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Abstract: Visuri, Koivunen and Oja (2003) proposed and illustrated the use of the
affine equivariant rank covariance matrix (RCM) in classical multivariate inference
problems. The RCM was shown to be asymptotically multinormal but explicit
formulas for the limiting variances and covariances were not given. In this paper
the influence functions and the limiting variances and covariances of the RCM
and the corresponding scatter estimate are derived in the multivariate elliptical
case. Limiting efficiencies are given in the multivariate normal and ¢ distribution
cases. The estimates based on the RCM are highly efficient in the multinormal
case, and for heavy-tailed distribution, perform better than those based on the
regular covariance matrix. Finite-sample and asymptotic efficiency comparisons to
a selected redecending M-estimator and S-estimator are reported.
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1. Introduction

Ranks and signs are frequently used in statistical analysis to obtain proce-
dures which are less sensitive to the model assumptions. Computing statistical
quantities based on ranks instead of on the original observations can result in
more robust methods. When observations are multivariate, it is not so obvious
how “sign” and “rank” are to be defined. In this article, the affine equivari-
ant multivariate extension of the concept of rank as proposed by Brown and
Hettmansperger (1987) is considered. This concept of rank is based on the Oja
(1983) median, and has been successfully applied to multivariate one-sample,
two-sample and multisample location problems. For example, nonparametric
and robust competitors of MANOVA have been developed in Hettmansperger,
Méttonen and Oja (1998). For a review of statistical methods based on ranks
we refer to Hettmansperger and McKean (1998) and Oja (1999). For a recent
review of other techniques of multivariate ordering, we refer to Serfling (2002)
and the references therein.
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The approach based on multivariate signs and ranks has recently been ex-
tended to other classical multivariate inference problems, such as principal com-
ponent analysis, canonical correlation analysis and multivariate regression anal-
ysis. These developments are based on the affine equivariant multivariate sign
and rank covariance matrices, as defined in Visuri, Koivunen and Oja (2000).
For the affine equivariant sign covariance matrix (SCM), the asymptotic distri-
bution and asymptotic variances were obtained by Ollila, Oja and Croux (2003).
Knowledge of the limit distribution of the SCM allowed to obtain asymptotic re-
sults for multivariate regression based on the SCM (Ollila, Hettmansperger and
Oja (2002)). Multivariate inference based on the affine equivariant rank covari-
ance matrix (RCM) was outlined and illustrated in Visuri et al. (2003). Their
simulation studies and examples showed that the estimates based on the RCM
enjoy very good efficiency properties, at the price of not being robust to extreme
outliers. The asymptotic variances of the RCM, however, were not derived.

The main contribution of this paper are that the limiting variances of the
RCM. Moreover, we also obtain an expression for the influence function of the
RCM. This influence function is seen to be approximately linear, in contrast with
the influence function of the regular covariance matrix, the latter being quadratic.
The RCM is therefore more robust than the classical covariance matrix, but still
has an unbounded influence function. Despite that, we show that the RCM
remains quite efficient at heavy-tailed distributions.

In Section 2 the concept and properties of the affine equivariant rank based
on the Oja objective function (1983) are briefly reviewed. The RCM and corre-
sponding scatter matrix estimator are defined in Section 3. Influence functions of
the estimators at elliptical model distributions are given in Section 4. The limit-
ing variances and covariances of the estimates in the elliptical case are presented
in Section 5. A comparison with the limiting efficiencies of a chosen redescend-
ing M-estimator and an S-estimator is included. Finite-sample efficiencies based
on simulations are reported in Section 6. The paper is closed with some final
comments in Section 7.

2. Affine Equivariant Ranks

Let X = {x1,...,x,} be a k-variate data set. Then the volume of the k-
variate simplex determined by k + 1 vertices x;,,...,x;, (k data points) and x
is a constant (1/k!) times

1 ... 11
V(mil,...,mik,m)—abs{det <m“ml m)}’ (1)

k
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and the affine equivariant Oja (1983) median minimizes the criterion function
V(z; X) = ave{V(z;,,...,xi, )},

where the average is taken over all possible k-subsets x; ,...,;, with 1 <4 <
... < ik < n. The multivariate centered rank function is defined as the gradient

R(x; X) = V.V (x; X).

Note that in the univariate case V(z; X) = avelx — z;|, the mean deviation,
and leads to the univariate median and the univariate centered rank function
R(z; X) = ave{sign(z — z;)}. The observed ranks R; = R(x;; X), i = 1,...,n,
are centered, so Y, R; = 0. They are affine equivariant in the sense that if the
ranks R} are calculated from the transformed observations ! = Ax; + b, with a
nonsingular k x k-matrix A and a k-vector b, then R} = abs {det(A4)}(A~))T R;.
The population counterparts are as follows. If X = {x,...,2,} is a random
sample from a k-variate distribution with cdf F' with finite first-order moments,
then the expected volume of the simplex is a constant (1/k!) times V(x; F) =
ErlV(xi,...,z; x)]. The multivariate centered population rank function is then

R(z; F) = V.V (x; F). (2)

Naturally the population rank function is also affine equivariant. The empir-
ical rank function R(x; X ) converges uniformly in probability to the popula-
tion rank function R(x; F). In the univariate case R(x;F) = 2F(x) — 1. See
Hettmansperger, Méttonen and Oja (1998), Oja (1999) and Visuri et al. (2003).

