s-array 
are automatically adjusted to include the new sample. 

Functions for inquiring scalar-valued properties of signals are e.g. 
mar-min ( r e m s  the max and min values within a span), abs-mar (= max of 
(abs max) and (abs min)), sum, mean, sqr-sum, etc., all of them over an 
optional span (default is the total signal). 

Array- Oriented Signal Processing 
A large part of signal processing is carried out in a way that can be called 

array-processing. It is advantageous due to its high speed of loop-like 
operations. A fundamental part of QuickSig is devoted to array-oriented DSP 
although it is not the only approach (see block diagram approach below). 

Most of the basic functions for signal manipulation mentioned above 
were actually performed by array-oriented processing, where a loop is run 
over a specified span to retum the desired scalar or signal value. An 
important class of array processing consists of arithmetic operations, 
especially those used in linear signal processing, eg., 

QuickSig supports a set of generic signal functions that may take scalar or 
signal-valued arguments. Among them are add, sub, mul, div, square-root, 
trigonometric functions, etc. This set is easily extendable to include any 
function that is needed. As a generalization the function s-call can be used to 
apply any Lisp function to signals or scalars by the syntax: 

where funct is any Lisp-function that acts as a point operator, objl and 
optional obj2 are signals or scalar numbers, to is the resulting signal (which 
may also be objl or obj2 if non-scalars), out-span is the optional output- 
span (default depends on the inputs and type of funct), type-check controls if 
compatibility is checked and mix-mode determines if the result is written or 
added to to. 

Signal Windowing 

window function by the form: 

where sigx is the signal to be windowed, wndx is the window object to be 
applied and the optional keyword arguments include window-point or 
window-span to specify the index or scale position of the window, window- 

(add s ig l  sig2 :to sig3 :out-span (make-span 0 10)). 

s-call funct objl [obi21 &key to out-span type-check mix-mode 

Signal windowing in QuickSig is carried out by calling a generic 

window sigx wndx &key .... 

our-point to indicate the index or scale position of the resulting signal (to), 
etc. The windowing operation can also be imbedded in some other signal 
processing forms like FFT and correlation as a pre-operation by using a 
.prewindow keyword syntax. 

There are two main types of windowing objects available. s-window is 
a signal-like object which is in a numerically sampled form having a fixed 
length. f-window is more flexible because it is represented as a function that 
can be scaled by length at the time of application to a signal. The window 
function itself must be specified in the domain 0 2 ~ 1 .  The most common 
types of windows are predefined in QuickSig as well as functions for the 
generation of new window types. 

Convolution, Correlation, and Transforms 
Convolution, correlation, and several different types of transforms are 

useful elements in array-based signal processing. QuickSig uses efficient 
methods to realize these operations. Different method functions exist to 
calculate the Fourier transform of a signal depending upon its properties (e.g. 
real or complex valued). Run-time cost analysis is performed to determine 
whether it is faster to use a direct method or a transform (along with 
optimum blocking size given a set of available transforms) to calculate a 
convolution or a correlation. The user has the option to avoid the slight 
overhead induced by cost-analysis by being able to apply functions directly if 
signal properties are fixed and known a priori. Temporary signal variables are 
frequently needed with these operations and therefore a resource pool of 
signals is used reducing the need for garbage collection. 

FILTER OBJECTS, FILTERING AND LPC 

Filtering is one of the most important areas in signal processing. It is 
perhaps most clearly characterized by traditional ways of thinking with 
attention especially being payed to numerical computations. Digital filtering 
is one such area where we can successfully benefit from object oriented 
programming. Not only are input and output signals represented by objects 
but the filter can also be seen as an object which not only adds and 
multiplies but also posseses internally a wealth of knowledge. 

Filter objects can be implemented in different ways. Our filter structure 
is based on lower level object classes that were introduced in Fig. 1. When 
designing new higher level elements we have tried to keep the design as 
simple and general as possible while still retaining all necessary information 
for filtering. So far two kinds of filters have been implemented a) Basic- 
filter - a class which includes Direct Form I1 filters, and b) Lattice-filter - a 
class for digital lattice-filters. Both of these classes have been implemented 
using a common inheritance hierarchy (s-poly andpoly-ratio), which can be 
seen in Fig. 3. 

Fig. 3. Inheritance hierarchy of filter objects 

The class of polynomials (s-poly) is based on sequence (signal with 
scale equal to NIL, see Fig. 1). Poly-ratio is an object class which describes 
the transfer function having both a numerator and a denominator polynomial 
(denseq and numseq). Tempseq is an instance variable (an array) which 
contains the delayed samples within the filter, and end-expand is used for 
controlling the length of the output. 

