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Abstract—This report provides some supplementary studies
and examples for the paper “Shrinking the eigenvalues of M-
estimators of covariance matrix” [1]. Specifically, we provide
simulation studies of the proposed shrinkage covariance matrix
estimators for complex-valued data as well as an additional
example of portfolio optimization using real historical stock
returns data on the same set-up as in [2].

Index Terms—M-estimators, sample covariance matrix, shrink-
age, regularization, elliptical distributions

I. INTRODUCTION

Throughout, we drop the suffix -Ell1 from the proposed
shrinkage M-estimators for simplicity. Thus the proposed
estimators, described in detail in our paper [1] are referred
to as RSCM, RMVT, RHub, RTyl and CV as in the paper.
We remind the reader that CV uses regularized sample covari-
ance matrix (RSCM) estimator Sβ for which the shrinkage
parameter β is chosen by 5-fold cross-validation (CV) over a
grid of β-values. See [1] for more details of all the approaches.

II. SIMULATION STUDY: COMPLEX-VALUED DATA

We replicate the simulation study of [1, Section V] but
using complex-valued data. We generate samples from cen-
tered complex elliptically symmetric [3] distributions with
a scatter matrix parameter Σ following an AR(1) structure,
(Σ)ij = τ%|i−j|, where % = |%|eθ with |%| ∈ (0, 1) and scale
parameter τ = tr(Σ)/p = 10. When |%| ↓ 0, then Σ is close
to an identity matrix scaled by τ , and when |%| ↑ 1, Σ tends
to a singular matrix of rank 1. All simulation results in this
section are averages over 2000 Monte-Carlo (MC) trials and
θ = Arg(%) is generated from Unif(0, 2π) distribution for
each MC trial.

We compare the proposed estimators to the ones proposed
by Chen, Wiesel and Hero [4] (see also [1, Section IV-C]) and
Coluccia [5], respectively, referred to as CWH and EB, re-
spectively. EB stands for empirical Bayes shrinkage estimator.
EB assumes that the data follows complex circular Gaussian
distribution and hence the method is not expected to perform
very well under heavy-tailed non-Gaussian distributions. For
tuning parameter ν of the prior distribution of EB, we used
the recommended values ν = p+1 and ν = n+p+1, but we
report results only for the former which provided much better
performance.
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Fig. 1. NMSE as a function of n when samples are drawn from a complex
circular Gaussian distribution CNp(0,Σ) with an AR(1) covariance structure;
|%| = 0.6 and p = 40.
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Fig. 2. NMSE as a function of n when samples are draw from a complex
circular p-variate t−distribution with ν = 5 (left panel) and ν = 3 (right
panel) degrees of freedom. The scatter matrix has an AR(1) covariance
structure; |%| = 0.6 and p = 40.

A. Gaussian data

We generate the data from the complex multivariate normal
distribution CNp(0,Σ). The correlation parameter of AR(1)
covariance matrix verifies |%| = 0.6. The dimension is p = 40
and n varies from 60 to 280. As in [1], value q = 0.7
is used for RHub estimator. Since Huber’s M-estimator is
scaled to be consistent to the covariance matrix for Gaussian
samples, the underlying population parameter Σ0 coincides
with the covariance matrix Σ in this case. We also scaled the
MVT-weight uT(t; ν) so that it is consistent to Σ for Gaus-
sian data. Figure 1 compares the normalized MSE (NMSE)
‖Σ̂β − Σ‖2F/‖Σ‖2F of different estimators w.r.t. increasing
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Fig. 3. Shrinkage parameter β as a function of n when samples are drawn
from a complex circular p-variate t-distribution with an AR(1) covariance
structure; ν = 5, |%| = 0.6 and p = 40.

sample length n. It can be noted that the proposed estimators
(RSCM, RHub, and RMVT) provide essentially equally good
estimator of the covariance matrix Σ for Gaussian data; RSCM
and RMVT are performing equally well, largely due to data-
adaptive estimation of d.o.f. parameter ν. Yet, differences are
marginal and can be spotted only by zooming in as in the
sub-plot of Figure 1. EB estimator is is performing much
worse than the proposed shrinkage estimators. This is probably
due to the difficulty of selecting the parameter ν of the prior
distribution. As noted earlier, we used the value ν = p + 1
which was recommended in [5]. All in all, above results for
complex-valued Gaussian data confirm the results found for
real-valued Gaussian data in [1].

B. Heavy-tailed data

Next we computed the NMSE curves when the data is gener-
ated from a complex circular t-distribution [3] with ν = 5 and
ν = 3 degrees of freedom (d.o.f). EB was performing poorly
here due to its strict assumption of Gaussianity and hence is
not shown in the plots. In the latter case (ν = 3), also the
non-robust RSCM provided large NMSE and is left out from
the plot. This was expected since t-distribution with ν = 3
d.o.f. is very heavy-tailed with non-finite kurtosis. Figure 2
displays the results. Note that NMSE of each estimator is now
compared against the underlying scatter matrix parameter Σ0

that they are estimating. As can be seen, the proposed robust
RHub and RMVT estimators provide significantly improved
performance compared to RSCM. We can also notice that
RMVT estimator that adaptively estimates the d.o.f. ν from the
data is able to outperform the regularized Huber’s estimator
(RHub).