A k-dimensional random vector @ with a cdf F), s, has an elliptically symmet-
ric distribution if its density function is of the form

f@in,2) = {det(2)} " fo{(z — )57 (@ - p)) (3)

for some p € R*, a positive definite k x k-matrix 3, and a nonnegative function f;
which is independent of g and . If g = 0 and ¥ = Ij, (the k x k identity matrix)
then x is said to have a spherically symmetric distribution centered at zero.
Throughout the paper we denote G = Fp j,. The parameter p is the symmetry
center of the distribution of @ and it equals the expected value F(x) when it
exists, whereas the parameter X is proportional to the covariance matrix of @
when it exists, Cov () = (Eg(||z|/?)/k)%. Elliptical distributions are often used
for studying robustness of multivariate statistics. For this purpose the k-variate
t-distribution with v > 0 degrees of freedom, t; ,, is particularly interesting as
it yields distributions with varying heaviness of the tails. To be more specific,
if © ~ ty,, then fy at (@) is of the form fo(t) = cx (1 + t/v)~ /2 where
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Ck,v is a normalizing constant. The value v = 1 corresponds to k-variate Cauchy
distribution whereas the limiting value v — oo yields the multivariate standard
normal density. For v > 2 the covariance matrix of the k-variate ¢-distribution
is Cov(z) = {v/(v — 2)}X. In the multivariate normal distribution case, fo(t) =
(27)~*/2 exp(—t/2) and Cov(z) = . A good review of elliptical distribution is
given in Muirhead (1982).

Consider now the population rank function at a spherical model distribution
G. If z follows a spherically symmetric distribution G, then its radius r = ||z||
and direction u = x/||z|| are independent and w is uniformly distributed on the
unit sphere (Muirhead (1982, Theorem 1.5.6)). Now V(x; G) depends on & = ru
only through r. Hence, in this case, we may write V(x; G) = Vy(r; G). Then the
population rank function at G is simply

R(z;G) = V,Vp(r;G) = q(r; G) u (4)

with ¢(r; G) = Vj(r; G). Expressions for the functions Vy(r; G) and ¢(r; G) at
spherical normal and t-distributions are given in Lemma 1 of the Appendix. In
the elliptical case, thanks to affine equivariance, the population rank function of
F at w=21/2z+uis

R(xz; F) = abs{det(2?)}2"2R(2; G).

3. The Rank Covariance Matrix

Let Ry,..., R, be the observed ranks for a k-variate data set X = {x1,...,
x,}. The rank covariance matriz (RCM) is then D = ave {R;R!}. Since the
ranks are centered, the RCM is nothing more than the covariance matrix com-
puted from ranks instead of from the original observations. It is affine equiv-
ariant in the sense that if the RCM D* is calculated from the transformed ob-
servations x; = Ax; + b, with nonsingular k x k-matrix A and k-vector b, then
D* = det(A)?(A~")TDA~L. Visuri et al. (2003) showed that if X = {x1,...,x,}
is a random sample from a k-variate distribution £ with finite first-order mo-
ments, then the rank covariance matrix converges in probability to the population
rank covariance matriz,

D(F) = Ep[R(z; F)R' (2 F)). ()

Consider now a spherical distribution G. Then (#) together with Egluu’] =
Iy /k yields
D(G) = (c&:/) Ir, (6)
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where ¢ = E¢[¢?(r; G)]. For values of ¢ in multivariate spherical normal and ¢
distribution cases, see Lemma 2 in the Appendix. If z ~ G, then & = £1/22 + i}
has elliptical cdf F = F), 5. Using (@) and the affine equivariance, we get

D(F) = det(2)27V2 D(G) ©7V2 = (4 /k) det ()21 (7)

Thus, at elliptical models, the RCM is proportional to the inverse of ¥ (and also
to the inverse of the covariance matrix Cov(x) when it exists). (This is also true
in the wider class of location-scale models, Visuri et al. (2003).) The inverse of
the RCM is therefore an estimator of a multiple of the scatter matrix ¥ and we
may say that it estimates the shape of X.

