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Abstract—In recent years, the use of Riemannian geometry
has reportedly shown an increased performance for machine
learning problems whose features lie in the symmetric positive
definite (SPD) manifold. The present paper aims at reviewing
several approaches based on this paradigm and provide a
reproducible comparison of their output on a classic learning
task of pedestrian detection. Notably, the robustness of these
approaches to corrupted data will be assessed.
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I. INTRODUCTION

Symmetric positive definite (SPD) matrices are central in
many machine learning problems. For example, in image
processing, the features of an image can be encoded using
a covariance descriptor, which is a SPD matrix. Covariance
descriptors have proven to be powerful in classification prob-
lems such as in pedestrian detection [1], [2], [3], or in EEG
classification tasks [4], and [5].

SPD matrices are defined as the set Sp+ := {A ∈ Rp×p :
A = A>,A � 0}, where A � 0 means x>Ax > 0 for
all x 6= 0. The set Sp+ forms an open convex half-cone in
the Euclidean space Rp×p. For example, all covariance and
correlation matrices are SPD matrices.

Since most prominent Machine Learning (ML) algorithms
are designed for vector-valued features, the most straightfor-
ward approach of handling SPD features would be to vectorize
them. Although this approach is simple and straightforward,
it omits the underlying structure of this set which is a non-
Euclidean one. Indeed, the set of SPD matrices is not a vector
space. Rather, it admits the structure of a smooth manifold,
and hence, the tools of Riemannian geometry can be applied.
Viewing the set Sp+ as a manifold rather than as a subset of the
Euclidean space has been fruitful and has led to improvements
in the performance in many machine learning tasks.

Specifically, in supervised machine vision tasks such
as pedestrian detection, algorithms that leverage on non-
Euclidean distances on Sp+ have been developed. These studies
have shown an increased classification accuracy compared
to other simpler Euclidean algorithms. Unfortunately, so far
there has not been a thorough study comparing the accuracy
and computational efficiency of these methods. This is due
to several reasons. In the papers (e.g., [1] and [3]), different
preprocessing steps are applied to the data. This together with
the fact that there is no publicly available code for the methods,
makes reproducibility of the results difficult.

This paper aims to provide a framework for such compar-
isons on the pedestrian detection task with Riemannian based
algorithms on covariance matrices. Another aim is to review
some classical supervised ML algorithms that have been
adapted to take into account the geometry of the SPD feature
space. We will describe the algorithms based on Euclidean
feature spaces and show how they have been modified to work
with SPD matrices. A numerical comparison will shed some
light on how much the performance is improved when taking
into account the manifold structure of the data. Furthermore,
we will examine how well the different methods perform when
increasing the amount of data that is corrupted.

The rest of the paper is organized as follows. We briefly
discuss the geometry of Sp+ in Section II and provide the main
definitions used in the remainder of the paper. In section III,
we formalize the classification problem and review the used
learning algorithms. These algorithms are then compared on a
pedestrian classification task in section IV. A robustness study
with a discussion is performed in this section.

II. GEOMETRY OF THE SPD MANIFOLD
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Fig. 1. Illustration of Riemannian geometry concepts.

The open convex cone of SPD matrices Sp+ admits a dif-
ferentiable (smooth) Riemannian manifold structure (M, g),
where M = Sp+ and g is a Riemannian metric, i.e., an inner
product, denoted 〈·, ·〉Σ, defined on the tangent space TΣM
of every point Σ of M [6].

