PowerlCA

1 Introduction

PowerICA is a stable ICA algorithm, which is especially useful when the sample
size is not orders of magnitude larger than the data dimensionality [1]. This is the
finite-sample regime in which the fixed-point FastICA algorithm [2] is often reported
to have convergence problems [3].

This MATLAB package is an implementation of Algorithm 1 proposed in paper
below.

S. Basiri, E. Ollila and V. Koivunen, ”Alternative Derivation of FastICA With
Nowvel Power Iteration Algorithm,” in IEEE Signal Processing Letters, vol. 24, no.
9, pp. 1378-1382, Sept. 2017.

If you use this function in your publication please cite the paper using the above
citation info.

2 The package

The PowerICA package contains the following files:

README.pdf: This file.

PowerICA.m: The main function.

parnode.m: Auxiliary function, called by the main function in parallel mode.

Example.m: A synthetic example of utilizing the Power[CA method in extracting
independent source signals from their observed mixture recordings.

demosig.m: Auxiliary function, called by Example.m to generate test source sig-
nals (independent components). This function is taken from the original Fas-

tICA MATLAB package.

3 Download

Download the package and extract the files into a folder with “full control” permis-
sion. Set the Matlab home directory to the above folder,
e.g. cd C:\localwork\Matlab\PowerICA.

4 Syntax

(W, flg] = PowerICA(X, nonlin, W0, mode)

4.1 Input parameters

X: A real valued d x n array of mixture recordings, where d and n denote the
dimensionality and the number of observations respectively. Data X should
be centered and whitened.

nonlin: ICA nonlinearities. It can be either a single string or a d x 1 array of
strings. The following nonlinearities are supported.
tanh, pow3, gaus, skew, rt06, [t06, bt00, bt02, bt06, bt10, bt12, bt1j, bt16,
tanl, tan2, tans3, tan4, gaul, gau2, gaus.
We refer the reader to [4] for detailed description of the other nonlinearities
besides the standard ones (tanh, gaus, pow3, skew). The default value is tanh.

WO0: An orthogonal d x d matrix used as the initial start of the algorithm.

mode: Can be set either to serial or parallel. The serial mode is used when only one
computing node is available or the dataset is of small size. The default mode
is serial. The parallel mode runs two parallel Matlab instances on different
CPU cores. The two instances communicate via a Java socket. Make sure you
have installed and updated Java on your system. In order to use the parallel
mode in MacOS, line 81 of the PowerICA function should be edited according
to your installed Matlab version. For example:
I/ Applications/MATLAB_R2017a.app/bin/matlab -r parnode &

4.2 QOutput parameters

W: PowerICA estimate of orthogonal d x d demixing matrix.

flg: Returns 1, when the algorithm has converged successfully and 0 when the al-
gorithm has failed to converge.

5 Example

Open the Example.m file in Matlab and follow the steps of the example. Function
demosig.m generates n = 500 samples of d = 4 ICs shown in Figure 5. The data
consists of p = 5 random mixture of the ICs shown in Figure 5. The data are first
whitened and centered. Then, Power[CA algorithm is used to extract ICs from the
mixtures up to the sign and permutation ambiguities. The extracted ICs are shown
in Figure 5

References

[1] S. Basiri, E. Ollila, and V. Koivunen, “Alternative derivation of FastICA with
novel power iteration algorithm,” IEEE Signal Processing Letters, vol. 24, no. 9,
pp. 1378-1382, Sept 2017.

5 : Sonfrce signals (indegendent 9ompone=1ts) [
Bo \/ f 1
2 1 1 | I 1 i
0 50 100 150 200 250 300 350 400 450 500
T T
|
1 1
350 400 450 500
] T T 1
{
‘ \
| / /
v | | L
350 400 450 500
T T
I I]
0 50 100 150 200 250 300 350 400 450 500
Figure 5.1: Source signals (independent components)
— 10 ‘ Observed mixture§ ‘ ‘
¥ A — ‘ Ty
X o/ —, L~ | — ~
= 4 0 1 I I il I
0 50 100 150 200 250 300 350 400 450 500
o~ 10 T T T T T T T T
Q .
X 0~ |) g
= 10 I I 1 I I I
0 50 100 150 200 250 300 350 400 450 500
® 20 T T T T T
** . ‘ ; .)
X 05) Wl \ {
= .20 I I I I I
0 50 100 150 200 250 300 350 400 450 500
§ 10 T T T T T]
>_< 0 N [\ o~
= 10 I I 1 I I I
0 50 100 150 200 250 300 350 400 450 500
wn 10 T T T T T
H A . \ ~ A
xX 07 | . | ‘ / N
= 10 1 I I ! I
0 50 100 150 200 250 300 350 400 450 500
Figure 5.2: The observed data (Random mixtures)
5 I"owerICA estimatﬁe of sourt‘:e signal‘s ‘
N I\ | \ ’ {
9 0 \ | \ | | \ . | —
5 1 I I 1 I I
0 50 100 150 200 250 300 350 400 450 500
5 T T T T T T]
5 L I | L I
0 50 100 150 200 250 300 350 400 450 500
2 T T T T T T
5 0 Ay I | \ “ | \
2 | I L L I I
0 50 100 150 200 250 300 350 400 450 500
2 n T T T il)] 1y
/) |) / /]
Q 0- | | | 8 | " B
9 | | | / | / | y /
20 v [I :) ‘\ 4 / I
0 50 100 150 200 250 300 350 400 450 500

Figure 5.3: PowerICA estimate of the 1Cs

2]

3]

A. Hyvérinen and E. Oja, “A fast fixed-point algorithm for independent compo-
nent analysis,” Neural Computation, vol. 9, pp. 1483-1492, 1997.

P. Tichavsky, Z. Koldovsky, and E. Oja, “Performance analysis of the FastICA
algorithm and Cramér-Rao bounds for linear independent component analysis,”
IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1189-1203, April
2006.

J. Miettinen, K. Nordhausen, H. Oja, and S. Taskinen, “Deflation-based FastICA
with adaptive choices of nonlinearities,” IEEE Transactions on Signal Process-
ing, vol. 62, no. 21, pp. 57165724, Nov 2014.

	Introduction
	The package
	Download
	Syntax
	Input parameters
	Output parameters

	Example