But RCM also carries information about the size of the data cloud, and one
can construct an affine equivariant scatter matriz functional C(F') based on the
RCM:

C(F) = (kdet{D(F)}/c&)"/ =V D(F)~". (8)
It is immediate to check that C'(F') = X at elliptical distributions F' = F,, 5;, so C
is Fisher consistent for ¥ at elliptical models. The scatter matriz estimate based
on the RCM, C = (kdet(D)/c2)"/*=D D=1 is then a consistent estimator of 3.
of the elliptical population F' = F), ;. Moreover, the above estimator is affine
equivariant in the sense that C* computed from the transformed observations
xr = Ax; + b satisfies C* = ACAT. Therefore we call C' a scatter matrix esti-
mator, which can be compared with other estimators of multivariate scatter (see
Maronna and Yohai (1998) for an overview of different scatter matrix estimators).

4. Influence Functions in the Elliptical Case

Next we derive the influence functions of the RCM functional D and the
associated scatter functional C at elliptical models. For that, consider the con-
taminated distribution F. = (1—¢)F +¢cA,, where A, is a distribution putting all
its mass at . Then the influence function is defined by (see Hampel, Ronchetti,
Rousseeuw and Stahel (1986))

. T(F.)—T(F) 0
IF (@7, F) = lim ——=——— = 2T (F)|._y.
The next theorem gives an expression for the influence function of the RCM
at a spherical model distribution. The proof is quite technical and can be found

in the Appendix.
Theorem 1. The influence function of the RCM functional D at a k-variate

spherical distribution G is
n(r; G)
ct/k

IF (2; D, G) = {¢*(r; G) + 1(r; G) = n(r; G)huu” — {2k +1 - }D(G)

= a(r; Guu’ — B(r; G)D(G),
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where v = ||z||, uw = ||z|| "z, D(G) = (& /k)I} and q(r;G) is defined by (H).
Furthermore

21— 1)z
3(:6) = 2k | S Vit Gu) = pea(pi G a1 6) .
52 P2 2
n(r;G) = 2kEq m{%(f?z; G-1) + or) q(p=; Gk—l)}Q(HzH§ G)] ,
where z = (z1,...,21)" ~ G, Grp_1 is the (k — 1)-variate spherical distribution
of (21, .y 28-1), 2o = (21 — 7,20, ..., 21) T and p? = r?{1 — (21 — 7)?/||z+||*}.

The influence function of scatter functional C'(F) is obtained next. The
influence function of any affine equivariant scatter estimator at a spherical model
G may be expressed as

IF (z; C, G) = a(|l[; G)uu” - B(|2|; G) I, (9)

with again w = @/||x||, for some real-valued functions & and § depending on the
estimator and the model. See Hampel et al. (1986) and Croux and Haesbroeck
(2000). Using Theorem 1 and (8), the functions & and 3 of the RCM scatter
functional C' are easily obtained after using some matrix differentiation rules
for the determinant and the inverse of a non-singular matrix (see Magnus and
Neudecker (1988, Chap. 8, Theorems 1 and 3)).

Corollary 1. The influence function of the scatter functional C at a k-variate
spherical distribution G is determined by setting, in (9),

o G) | ¢(r;G) (. G)
a(r,G)——(CQG/k) and ﬂ(r,G)—m{Wf—l—l— =y - 2k }

In Figure 1 we picture the functions &(r; G) and ((r; G) of the regular co-
variance matrix estimator and the scatter estimator C' based on the RCM at the
bivariate normal model. Note that estimators are comparable; a correction factor
is not needed for Cov(x) in the normal case. For non-normal elliptical popula-
tions the regular covariance matrix estimator must be multiplied by a consistency
factor 0 = k/Eq(||x||?) in order to estimate the scatter matrix ¥ of the elliptical
population at hand. Also plotted are the corresponding functions of Kent and
Tyler’s (1991) redescending M-estimator based on the t-distibution with v =5
degrees of freedom, denoted by M (t5). In other words, M(t5) is the maximum
likelihood estimator (MLE) for the tj s-distribution. It needs to be multiplied
by a consistency factor (except at a tj 5-distibution) in order to consistently es-
timate ¥. To get further insight in to the gains/losses of using RCM scatter
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estimator instead of high breakdown robust estimator, also plotted are the cor-
responding functions for the S-estimator (Rousseeuw and Leroy (1984), Davies
(1987) and Lopuhaé (1989)) using Tukey’s biweight p-function. The aforemen-
tioned S-estimator is defined so that the estimator has 25% breakdown point and
consistency for ¥ at the multivariate normal distribution. This estimator will be
referred to as S(25). Again S(25) needs to be multiplied by a consistency factor
(except at the normal). Expressions for the influence functions of M-estimators
and S-estimators can be found in Maronna (1976), Huber (1981, Sec. 8.7) and
Lopuhaé (1989).

18

— RCM
-- M
)

- - Cov a

Figure 1. Functions &(r; G) (left panel) and G(r;G) (right panel) of the
RCM scatter estimator, the regular covariance estimator and the M (ts5)-
and S(25)-estimator at the bivariate normal model (G = ®).