Let X ∈ Sp+ and y ∈ TXSp+. The exponential map
y 7→ expX(y) : TXSp+ → Sp+ maps the point y from
the tangent space to a point Y on the manifold. The length
‖y‖X =

√
〈y,y〉X is called the geodesic distance and de-

noted d(X,Y). Conversely, given two points on the manifold
X,Y ∈ Sp+, one can map Y to the tangent space TXSp+
through the logarithmic map logX : Sp+ → TXSp+. These
concepts are illustrated in Figure 1.
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Let X,Y ∈ Sp+. Depending on the choice of the metric,
different mappings and distances are obtained1:
• the Euclidean metric, which omits the Riemannian struc-

ture of the SPD manifold is defined as:

dE(X,Y) = ‖X−Y‖F, (1)

• the log-Euclidean metric leads to the following geodesic
distance:

dL(X,Y) = ‖ log(X)− log(Y)‖F, (2)

where the log operator is defined for a SPD matrix X
with eigenvalue decomposition X = UΛU> as:

log(X) = U log�(Λ)U>, (3)

with log� being the point-wise logarithm function.
• the affine-invariant metric (natural metric) leading to the

geodesic distance:

dA(X,Y) = ‖ log(X−1/2YX−1/2)‖F. (4)

Many ML algorithms necessitate the computation of the
mean of the feature vectors which is traditionally done by
using a simple arithmetic mean. In a geometric context of SPD
matrices, it is possible to consider a more general definition of
the mean that takes into account the geometric properties of
the feature space. Given an arbitrary distance d, it is possible
to compute a weighted mean of a set of SPD matrices {Mi :
1 ≤ i ≤ N} with weights {αi : 1 ≤ i ≤ N} through the
optimization problem2:

Π ({αi,Mi}1≤i≤N ) = argmin
M∈Sp+

N∑
i=1

αid
2(M,Mi). (5)

Thus we can define three different means based upon the
three distances (dE , dL, and dA) presented earlier:
• the Euclidean mean:

ΠE ({αi,Mi}1≤i≤N ) =

N∑
i=1

αiMi (6)

• the log-Euclidean mean:

ΠL ({αi,Mi}1≤i≤N ) = exp

(
N∑
i=1

αi log(Mi)

)
, (7)

where the exp is defined analogously to the logarithm of
a matrix (see (3)) with a point-wise exponential function
in place of the logarithm.

• the affine-invariant Riemannian mean which does not
have a closed form expression but can be obtained
through the iterative procedure [8] presented in Algorithm
1 which is similar to a gradient descent.

The different tools based on Riemannian geometry pre-
sented in this section will enable developing algorithms for

1For the sake of clarity, only the metrics used in this paper are defined. For
a comprehensive survey, see [7].

2When the weights αi are all equal, Π is called the Karcher mean.

Π0 ← ΠE({αi,Mi}1≤i≤N ), k ← 0
while not converged do

Πk+1 ← Π
1
2

k exp

(
γ

N∑
i=1

αi log
(
Π
− 1

2

k MiΠ
− 1

2

k

))
Π

1
2

k

k ← k + 1
end
ΠA ({αi,Mi}1≤i≤N )← Πk+1

Algorithm 1: Weighted affine-invariant Riemannian mean.
Parameter γ > 0 is the learning rate.

ML classification problems that obtain better performance
over conventional Euclidean methods due to leveraging on the
geometry of the SPD matrix manifold. This is explored in the
next section.

III. CLASSIFICATON ON THE SPD MANIFOLD

We consider a supervised learning problem where we have
a set of training data {(Xi, yi) ∈ Sp+×C : 1 ≤ i ≤ N}, where
C is a discrete set of class labels. For a binary classification
task C = {−1, 1} while for a multi-class problem with NC

classes, C = {0, . . . , Nc−1}. The training data is used to find
a decision function (classifier) f : Sp+ → C which outputs a
class label y ∈ C to the given input data X ∈ Sp+ with the
best accuracy possible.

In traditional ML problems, where the input data is from
a vector space, called feature space, the decision function
splits the feature space into disjoint decision regions. For
example, the Support Vector Machine (SVM) algorithm finds
a hyperplane separating the feature space for a binary clas-
sification problem. In the case of SPD matrices, which do
not form a vector space, some adaptions to the conventional
ML algorithms are needed. Splitting the SPD manifold into
decision regions is much more complicated. In order to
tackle this problem several approaches that leverage the tools
provided by the Riemannian geometry of SPD matrices have
been considered in the literature.