Figure 3 depicts the (average) shrinkage parameter β as
a function of n in the case that samples are drawn from a
compex circular t-distribution with ν = 5 degrees of freedom.
As can be seen the robust shrinkage estimators (RHub and
RMVT) use a larger shrinkage parameter value β than the
non-robust RSCM estimator.

Figure 4 displays the normalized MSE of different shrinkage
shape matrix estimators, ‖V̂ − V‖2F/‖V‖2F, as a function
of sample length n, where V̂ denotes either CWH or RTyl
estimator or the normalized RHub or RMVT estimator defined
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Fig. 4. NMSE of different shrinkage estimators of shape matrix V as a
function of n when samples are drawn from a complex circular t-distribution
with an AR(1) scatter matrix; ν = 5, |%| = 0.6 and p = 40.

as V̂ = pΣ̂β/ tr(Σ̂β). Note that such normalization is not
necessary for CWH or RTyl since they verify tr(V̂) = p. As
can be seen all estimators are performing well, and RMVT
and CWH are performing equally well. We can also notice
that the two very different approaches for shrinking Tyler’s
M-estimator, so RTyl and CWH, provide essentially the same
NMSE performance.

III. ADDITIONAL PORTFOLIO OPTIMIZATION EXAMPLE

In this Section, we investigate the out-of-sample portfolio
performance of the proposed shrinkage M-estimators. In par-
ticular, we use the dividend adjusted daily closing prices down-
loaded from the Yahoo! Finance (http://finance.yahoo.com)
database to obtain the net returns for 50 stocks that are
currently included in the Hang Seng Index (HSI) for two
different time periods, from Jan. 4, 2010 to Dec. 24, 2011, and
from Jan. 1, 2016 to Dec. 27, 2017 (excluding the weekends
and public holidays). In both cases, the time series contains
T = 491 trading days. For the first period (2010-2011), we
had full length time series for only p = 45 stocks, whereas in
the latter case we had full length time series for all stocks, so
p = 50. The data sets and the study is the same as described
in [2].

At a particular day t, we used the previous n days (i.e.,
from t − n to t − 1) as the training window to estimate
the covariance matrix, and the portfolio weight vector. The
obtained portfolio weight vector was then used to compute the
portfolio returns for the following 20 days. Next, the window
was shifted 20 trading days forward, a new weight vector was
computed, and the portfolio returns for another 20 days were
computed. Hence, this scenario corresponds to the case that
the portfolio manager holds the assets for approximately a
month (20 trading days), after which they are liquidated and
new weights are computed. In this manner, we obtained T −n
daily returns from which the realized risk was computed as
the sample standard deviation of the obtained portfolio returns.
To obtain the annualized realized risk, the sample standard
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deviations of the daily returns were multiplied by
√
250. In

our tests, different training window lengths n were considered.
Let rt ∈ Rp denote the net returns of p assets at time t. The

global mean variance portfolio (GMVP) optimization strategy
aims to solve the following optimization problem

minimize
w∈Rp

w>Σw subject to 1>w = 1,

where 1 denotes is a p-vector of ones and Σ denotes the
covariance matrix of the vector rt of returns. The solution is

wo =
Σ−11

1>Σ−11
. (1)

The portfolio allocations are estimated by GMVP using differ-
ent covariance matrix estimators and different training window
lengths n.

Figure 5 depicts the annualized realized risks for of HSI
data for time period 2010-2011. We also included in our
study the robust GMVP weight estimator proposed in [6]
that uses a robust regularized Tyler’s M -estimator with a
tuning parameter selection that is optimized for the GMVP
problem using random matrix theory (RMT). In [6], it was
shown hat their estimator outperforms a large selection of
regularized covariance matrix estimators both for simulated
and real financial data. The method is referred to as RMT
in the sequel. Furthermore, since the stock data is not very
heavy-tailed, we use q = 0.95 as the threshold constant of
Huber’s weight.

As can be seen from Figure 5, for period 2010-2011,
the proposed RSCM, CV and RHub estimators achieved the
smallest realized risk, outperforming all the other estimators
for almost all window lengths. One can state that the proposed
RSCM method was the best performing method with lowest
realized risk except at window length n = 110, when the
proposed RHub method obtained the lowest realized risk. The
robust RMT of [6] proposed to minimize the risk, however, did
not perform better than the proposed shrinkage M-estimators
RSCM and RHub for any window length. Furthermore, RMT
was also the worst method for a very small window length
(n = 50). Figure 5 also illustrates that Ledoit-Wolf estimator
[7] (denoted LW) had the largest realized minimum risk. In
this sense, LW method had the least favourable performance.

For period 2016-2017, the differences between the estima-
tors were not as large as in the period 2010-2011 as can be
seen from Figure 6. Here we observed that for many window
lengths, the robust RMT method [6] and the proposed RHub
method had almost identical behaviour (e.g., for n ≥ 210).
Overall, however, the proposed RSCM and CV methods were
the best performing methods.
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Fig. 6. Annualized realized portfolio risk and average β̂ achieved out-of-
sample for a portfolio consisting of p = 50 stocks in HSI for Jan. 1, 2016 to
Dec. 27, 2017 containing 491 trading days.
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