The function & may be interpreted as a weight function since the influence
of © on an off-diagonal element Cj;, i # j, of C is IF (x; C;;, G) = a(r; G)u,u;,
where u; and u; are the ith and jth components of w = x/||x||. This means that
for boundedness of the influence function at an off-diagonal element, a necessary
and sufficient condition is that the weight function &(r; G) be bounded. As we
see from Figure 1, the a-function of the regular covariance matrix is quadratic
in the radius r, whereas that of C(F") is approximately linear for large r. This
suggests that the RCM scatter functional will give more protection to moderate
outliers than the regular covariance matrix but it is not robust in the strict sense.
The RCM resembles an Li-based method: it is more robust than an Ls-based
approach, very efficient (as we will see in the next section), but not highly robust.
We also see from Figure 1, that the a-function of the M (¢5) is bounded whereas
that of S(25) is even redescending to zero, meaning that outliers with r larger
than a certain rejection point will be given a zero weight.
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The B—function is not as important, since it does not intervene in the in-
fluence function of the off-diagonal elements of C'. For example, the influence
function of the correlation matrix estimator associated with C will depend solely
on &(r;G) (Croux and Haesbroeck (2000), Ollila, Oja and Croux (2003)). The
influence function of a diagonal element Cj; of C will also depend on & because
IF (x; Cy;, G) = a(r; G)u? — B(r; G). Therefore boundedness of 3(r; G) is a nec-
essary but not sufficient condition for boundedness of the influence function of
a diagonal element. From Figure 1 we see that the (-functions for all the con-
sidered estimators are bounded, but the §-function of S(25) differs from that of
other estimators by giving a large negative weight to perturbation vectors x with
large radius.

Finally, we note that the influence functions of the RCM functional D and
the associated scatter matrix functional C' at an elliptical distribution F' = F, x;
are given by

IF (z; D, F) = det(2)2~V21F (27V2(x — p); D, Q)S12,
IF (z;C, F) = 22 1F (27 Y2(x — p); C,Q)xV/2,

due to affine equivariance of the functionals.

5. Limiting Variances and Covariances in the Elliptical Case

We start this section with some notations. We use “vec” as an operator
working on matrices: vec (A) vectorizes matrix A by stacking the columns of
the matrix on top of each other. A commutation matrix, Iy 1, is a k2 x k? block
matrix with (4, j)-block a k x k matrix having 1 at entry (j,7) and zero elsewhere.
Finally, the Kronecker product of two k x k matrices A and B, denoted by A® B,
is a k? x k%-block matrix with k x k-blocks, the (i, j)-block equal to a;;B. For
properties on Kronecker products, commutation matrices and the vec-operator,
the reader is referred to Magnus and Neudecker (1988).

First, we note that exists a kernel h(xi,...,Tors1) such that Elh(xy,...,
ZTok+1)] = D(F); see equation (11) in the Appendix. Equivalently, D(F) =
E[h*(x1,...,Tok+1)], where h*(-) is a kernel that is symmetric in its arguments,
ie.,

h*(x1,. .., 2opq1) = {(2k + 1)!}_1 Zh(mw(1)7 cee 7m7r(2k+1))7

where the summation is over all permutations 7 of {1,...,2k + 1}. Thereby,
IF (x; D, F) = (2k + D){E[h* (1, ..., 2ok 1) Top+1 = x] — D(F)}.

Visuri et al. (2003) showed that, if the observations come from a k-variate dis-
tribution with finite second-order moments, then D is asymptotically equivalent
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to a U-statistic U, with kernel 2*(-). This means that \/n(D — D) = /n(U, —
D)+ R, = /n{(1/n) > IF (x;; D, F) }+ R}, where the remainder terms satisfy
R,, R} —, 0. It then follows that the limiting distribution of \/n vec (D — D)
at spherical G is multivariate normal with zero mean and asymptotic variance-
covariance matrix ASV (D;G) = E[vec {IF (z; D, G)} vec {IF (z; D, G)}7] if the
second-order moments of G exist.

The structure of the influence function of D at spherical distributions, and
the symmetry properties of G, imply that ASV (ﬁ, G) will depend only on two
numbers: ASV (Dy1;G) and ASV (D12; G). The asymptotic covariances between
diagonal elements are all ASC (ﬁll,f)gg;G) = ASV (ﬁll;G) — 2ASV (.Dlg; G),
while all the other limiting covariances of the elements of D are zero. Similar
developments naturally also hold true for C and the following holds.

Corollary 2. The covariance matrices of the limiting distribution of \/n vec (ﬁ—
D) and v/n vec (C'—C) at a spherical distribution G with finite second-order mo-
ments are given by ASV (Dy2; G) (L2 + I, 1)+ ASC (D11, Daz; G) vec (I,) vec (I,)T
and ASV (Ci2; G)(Liz + Ix) + ASC (Ch1, Cag; G)vec(Iy )vec(I;)T, respectively.