An often-used solution to deal with SPD features is to map
the data via the logarithmic mapping to a common tangent
space which is a vector space. This method, however, requires
that the mapped SPD matrices and the reference point of the
tangent space are close enough to each other such that the
relative distances on the tangent space are not too different
from the actual geodesic distances. In [5] it was proposed to
use this approach with the affine-invariant metric, dA, which
leads to the following logarithmic mapping:

logX(Y) = X
1
2 log(X−

1
2 YX−

1
2 )X

1
2 . (8)

The reference point X is important since it defines the
tangent space we are working on. A good solution in practice
is to consider the Riemannian mean ΠA ({αi,Xi}1≤i≤N )
with weights αi = 1/N .

Then, given a classification procedure on a vector feature
space f : x ∈ Rd → C, its Riemannian variant is obtained by

f ◦ logΠA({1/N,Xi}1≤i≤N) : Sp+ → C. (9)
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In this paper, we will consider the use of a logistic regression
on the tangent space for the pedestrian detection task. Next,
we will explain the classification methods compared in this
paper.

A. Boosting

Boosting [9] is a popular classification technique that has
shown impressive results. Boosting. combines several simple
classifiers {fl : 1 ≤ i ≤ L}, called weak learners,in order to
obtain a strong learner with good accuracy. A weak learner
is a learning algorithm that is efficient to compute but has
low or mediocre accuracy. Depending on the strategy, several
algorithms have been proposed [9]. Among them, the logit-
boost algorithm has been considered both for vector-valued
and SPD-valued features in [1].

Let us consider a binary classification case3, where fl(x) ∈
{−1, 1}. Boosting the weak learners by minimizing a negative
binomial log-likelihood of the data using a technique called
forward stagewise additive modeling. The probability for fea-
ture vector x of being in class 1 is represented by:

p(x) =
exp (F (x))

exp (F (x)) + exp (−F (x))
, (10)

where F (x) = 1
2

∑L
l=1 fl(x). The final combined classifier

for a sample x is then sign[F (x)].
Given a training set {(xi, yi) : 1 ≤ i ≤ N}, fitting the weak

learners {fl : 1 ≤ l ≤ L} can be done by the optimization
procedure presented in Algorithm 2.

Set wi ← 1/N , 1 ≤ i ≤ N and F (x)← 0
for l = 0 to L do

Compute for 1 ≤ i ≤ N :

zi ←
yi − p(xi)

p(xi)(1− p(xi))
,

wi ← p(xi)(1− p(xi))

Fit the function fl(x) by a weighted least squares
regression of zi to xi using weights wi

Set F (x)← F (x) + 1
2fl(x) and p(x) of (10)

end
Algorithm 2: Logitboost training algorithm.

In order to use SPD matrices Xi as inputs (rather than
vectors xi), [1] proposed to map the data to the tangent space
of its weighted mean at each iteration. This can be done by
replacing all the xi in Algorithm 2 by

logΠA({wi,Xi}1≤i≤N)(Xi),

where the logarithm mapping is defined in (8). Using this
approach, the Riemannian mean is updated at each iteration
and it shifts toward the misclassified samples. An illustration
of this is shown in Figure 2. The weak learners used in
the simulations of this paper are decision stumps (one-level
decision trees).

3The multiclass case is obtained by adapting Algorithm 6 of [9] to this
setup.
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Fig. 2. Illustration of logitboost algorithm. Since one sample was misclassi-
fied, the Riemannian mean shifts towards it.

B. Riemannian Gaussian Kernel

While the Riemannian logitboost allows leveraging the
structure of Sp+, it is computationally expensive as it requires
the computation of both the Riemannian mean of the samples
as well as the mapping the data to the tangent space which
are computationally demanding operations. Moreover, the dis-
tances on the manifold are approximated in the tangent space
which is not ideal when the data for a problem spans a large
area of the manifold.

