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Linear model

Outputs (responses) yi ∈ R
Inputs (predictors) x>i = (xi1, . . . , xip) ∈ Rp.

Linear model of N measurements: y1
...
yN

 =

x
>
1
...
x>N

β +

 e1
...
eN


y = X β + e

where the error terms ei are i.i.d. with p.d.f. f(e) = (1/σ)f0(e/σ).

Goal: to estimate robustly the unknown parameters

I regression coefficients β = (β1, . . . , βp)
> ∈ Rp

I scale parameter σ > 0

given the data (yi, x
>
i ), i = 1, . . . , N .
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Contributions

Huber’s criterion [Hub81] for joint estimation of regression and scale:

L(β, σ) = N(ασ) +

N∑
i=1

ρc

(
yi − x>i β

σ

)
σ,

where α > 0 is a fixed scaling factor and ρc is Huber’s loss function.

1 Block-wise MM-algorithm for solving the optimum (β̂, σ̂) is derived
rigorously.

2 Novel data-adaptive step sizes for regression and scale updates:

⇒ improves convergence (observed empirically)

3 Applications of Huber’s criterion are considered for:

I Sparse signal recovery
I Image denoising
I Dictionary learning

4 Toolbox at: github.com/AmmarMian/huber_mm_framework
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Robust ML approach

Huber’s unit scale (σ = 1) “least favorable distribution” (LFD) has
p.d.f. f0(x) ∝ exp{−ρc(x)}, where

ρc(x) =
1

2
×

{
|x|2, for |x| ≤ c
2c|x| − c2, for |x| > c,

, x ∈ R,

is called as Huber’s loss function and c is a user-defined threshold.
The score function, ψc = ρ′c is a winsorizing function:

ψc(x) =

{
x, for |x| ≤ c
c sign(x), for |x| > c

,

−2 0 2
0

2

4

ρc(x)

−2 0 2

−2
0
2

ψc(x)

c = 1.345
c = 0.732
c =∞
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But direct ML approach fails

The ML criterion function (assuming i.i.d. errors from LFD model)

LML(β, σ) = −
N∑
i=1

ln

{
1

σ
f0

(
yi − x>i β

σ

)}

= N lnσ +

N∑
i=1

ρc

(
yi − x>i β

σ

)
fails...

I to be convex in (β, σ)
I to provide robust estimates (bounded influence functions)

Huber’s modification

L(β, σ) = N(ασ) +

N∑
i=1

ρc

(
yi − x>i β

σ

)
σ,

is convex in (β, σ) and provides robust estimates with bounded
influence function.
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Blockwise Minimization-Majorization algorithm

σ(n+1) = arg min
σ

g2
(
σ|β(n), σ(n)

)
β(n+1) = arg min

β
g1
(
β|β(n), σ(n+1)

), n = 0, 1, . . .

g2 is surrogate function for scale:

g2(σ|β′, σ′) = a′ + b′
1

σ
+Nασ,

s.t. L(β′, σ′) = g2(σ
′|β′, σ′) and ∇σL(β′, σ′) = ∇σg2(σ′|β′, σ′).

g1 is a surrogate function for regression (and denote ri = yi − x>i β):

g1(β|β′, σ′) = N(ασ′) +

N∑
i=1

(
a′i + b′i

ri
σ′

+
1

2

r2i
(σ′)2

)
s.t. L(β′, σ′) = g(β′|β′, σ′) and ∇βL(β′, σ′) = ∇βg(β′|β′, σ′).
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Theorem 1

g2(σ|β′, σ′) ≥ L(β′, σ) and the MM update of scale is

σ(n+1) = arg min
σ>0

g2(σ|β(n), σ(n)) = σ(n)τ ,

where

τ =
1√

2Nα

∥∥∥∥ψc(y −Xβ(n)

σ(n)

)∥∥∥∥.
g1(β|β′, σ′) ≥ L(β, σ′) and the MM update for regression is

β(n+1) = arg min
β∈Rp+1

g1(β|β(n), σ(n+1)) = β(n) + δ ,

where

δ = X+ψc

(
y −Xβ(n)

σ(n+1)

)
σ(n+1).

We introduce step-sizes λ(n) and µ(n) to speed up the convergence.
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Step size computation

To compute the step sizes we use line search.

For regression, we minimize L(β(n) + µδ, σ(n+1)) w.r.t. µ:

µ(n+1) = arg min
µ

N∑
i=1

ρc

(
r
(n)
i − µx>i δ
σ(n+1)

)

For scale, we minimize L(β(n), σ(n)τλ) w.r.t. λ:

λ(n+1) = arg min
λ

Nατλ +

N∑
i=1

ρc

(
yi − x>i β(n)

σ(n)τλ

)
τλ

Instead of solving the optimization problems exactly, we use
closed-form approximations of the solutions (cf. Algorithm 1).
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Sparse learning

Blockwise MM algorithm extends to normalized iterative
hard-thresholding (NIHT) [BD10] algorithm used in sparse signal
reconstruction. [DET06, DE11].

β is now assumed to be K-sparse:

Γ = {i ∈ {1, . . . , p} : βi 6= 0} with ‖β‖0 = |Γ| ≤ K.

# predictors � # of measurements (p� N).

The main change in block MM algorithm is in the regression step:

β(n+1) = HK

(
β(n) + µ(n+1)X>ψc

(
y −Xβ(n)

σ(n+1)

)
σ(n+1)

)
,

where HK denotes the hard-thresholding operator (ψc = ρ′c).

The algorithm is called HUBNIHT [OKK14] algorithm.
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Image denoising

grayscale image is denoised in sliding windows (patches) of size 8× 8.

Each vectorized patch is modelled as

y = u + e,

where u is the original noise-free image of size N × 1

N = 64 ( # of pixels in patches).

u is assumed to have a sparse representation in an overcomplete
dictionary X, i.e., u = Xβ

Reconstructed image patch û = Xβ̂ is solved using the HUBNIHT
algorithm.

We use threshold c = 0.3529 and X is the redundant 2D-DCT
dictionary
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Denoised images

Noisy image
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Comparisons

Noisy image
PSNR = 14.95 dB

HUBNIHT, K = 11
PSNR = 28.93 dB

Median filter, 3× 3
PSNR = 26.27 dB

OMP, c = 3
2 , λ = 1

2

PSNR = 22.22 dB

K-SVD, c = 3
2 , λ = 1

2

PSNR = 21.58 dB
BM3D

PSNR = 24.17 dB
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What’s cooking

A journal extension is currently being prepared . . . It includes

More examples and applications

Extended simulation studies and image denoising examples.

Tuning of parameters (threshold c and sparsity K) are discussed.

Large extended discussion of dictionary learning applications for
medical imaging.

Journal extension will be sent to ArXiv

Matlab and python functions are made publicly available with
example scripts.
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