In fact, the above developments for the asymptotic covariance matrices are
valid for any asymptotically normal affine equivariant scatter matrix estimate
C at spherical models, not only for the RCM-based one; See Tyler (1982, The-
orem 1). Using the affine equivariance (and properties of vec-operator, com-
mutation matrix and Kronecker product), the limiting covariance matrix of
vnvec (D — D) at an elliptical distribution F' = F, 5 is given by

k2 . .
TAASV (D125 G) (k2 + I ) (D @ D) + ASC (D11, Dao; G) vec (D) vec (D)1}
G

and the limiting covariance matrix of \/nvec(C — ¥) is ASV (Ci2; Q)2 +
I11) (2 @ %) 4+ ASC (Ci1, Caz; G)vec(Z)vec(E)T. See also Tyler (1982, Corol-
lary 1).

Therefore we measure the asymptotic relative efficiency (ARE) of a scatter
matrix estimate C' with respect to the sample covariance matrix Cov at an
elliptical distribution by the two ratios

N ~ 2A
ARE(Cy1,Cov11;G) = g SV(COVna Q) and
ASV (C11;G)
2
ARE(Ci2,Cov12;G) = o” ASV (COV 123 )’
ASV (C12; G)

being the ARE of diagonal and off-diagonal elements of the scatter matrix esti-
mate C' with respect to the sample covariance matrix Cov. Here o = k/Eq(|z||?)
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is the consistency factor for Cov. In our case, the limiting variances are read-
ily obtained from Theorem 1 and Corollary 1. For example, ASV (Ci2;G) =
(k%/ct) ASV (D12; G), where

Eglo®(lz]l; G)]

). . _ . 27 _ 2 . 2,21
ASV (D12i G) = EGIIF (@3 D1, G)°) = Eglo® (2] Gutus) = ===,

which can be calculated using numerical integration or Monte-Carlo techniques.

In Table 1 the diagonal and off-diagonal ARE of the RCM-based scatter
matrix estimator are obtained for the multivariate ¢, ,-distribution. Dimensions
k = 2,3,5,8 and degrees of freedom v = 5,6,8,15 are considered. Efficiencies
for multivariate normal distributions (v — o) are also given. We also compared
with the corresponding efliciencies for the scatter estimator of Ollila, Oja and
Croux (2003) based on the sign covariance matrix (SCM). This is interesting,
as the multivariate signs are closely related to multivariate ranks and the result-
ing scatter estimator has similar robustness properties, e.g., unbounded influence
function and zero breakdown point. Furthermore, the corresponding efficiencies
for M(t5) and S(25) were also calculated using efficient numerical integration
whenever analytical expression could not be derived for their asymptotical vari-
ances. Asymptotic theory (limiting normality, asymptotic variance and covari-
ance expressions, etc.) for the scatter estimator based on SCM, M-estimators and
S-estimators will not be elaborated upon here; the reader is referred to Maronna
(1976), Huber (1981), Tyler (1982), Hampel, Ronchetti, Rousseeuw and Stahel
(1986), Davies (1987), Lopuhad (1989), Kent and Tyler (1991) and Ollila, Oja
and Croux (2003).

First we note from Table 1 that the AREs for the diagonal and off-diagonal
elements of the RCM-based scatter matrix estimator are surprisingly high at the
normal distribution. There is almost no loss in efficiency, all AREs being above
96%. The efficiencies of M(t5) and the high breakdown S(25) increase with
dimension, but for k£ = 2 and 3, the RCM estimator (and also the SCM estimator)
has significantly better performance. For multivariate t-distributions, the RCM-
based scatter matrix estimator outperforms the sample covariance matrix. The
gain gets large when the degrees of freedom decrease, i.e., when the distribution
gets heavier tails. This is true also for the SCM estimator of scatter and for
M (t5) and S(25). However, in the case of RCM and SCM scatter estimators,
the efficiencies are decreasing with the dimension whereas they are increasing for
M (t5) and S(25). The heavier the tails of the t¢-distribution and the larger the
dimension, the better is the performance of M (t5) and S(25) when compared to
sign and rank based estimators. The efficiencies for the RCM differ only slightly
from those for the SCM estimator, the biggest difference is at the bivariate normal
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distribution. Note that M (¢5) clearly outperform S(25) in the cases v = 5,6 and
8. (Recall that the M(t5) is the MLE for v = 5 and therefore most efficient in
this case.)

Table 1. ARE of off-diagonal (panel A) and diagonal (panel B) elements of
the RCM-based and SCM-based scatter estimators, M (¢5) and S(25) with
respect to the sample covariance matrix at multivariate ¢y ,-distributions.
The column v = oo corresponds to the normal distribution.