A computationally lighter approach was proposed in [3],
which used kernel methods in order to embed the original data
to a higher dimensional Reproducing Kernel Hilbert Space
(RKHS) while keeping the true distances on the manifold.
Kernels methods have been successful in many ML tasks that
are not based on vector feature space [10]. In [3], the authors
adapt the popular Gaussian (or Radial Basis Function (RBF))
kernel to features in Sp+ by exploiting the log-Euclidean
distance4, and define the kernel function as:

kG(X,Y) = exp (−γdL(X,Y)) , (11)

where γ > 0 is a tuning parameter. The authors showed that
this kernel is positive definite, so it satisfies Mercer’s theorem.
This means that in practice the knowledge of the Gram matrix
Kij = kG(Xi,Xj) is sufficient for most algorithms. In the
simulations, we consider the use of the SVM algorithm with
the Riemannian Gaussian kernel for pedestrian detection.

The parameter γ largely depends on the training data
distribution, and hence, it can be obtained by cross-validation.
Otherwise, we propose to consider the variance of the data
which in the Riemannian context leads to:

γ = N

[
N∑
i=0

d2L (Xi,ΠL ({1/N,Xi}1≤i≤N ))

]−1
. (12)

C. Classification based on distance

Finally, one simple way to obtain a classifier that takes
advantage of the Riemannian framework is to consider a
learning algorithm based on distances such as the Minimum
Distance to Mean (MDM) of the k-Nearest Neighbors (k-NN).

4Up to our best knowledge, this the only work allowing to obtain a kernel
based on a true geodesic distance and that is positive definite. For other
kernels, see for example [11].
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In the case of MDM, the Riemannian mean of each class of
C is computed during the training phase and the classification
is done by assigning each sample to the class of the closest
mean. For the case of k-NN, the training samples are kept
in memory and the classification is performed by computing
the distance of the test sample to each training sample and
assigning the majority class of the k closest training samples.
This approach is computationally very heavy since it requires
a huge number of comparisons depending on the size of the
training set. However, these algorithms have reported good
results for BCI classification tasks [5].

IV. NUMERICAL EXPERIMENTS

In this section, we consider numerical examples to illustrate
the classification algorithms presented in this paper.

A. Reproducibility matters

In order to provide a framework for reproducible re-
sults on Riemannian-based methods for the pedestrian task,
Python (3.7) codes for this section are made publicly avail-
able on https://github.com/AmmarMian/Comparative study
pedestrian Eusipco. The coding procedure mainly relied on
the python package scikit-learn [12] as well as useful functions
from pyriemann package developed by [5]. Two different
datasets have been considered for the study: the INRIA person
dataset [13] as well as the DaimerChrysler benchmark dataset
[14].

B. Pedestrian detection using covariance descriptors

The pedestrian detection task is a binary classification
problem where the aim is to decide if a person is present or not
in a given window of an image. [1] proposed to use covariance
descriptors as features to represent each window and then
do classification based on them. Since typically images are
monochromatic, the image is first pre-processed to obtain a
feature vector for each pixel. For an image with pixel locations,
(x, y), and intensity derivatives, Ix, Iy , one defines the feature
vectors as [1]:

z(x, y) =

[
x, y, |Ix|, |Iy|,

√
I2x + I2y , |Ixx|, |Iyy|, arctan

|Ix|
|Iy|

]
.

The covariance descriptor of an arbitrary window W is a
SPD matrix of the feature vectors z(x, y)

CW =
1

nxny − 1

∑
x,y∈W

(z(x, y)− z̄)(z(x, y)− z̄)>,

where z̄ = 1
nxny

∑
x,y z(x, y) is the sample mean of z(x, y).

C. Methodology

1) Pre-processing: In order to obtain various training sam-
ples, windows are sampled for positive and negative images
using the methodology described in [3]. An example of sam-
pling is shown for positive and negatives images in Figure 3.
To enhance robustness to illumination changes between the im-
ages, the covariance matrices are normalized by the covariance
of the whole image and the final covariance of the window

Fig. 3. Examples of positive (left) and negative (right) training images of
the INRIA dataset. The regions to compute covariance descriptors are shown
with colored boxes.

is obtained through ĈW = diag(C)−1/2CW diag(C)−1/2,
where C is the covariance matrix of the whole image.

