Filtering and Subspace Selection for Spectral Features in Detecting Speech Under Physical Stress

Jouni Pohjalainen and Paavo Alku

Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland, jouni.pohjalainen@aalto.fi, paavo.alku@aalto.fi
The focus of this paper

- Recently developed robust feature generation methods:
 - Extended weighted linear prediction (spectrum analysis)
 - Multi-scale autoregressive modeling
 - modulation filtering
 - instantaneous selection of classification subspaces
- Apply them to the present paralinguistic task (Physical Load in ComParE 2014)
Weighted linear prediction (WLP)

- A linear predictive all-pole model
 \[H(z) = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}} \]
 has time-domain prediction error
 \[e_n = s_n - \sum_{k=1}^{p} a_k s_{n-k} \]

- To solve \(a_k \), WLP minimizes \(E_{WLP} = \sum_n W_n e_n^2 \) over the analysis frame

- This way, different temporal locations of the analysis frame can be (de-)emphasized
Extended Weighted Linear Prediction (XLP)

- In WLP, \(\frac{\partial E_{WLP}}{\partial a_j} = 0, \quad 1 \leq j \leq p \), leads to the normal equations
 \[
 \sum_{k=1}^{p} a_k \sum_n W_n s_{n-k} s_{n-j} = \sum_n W_n s_n s_{n-j}
 \]

- In XLP, each autocorrelation “snapshot” \(s_{n-k} s_{n-j} \) is weighted by a separate value:
 \[
 \sum_{k=1}^{p} a_k \sum_n Q_{n,j,k} s_{n-k} s_{n-j} = \sum_n Q_{n,j,0} s_n s_{n-j}
 \]

- In this work:
 \[
 Q_{n,j,k} = \frac{m-1}{m} Q_{n-1,j,k} + \frac{1}{m} \left(s_n^2 + |s_{n-j}| \| s_{n-k} \| \right)
 \]
XLP weighting of autocorrelation

- Weighting example of autocorrelation snapshot matrices $[s_{n-1} s_{n-2} \ldots s_{n-p}]^T [s_{n-1} s_{n-2} \ldots s_{n-p}]$

 - Unweighted snapshot
 - Weighted snapshot
XLP spectrum analysis example

- Linear prediction (LP) and XLP with different values of the time-averaging parameter m
Multi-scale autoregressive models

- Autoregressive (AR) modeling of the temporal dynamics of the feature trajectories

- A single AR model with order q and sample interval S for the ith feature:

 $$\hat{y}_{i,t} = b_{i,0} + \sum_{k=1}^{q} b_{i,k} y_{i,t-kS}$$

 ➢ The time resolution is constrained by choices of q and S

- N AR models with different time scales:

 $$\hat{y}_{i,t,j} = b_{0,i,j} + \sum_{k=1}^{q_{i,j}} b_{k,i,j} y_{i,t-kS_{i,j}}, 1 \leq j \leq N$$
Multi-scale autoregressive models

- Applied for two separate tasks
- Modulation filter for feature trajectories
 - Replace each $y_{i,t}$ by its predicted value $\hat{y}_{i,t}$ that minimizes $(x_{i,t} - \hat{y}_{i,t,j})^2$
 - $b_{k,i,j}$ have been estimated for target class
- Subspace selection
 - At time t, perform GMM classification using features for which $(y_{i,t} - \hat{y}_{i,t})^2$ is low according to high/low clustering over the utterance
Multi-scale filtering example

➢ Top: unprocessed auditory spectra (from MFCCs)

➢ Below: MFCCs filtered by models representing emotions anger, neutral and happiness
The detection system

- 39-dim (12 MFCCs + utterance-normalized log energy) + Δ + ΔΔ
- Spectrum analysis in base MFCC computation is varied (FFT, XLP, XLP-CR)
- Training phase: estimate AR coefficients to represent the target class (low physical load)
- Filtering the feature trajectories across frames
- Classification using 64-component GMMs (optionally, in a subspace consisting of locally selected features)
Physical load detection results

<table>
<thead>
<tr>
<th>Spectrum Analysis and Long-Term Filter</th>
<th>Long-Term Operations</th>
<th>Development Set</th>
<th>Unweighted Average Recall % (Max/EER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>FILTERING SUBSPACE FILT. & SUBSP.</td>
<td>64.0 / 60.4</td>
<td></td>
</tr>
<tr>
<td>S=2, q in {4,8,12}</td>
<td></td>
<td>63.4 / 59.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63.2 / 59.9</td>
<td></td>
</tr>
<tr>
<td>XLP</td>
<td>FILTERING SUBSPACE FILT. & SUBSP.</td>
<td>65.8 / 64.8</td>
<td></td>
</tr>
<tr>
<td>S=2, q in {4,8,12}</td>
<td></td>
<td>69.7 / 68.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.7 / 64.8</td>
<td></td>
</tr>
<tr>
<td>XLP-CR</td>
<td>FILTERING SUBSPACE FILT. & SUBSP.</td>
<td>67.9 / 64.3</td>
<td></td>
</tr>
<tr>
<td>S=3, q in {4,8,12}</td>
<td></td>
<td>64.9 / 62.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.2 / 64.3</td>
<td></td>
</tr>
</tbody>
</table>
Physical load detection results

<table>
<thead>
<tr>
<th>METHOD</th>
<th>DEV</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT S=2, q in {4,8,12} FILTERING</td>
<td>64.0</td>
<td>69.9</td>
</tr>
<tr>
<td>FFT S=2, q in {4 8 12} FILTERING & SUBSPACE</td>
<td>63.2</td>
<td>69.9</td>
</tr>
<tr>
<td>XLP S=2 q in {4,8,12} SUBSPACE</td>
<td>69.7</td>
<td>68.6</td>
</tr>
<tr>
<td>XLP-CR S=3, q in {4,8, 12} FILTERING</td>
<td>67.9</td>
<td>68.6</td>
</tr>
<tr>
<td>FFT-MFCC/GMM BASELINE</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>CHALLENGE BASELINE (SVM)</td>
<td>67.2</td>
<td>71.9</td>
</tr>
</tbody>
</table>
Conclusions

- The feature computation methods proposed earlier for robust emotion recognition also showed good robustness performance in recognition of physical stress state.

- Spectrum models which include fine detail, such as FFT, could be enhanced by autoregressive long-term filtering.

- XLP with the newly proposed classification subspace selection approach gave the best results.
What have we learnt?

- Similar approaches can work for different paralinguistic tasks

- **Robustness** is an important consideration with practical, realistic databases
 - Depending on the task at hand, it may not be realistic to record even training data in a sound-proofed anechoic chamber

- **Combinations** of different methods may work well together to complement each other
 - But how to find the best configuration?
References and software

Matlab code: http://www.acoustics.hut.fi/research/robustness