A. Degrees of freedom v B. Degrees of freedom v
k 5 6 8 15 00 5 6 8 15 00
2 RCM 2.050 1.470 1.200 1.060 0.990 2.330 1.610 1.270 1.080 0.980
SCM 2.000 1.447 1.184 1.031 0.956  2.286 1.589 1.250 1.044 0.935
M(ts) 2.333 1.597 1.237 1.018 0.902 2.593 1.710 1.279 1.018 0.882
S(25) 2.058 1.418 1.110 0.932 0.850  2.402 1.605 1.222 1.001 0.899

3 RCM 2.000 1.440 1.180 1.050 0.990 2.260 1.570 1.240 1.070 0.980
SCM 1.960 1.429 1.179 1.038 0.973  2.227 1.563 1.243 1.054 0.960
M(ts) 2.400 1.634 1.257 1.027 0.904 2.667 1.749 1.301 1.028 0.886
S(25) 2.229 1.539 1.207 1.015 0.924 2.455 1.648 1.262 1.042 0.941

5 RCM 1.920 1.380 1.140 1.020 0.970  2.140 1.500 1.200 1.040 0.960
SCM 1.905 1.400 1.167 1.040 0.987  2.148 1.522 1.225 1.057 0.981
M(ts) 2.500 1.690 1.290 1.042 0.908 2.778 1.810 1.336 1.046 0.894
S(25) 2.339 1.616 1.267 1.064 0.967 2.498 1.683 1.293 1.072 0.971

8§ RCM 1.880 1.370 1.140 1.040 0.990 2.110 1.480 1.200 1.060 0.990
SCM 1.861 1.375 1.153 1.037 0.994 2.085 1.486 1.206 1.053 0.991
M(ts) 2.600 1.748 1.326 1.062 0.916 2.891 1.873 1.373 1.067 0.906
S(25) 2.386 1.645 1.288 1.079 0.983  2.517 1.696 1.305 1.082 0.985

6. Finite-Sample Efficiency

Before explaining our simulation study, we describe the computation of the
RCM scatter estimator C' in some detail. Let X = {z1,...,x,} be a k-variate
data set and I = (i1,...,ik), 1 < i3 < ... < i < n refer to a k-subset of
observations with indices listed in I. Let Z denote the set of all possible k-
subsets 1. Then R(x;X) = aver[sign{do(I) + d” (I)x}d(I)], where do(I) and
d(I) satisfy

< 1...1 1) .
det =do(l)+d" (I)x,
Ly -« Ljy, L
meaning that (do(I),d” (I)) is the vector of cofactors of the last column of the
matrix above. The calculation of the ranks R; = R(x;; X) is explicit but requires
the calculation of subdeterminants do(I) and d(I) for all |Z| = () possible k-
subsets I. Thus the calculation of the ranks is a computing intensive task even
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for moderate sample size n when k is large. If this is the case we approximate the
ranks by R; = ave;[sign{do(I;) + d (I;)x}d(I;)], where I1,..., I) is a random
sample from Z. An approximation of the rank covariance matrix D is then
D= avei(RiRiT). Next, recall that the scatter estimator C' is obtained from

C = (kdet(D)/c2)Y/* =D D=1, (10)

where the scalar cg is a constant dependent on the assumed underlying model
distribution G. Explicit expressions to calculate cg are given in Appendix A.1
in the case of the normal distribution G = ®; and the t¢-distribution, G =
k. When the calculation of the exact value of D (and thus C’) is not feasible
(i.e., for large |Z|) we approximate C' by C obtained by substituting D for D
in (I]III) Presumably, with sufficiently large M, finite-sample and large-sample
performance of C and C should be similar.

Next, the finite-sample efficiencies for C, M(ts), S(25) and the sample co-
variance matrix Cov are estimated by means of the following modest simulation
study. For m = 5,000 samples of sizes n = 50, 150,250, observations were gen-
erated from a bivariate (k = 2) and trivariate (k = 3) tj ,-distribution with
v =5,8 and v = oo degrees of freedom. Naturally, M (¢5), S(25) and the sam-
ple covariance matrix are multiplied by corresponding consistency factors (when
needed) so that they estimate the true underlying scatter matrix 3. To calculate
M (t5) we used the novel iterative algorithm described in Kent and Tyler (1991).
The computation of the S-estimator is a bit trickier. To calculate it we used
the SURREAL algorithm of Ruppert (1992), which computes an approximation
to the actual value of the estimate based on a user-specified number of random
(k + 1)-subsets. In our simulations 100 (k + 1)-subsets were considered for each
computation of the S-estimate of scatter. Note also that, unlike the RCM-based
estimator C’, all the other estimators of scatter considered here require a simul-
taneous location estimate fi. For k = 3 and sample sizes n = 150 and n = 250, it
takes about 5 and 40 seconds respectively to calculate Cina personal computer
running with the AMD athlon 704MHz processor. Thus for these data sets, com-
putation of C is close to “interactive”. Note also that the AMD Athlon 704MHz
machine is rather slow by today’s standards.