Filtering is performed by the generic function f i l ter which is 
implemented on the more specific functions bfilter and [filter, depending 
upon the filter class. When calling these functions it is possible for example 
to define the span of the output signal by using the keyword out-span and to 
give the initial state of the filter with the keyword initial-state. The filtering 
function also makes decisions regarding the fastest way of filtering. Methods 
for graphical z-domain presentation of filters (poles and zeros) are available. 

1684 



Linear prediction is one application for the filter object formalism in 
QuickSig and has been implemented using an object oriented strategy. A 
natural result of applying LPC-analysis to a signal frame is a filter object 
(an LPC inverse filter) and the LPC residual signal. When analyzing a 
complete signal a list of two s-signals (see Fig. 1) is returned. The frst  is a 
sequence of inverse filters and the second a sequence of time domain signals 
representing the LPC residuals. This is a good example of conceptual clarity 
gained by the object-based abstraction mechanism. All the details of LPC 
analysis are easily and flexibly available by using the object hierarchy. 

BLOCK-DIAGRAM COMPILATION AND 
GRAPHICAL EDITING OF DSP ALGORITHMS 

There is another approach to computation in object-oriented signal 
processing that will be added to the QuickSig environment. It includes the 
use of a graphical interface to edit block and flow diagrams that will compile 
into efficient Lisp code for later execution. This part of the system is 
described here only briefly because of the preliminary nature of the 
realization. 

There are separate block object classes for all basic DSP operations like 
constant block, unit delay, adder, multiplier, generalized function block, etc. 
The blocks can be wired to form diagrams which can further be named and 
defined as new classes of composite blocks. Other basic objects are nodes 
that are divided into input ports, output ports and wire nodes. Wires between 
nodes are also objects but they are used only for the user interface, not for 
computational logic. 

Each computation block has a description of its intemal structure. It 
consists of input and output ports (as objects), intemal variables to keep 
special definitions (e.g. constant value for a constant block), and a list of 
graphic presentations of the object for user interfacing. Each computation 
block also contains a set of method functions (local functions) as an interface 
to the computational environment. 

A unique feature of the block objects is their ability to generate 
computation forms and corresponding compiled functions. Each block class 
includes method functions that can manipulate Lisp expressions and compile 
them in a way that is specific to the instances of the class. The main idea is 
to attach a compiled function object to each input and output port of a 
computable block. This means that a computation step (index or time step) 
can be activated from any input (input driven) or output (output driven) and 
propagated through the connected part of a block diagram. A useful feature of 
the system to be utilized in the future is that instead of generating compiled 
code for the Lisp machine it is possible also to use other target machines, 
processors or languages, especially the floating-point signal processor chips 
that will be available soon. 

A graphic editor will be an essential part of the system for the creation 
of DSP algorithms in the form of flow and block diagrams. Thus all the 
QuickSig computation block objects, signal objects, etc., have correspond- 
ing presentation objects which govem the graphical presentations. The 
presentation objects are linked to the corresponding computation objects. 
The graphic editor is used interactively by the mouse, menus and keyboard. 

OTHER FEATURES OF THE QuickSig SYSTEM 

Object-oriented programming allows for the systematic extension of a 
complex DSP system. In this section we mention some of the other major 
features of the system. 

An important part of any DSP tool is the graphics interface. QuickSig 
supports several classes of display objects that can be used easily. For 
instance the generic function form 

is able to take signal-inherited objects (objx) and draw them in several ways. 
There are displays and layouts available for drawing combinations of DSP 

(draw objx [&key options ... 1) 

objects as seen in Fig. 4. The graphics interface will be enhanced using 
mouse-sensitive presentation objects and it will be integrated into the 
graphics editor of the block diagram compiler. 

Fig. 4. An example of a QuickSig display: auditory 
formant spectrogram, loudness function and 
the corresponding speech signal time waveform. 

QuickSig objects can form signal databases. In the current implemen- 
tation this serves primarily as a file storage mechanism for the objects and a 
way of naming the objects apart from the Lisp symbol name space. The 
objects can use a flexible set of relation-mixins: special features to represent 
various kinds of relations between the objects. The file storage of these 
relations is not yet supported. 

There is also an experimental formalism to analyze and represent 
signals by events and event structures. This allows for symbolic and rule- 
based processing of signals (see this proceedings [9]). QuickSig includes 
many application-specific features as well, especially for speech analysis, 
synthesis, recognition and auditory modeling studies. 
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