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Motivation

Integrated sensing and communications (ISAC) has attracted enormous research
interest from both academia and industry.
Deep learning has been widely applied to beamforming designs recently. The black-box
nature makes DNNs hard to deploy in practical scenarios [?].
To eliminate this issue, model-based learning framework (e.g., algorithm unrolling) has
been proposed to make neural networks interpretable [?].
Steering vector mismatches arise in practice because of imperfections in array
calibration, distorted antenna array shape, etc [?].

This work:
Robust hybrid beamforming for ISAC system under bounded uncertainties in sensing reception
using algorithm unrolling
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Introduction to Algorithm Unrolling (AU)
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Procedure of AU

• pick an iterative algorithm
• unroll it to a neural network (NN)
• select a set of NN parameters to learn

Advantages of AU

• (can) achieve better performance
• naturally inherit interpretability
• require fewer training data
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System Model

System composition
• A dual-function radar-communication base station (BS)

Nt transmit antennas, Nr receive antennas
• M single-antenna communication users
• T point-like targets
• J interferences

Transmit signal

x = FaFc
dc + FaFs

ds
where

• Fa ∈ CNt×L: analog beamforming matrix (L is # of RF chains)
• Fs

d ∈ CL×T: digital beamforming matrix for sensing
• Fc

d ∈ CL×M: digital beamforming matrix for communications
• c ∈ CM×1 : communication data symbols satisfying c ∼ CN (0, IM)

• s ∈ CT×1 : radar waveforms satisfying E[ssH] = IT
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Communication performance metric

Achievable sum-rate (SR):

γc =

M∑
m=1

log(1 + SINRc
m),

where

SINRc
m =

|hH
mFafd,m|2∑M+T

j=1, j ̸=m |hH
mFafd,j|2 + σ2

m

σ2
m = noise power at mth user equipment

hm = communication channel from BS to the mth user (∈ CNt×1)
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Sensing performance metric

At BS, tth target’s echo signal is filtered by a receive combiner wt ∈ CNr×1 to obtain ys
t .

Mutual information (MI) for multiple (T) targets:

γs =

T∑
t=1

log(1 + SINRs
t),

where the sensing SINR for the tth target:

SINRs
t =

∥wH
t Hs

tFaFd∥2
2∑T

p=1, p̸=t ∥wH
t Hs

pFaFd∥2
2 +

∑J
j=1 ∥wH

t Hs
jFaFd∥2

2 + σ2
t ∥wt∥2

2
,

Hs
l = αlar(θl)a⊤t (θl) is the target steering matrix (radar round-trip channel)
θl = direction of the point target
αl = propagation reflection coefficients (∼ N (0, βl))
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System Model

Uncertainty model

ar = âr + δr,

where âr = presumed receive steering vector, δr = error bounded by εr:

δr ∈ Ar ≜
{
δr |

1
Nr

∥δr∥2 ≤ εr

}
.

Problem (maximize the communication SR and worst-case sensing MI over Ar):
max

Fa,Fd,wt

(
ργc + (1 − ρ) min

δr∈Ar
γs
)

s.t. |[Fa]m,n| = 1,
∥wt∥2

2 = 1,

∥FaFd∥2
F = Pt,

where ρ denotes fixed weight, and Pt is the power budget of BS.
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Projected Gradient Descent and Ascent (PGDA)

PGD-based minimization over the uncertainty set Ar

• Gradient step

δ̃
(i+1)
r = δ(i)r − µ(i)

r

∂γs

(
F(i)

a ,F(i)
d ,w(i)

t , δ(i)r

)
∂δ∗r

,

where µr is the step size for δr.
• Projection step

δ(i+1)
r = min

{
εrNr

∥δ̃
(i+1)
r ∥2

, 1
}
δ̃
(i+1)
r .
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Projected Gradient Descent and Ascent (PGDA)

PGA-based maximization over Fa, Fd, and wt

• Gradient step (γ = ργc + (1 − ρ)γs)

F̃(i+1)
a = F(i)

a + µ(i)
a

∂γ
(

F(i)
a ,F(i)

d ,w(i)
t , δ(i+1)

r

)
∂F∗

a
,

F̃(i+1)
d = F(i)

d + µ
(i)
d

∂γ
(

F(i)
a ,F(i)

d ,w(i)
t , δ(i+1)

r

)
∂F∗

d
,

w̃(i+1)
t = w(i)

t + µ(i)
w

∂γ
(

F(i)
a ,F(i)

d ,w(i)
t , δ(i+1)

r

)
∂w∗

t
,

where µa, µd, and µw are the step sizes for Fa, Fd, and wt, respectively.

Projection: [F(i+1)
a ]m,n =

[F̃(i+1)
a ]m,n

|[F̃(i+1)
a ]m,n|

, F(i+1)
d =

√
PtF̃(i+1)

d∥∥F(i+1)
a F̃(i+1)

d
∥∥

F

, w(i+1)
t =

w̃(i+1)
t

∥w̃(i+1)
t ∥2

.
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Unrolled PGDA

Aim: use algorithm unrolling to tune step sizes in PGDA algorithm based on data.
Trainable parameters:

Θ ≜ [µ1,µ2, . . . ,µI]

with µi ≜ [µ
(i)
a , µ

(i)
d , µ

(i)
w , µ

(i)
r ]⊤ = step size vector for ith iteration.

Loss function (γ = ργc + (1 − ρ)γs):

L(Θ) = − 1
|D|

|D|∑
d=1

1
I

I∑
i=1

log(1 + i)γ(h(d)
m ,Hs,(d)

l ,F(i)
a ,F(i)

d ,w(i)
t , δ(i)r ),

weighted sum of losses (enhancing the system to improves along the iterations [?]).
D = data set containing communication and sensing channel realizations.

Tune the hyperparameter matrix:

Θ⋆ = argmin
Θ

L(Θ)
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Numerical Evaluation

Parameter settings

M = 4, T = 8, J = 4, Nt = 6, Nr = 8, L = 4
Pt = 5 dB (power budget)
weight factor ρ = 0.8 (γ = 0.8γc + 0.2γs)

Training settings:

• Channel vector h, reflection coefficients αt (for target) and αj (interfer) are circular
Gaussian noises with variances 0 dB , βt = 2 dB and βj = 3 dB, respectively

• Dataset sizes for training and testing: 1000 and 100
• SGD optimizer with learning rate of 0.01
• Fixed step size for PGDA and initial step size for unrolled PGDA: 0.1
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Convergence evaluation
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• The benchmark PGDA may easily get
trapped in local optima when solving
non-convex problem.

• The unrolled PGDA is capable of learning
the update rules from data, allowing it
to fit the objective function and escape
local optima more effectively than the
benchmark.
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Robustness evaluation
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• The sensing MI curve achieved by the
unrolled PGDA has lower slope than that
corresponding to the benchmark PGDA.

• The unrolled PGDA is less sensitive than
the benchmark PGDA in the face of
increased level of uncertainties.

• The unrolled PGDA is more robust than
the benchmark PGDA.
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Conclusion

• We formulated an optimization problem aimed at maximizing the communication SR and
worst-case sensing MI with bounded uncertainty.

• A PGDA algorithm was developed for solving the formulated optimization problem.
• Unrolled PGDA algorithm was proposed, and step sizes tuned based on the data.
• unrolled PGDA exhibits faster convergence and better robustness than the PGDA

Future work (in progress):

• The uncertainties of communication channel and transmit steering vector will be explored.
• A “safeguard” mechanism could be explored to ensure algorithm unrolling performs no

worse than traditional algorithms on out-of-distribution tasks.
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