Denote by f)ﬁ] the (i,7) element of the scatter estimate obtained from the
Ith sample, with 1 <1 < m. The accuracy of (i, j)th element is measured by the
mean squared error (MSE), MSE (f]zj) = (n/m) X" (S — ¥;)?. The finite-
sample relative efficiency (FSRE) of the off-diagonal and dlagonal element of the
scatter estimate is then

FSRE (5;) = — 0V =2/W =4 4 pSRE(S,) = =2/ =)
+ avel-#j{MSE (Zij)} " avei{MSE (Zzz)} ’
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since (v —2)/(v—4) and (2v —2)/(v —4) are the asymptotic variances for the off-
diagonal and diagonal elements of the sample covariance matrix (standardized by
the consistency factor) at tj ,-distribution. The simulation results are reported
in Table 2, 3 and 4. For the case k = 3 we also calculated the finite sample
efficiencies for the scatter estimator C' with M = 10000 subsets.

First of all, note that the finite-sample relative efficiencies of C approximate
well the asymptotic ones listed under n = oo in the tables. Similar performance
is seen also for the S(0.25) and M(t¢5) estimators. The finite-sample efficiencies
of the sample covariance matrix approximate well the asymptotic values except
for the case v = 5, in which case the finite sample efficiencies are substantially
higher than 1. One also notices that C' with M = 10000 random subsets does
not quite achieve the performance of C for sample sizes n = 150 and n = 250.
However, the number of subsets M was kept constant independent of the sample
size n and dimension k. Our simulations showed that increasing M with n and
k increases the finite sample performance of C. It would be useful to find the
value of M for a given sample size n and dimension &k so that a modest loss in
performance would be experienced compared to C. This would need extensive
theoretical and simulation studies and would be a subject of a paper of its own. It
is our intention to study properties of the approximation algorithm in a separate
forthcoming paper. To conclude: if one is willing to use C as an approximation
of C , the computation time is reduced and depends essentially on M, the number
of subsets. Then the computation time of the RCM will be comparable to that
of high breakdown affine equivariant scatter matrix estimators, which also often
use approximation schemes based on subsets, but larger than the computation
times of iterative algorithms for solving M-equations.

Table 2. FSRE of off-diagonal elements of the scatter estimators at k-variate
normal distribution.

Off-diagonal FSRE Diagonal FSRE
k n= 50 150 250 o0 50 150 250 oo

2 C 0.976 0.983 0.989 0.990 0.960 0.942 0.941 0.980
M(ts) 0.897 0.898 0.902 0.902 0.875 0.858 0.856 0.882
S(25) 0.835 0.845 0.840 0.850 0.896 0.897 0.912 0.899
Cov  0.975 0.993 0.998 1.000 0.968 0.965 0.968 1.000

3 C 0.972 0976 0.990 0.990 0.943 0.952 0.966 0.980
c 0.957 0.917 0.916 0.924 0.920 0.894
M(ts) 0.911 0.894 0.907 0.904 0.872 0.868 0.878 0.886
S(25) 0.924 0.936 0.920 0.924 0.929 0.939 0.935 0.941
Cov  0.982 0.985 0.997 1.000 0.961 0.970 0.982 1.000
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Table 3. FSRE of off-diagonal elements of the scatter estimators at multi-
variate ¢y, ,-distributions.

v=>5 v=_§
k n= 50 150 250 0 50 150 250 00
2 C 1.852 1.954 1.935 2.050 1.155 1.153 1.211 1.200
M(ts) 2.197 2.284 2.323 2.333  1.188 1.191 1.245 1.237
S(25) 1.880 1.991 2.051 2.058 1.075 1.104 1.084 1.110
Cov 1.099 1.050 1.086 1.000 0.975 0.979 1.003 1.000
3 C 1.799 1.898 1.904 2.000 1.155 1.170 1.170 1.180
C 1.769 1.830 1.772 1.138 1.119 1.082
M(ts) 2.281 2.370 2.354 2.400 1.202 1.217 1.220 1.257
S(25) 2.092 2.184 2.218 2229 1.166 1.211 1.192 1.207
Cov 1.236 1.206 1.168 1.000 1.009 0.998 0.981 1.000

Table 4. FSRE of diagonal elements of the scatter estimators at multivariate
ty ,-distributions.

v=>5 v=2_8
k n= 50 150 250 0 50 150 250 00
2 C 2.014 2.174 2.188 2.330 1.218 1.212 1.230 1.270
M(ts) 2.438 2.552 2.566 2.593  1.256 1.270 1.270 1.279
S(25) 2.314 2.374 2.396 2.402 1.189 1.222 1.226 1.222
Cov 1.037 1.114 1.160 1.000 0.991 0.966 0.964 1.000
3 C 1.979 2.067 2.183 2.260 1.186 1.191 1.227 1.240
C 1.958 1.992 2.080 1.175 1.124 1.170
M(ts) 2.554 2.591 2.694 2.667 1.239 1.228 1.250 1.301
S(25) 2.301 2.446 2.418 2.455 1.220 1.253 1.245 1.262
Cov 1.248 1.140 1.239 1.000 0.987 0.971 0.983 1.000

7. Final Comments

Classical multivariate analysis is based on the sample mean vector and sam-

ple covariance matrix. To robustify the inference procedures, the mean vector

and covariance matrix have often been replaced by robust affine equivariant lo-
cation vector and scatter matrix estimates. Influence functions are then used for

robustness considerations and derivations of the limiting variances and covari-
ances of the estimates.