We used 10 sampling windows for each positive and neg-
ative image of the INRIA dataset leading to 35480 positive
samples and 12120 negative samples. For the DaimerChrysler
dataset, 2 sampling regions were used for each image leading
to 49000 positive and 48000 negative samples.

2) Simulation setup: The methodology recommended by
[14] has been used here. K-fold cross-validation was used
on the training set to do cross-validation and obtain the
best hyperparameters. Then the classifiers have been trained
again on the same K-fold training set leading to K different
classifiers that have been applied to the testing set to measure
accuracy. K was set to 4 for the INRIA dataset and to 3 for
the DaimerChrysler one.

D. Results

The accuracy of classification are reported in Tables I and
II. Several observations can be made:
• Riemannian variant of the algorithms tested appear to have

in general better results compared to their Euclidean coun-
terparts for both datasets. The case of the kernel methods
(with log-Euclidean distance) is peculiarly striking in that
regards. This illustrates how the Riemannian framework
allows to improve classification on covariance matrices.

• The MDM algorithms do not perform well since they only
rely only on the mean of each class which doesn’t seem to
be a good decision criterion for classification.

• The Riemannian logitboost and kernel methods appear to be
the best methodologies depending on the dataset considered.
Since the kernel approach is much more computationally
efficient, it is the most attractive one.

E. Robustness study

We also consider the robustness of the algorithms with
regards to outliers in the dataset. To that end, we consider
a subset of a 1000 matrices from the DaimerChrysler dataset
(800 for training and 200 for testing) and replace a certain
amount of the training samples α of those samples with
random outliers generated through a Wishart distribution with
an arbitrary Toeplitz covariance parameter. We increase the
number of outliers from 0% to 10% and perform 100 different
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TABLE I
RESULTS ON INRIA DATASET

Fold 1 Fold 2 Fold 3 Fold 4 mean

E
uc

lid
ea

n RBF SVM 0.819 0.823 0.819 0.820 0.820
Logitboost 0.934 0.931 0.933 0.935 0.933
KNN 0.780 0.781 0.780 0.783 0.781
MDM 0.597 0.595 0.592 0.595 0.595
LogisticRegression 0.831 0.831 0.832 0.831 0.831

R
ie

m
an

ni
an RBF SVM 0.892 0.892 0.892 0.894 0.892

Logitboost 0.948 0.947 0.946 0.950 0.948
KNN 0.827 0.825 0.826 0.825 0.826
MDM 0.692 0.698 0.701 0.699 0.697
LogisticRegression 0.741 0.709 0.719 0.685 0.714

TABLE II
RESULTS ON DAIMERCHRYSLER DATASET

Fold 1 Fold 2 Fold 3 mean

E
uc

lid
ea

n RBF SVM 0.726 0.727 0.727 0.727
logitboost 0.730 0.734 0.729 0.731
KNN 0.710 0.708 0.711 0.710
MDM 0.592 0.590 0.591 0.591
LogisticRegression 0.700 0.702 0.700 0.701

R
ie

m
an

ni
an RBF SVM 0.814 0.814 0.814 0.814

logitboost 0.741 0.745 0.738 0.741
KNN 0.727 0.723 0.727 0.726
MDM 0.638 0.636 0.638 0.638
LogisticRegression 0.733 0.736 0.735 0.735

experiments for each value of α. We obtain the plots in Figure
4 by averaging the accuracy over the experiments.

From this, we can observe that additionally to having better
performance, Riemannian methodologies tend to have a better
better behaviour in presence of outliers. Indeed, the accuracy
of the kernel, MDM and logistic regression decrease slower
than their Euclidean counterparts. For MDM and logistic
regression, this is explained by the fact that they perform
using the Riemannian mean over the training samples which is
known to be more robust to outliers. For the kernel approach,
by taking into account the geometry of the manifold, the dis-
tances between the outliers and the accurate training samples
are usually high which means that for example in the case of
the kernel approach, they can’t correspond to support vectors.
Concerning KNN approaches, the robustness is explained by
the same fact: outliers are never the nearest neighbors.
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