At elliptical models, efficiencies of diagonal and off-diagonal elements char-

acterize the efficiency properties of an affine equivariant scatter matrix. In a
multivariate multiple regression problem, for example, the off-diagonal efficiency
gives the efficiency of the regression coefficient estimate based on the scatter
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matrix estimate; in principal component analysis, the diagonal and off-diagonal
efficiencies yield the efficiencies of the corresponding eigenvalue and eigenvector
estimates; in canonical correlation analysis, the efficiency of the canonical corre-
lations is given by the off-diagonal efficiency, and the efficiency of the canonical
vectors depend on both diagonal and off-diagonal efficiencies. See e.g., Croux
and Haesbroeck (2000), Van Aelst, Van Driessen and Rousseeuw (2000), Croux,
Dehon, Rousseeuw and Van Aelst (2001) and Taskinen et al. (2002). The asymp-
totic efficiencies of the diagonal and off-diagonal elements of the RCM have been
obtained in this paper.

Comparisons between different robust estimators of multivariate scatter is
a difficult job. The attraction of the rank covariance matrix can be found in
its high efficiency, even at heavy tailed distribution, and in its close relationship
to existing rank concepts which gives it a non-parametric flavor. Of course, the
RCM is not meant to be a competitor with high breakdown scatter matrices
in terms of robustness. It is remarkable that no location estimate is needed
to construct the RCM. This makes the RCM approach different from the SCM
approach of Ollila, Oja and Croux (2003).

There is over recent years an increased activity in the development of ap-
proaches to multivariate inference based on different kinds of multivariate quan-
tiles. A comprehensive review is given by Serfling (2002), who recommends
median-oriented quantile functions. Besides vector valued quantiles as in Chaud-
huri (1996), data depth measures (see Zuo and Serfling (2000)) are useful here.
For example, Liu, Parelius and Singh (1999) introduce depth weighted L-type
location and scatter matrix estimators. Zuo, Cui and He (2001) have shown
consistency and asymptotic normality for a large class of weighted L-type multi-
variate location estimators. For the estimation of multivariate scatter, much less
seems to be known. To our best knowledge, no asymptotic efficiency results are
available yet for estimation of multivariate scatter based on multivariate quan-
tiles. Moreover, computation of most versions of multivariate quantiles and data
depth measures is prohibitive in large samples or high dimensions.

Appendix

A.1. Expressions for ¢(r;G), Vo(r; G) and cZ at Spherical Normal and ¢
Distributions

Before stating the expressions, we recall the following definition.

Definition 1. A generalized hypergeometric series is defined as

[o.¢]
pFalat, ag, ... apiby by, ... bgi2) =)
i=0

l)z( 2)i e (ap)i Zi
),

(a1)i(a
(b1)i(b2); ... (bg)i 3!’
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where (¢); =c(c+1)---(c+i—1)=T(c+1)/T(c).

Lemma 1. In the k-variate standard normal case, G = @y,

2k/21 (L) k+1 k kr?
;@) = ———22 exp(—kr?/2) 1 ) | ——
%(T7 k’) ﬁ eXp( kr / )1 1 2 2 2
ok/21 (kL) E+1 k+2 kr?
. _ 2 1.2 . .
Q(T7(I)k’)_’r \/7_T eXp( kr /2)1F1 9 9 ' 9 .

In the k-variate spherical t-distribution with v degrees of freedom, G =t ,,

Choy E+1 k(v—1) &k r%/v
. — s F ..
Vo(ritew) (1 + r2/p)k=D7/2 2 1( 2 7 2 271472y
_ k(v —1) k+1 kwv—1)+2 k+2 /v
q(ritry) = V(1 + 12 /v)k=D/2+1 2F1< 2 2 T2 1412/
ey = 2T
| FE(5)vm

Lemma 2. The constant c% in @) for the standard normal distribution G = ®,
and for t-distributions G' =t ,, is given by

2  k2Fr2(EL) 11 k+2 K
P Trk+1) T\ 272 2 (k4 1)2
O DA i) DM DB 4 (A2 )P (B2 4i+)

G =, 3

== D(E2 4 i)D(552 4 j)D (bt 4 )il

Vk_lf(%)r%(l’—_l)f‘(k% r 2k(v— 1)+1/+2)
1

For example, cé,k = 0.712,7.681,203.749 for dimensions k = 2,4,6 respec-
tively. These results are as in Mottonen, Hettmansperger, Oja and Tienari
(1998), but slightly simplified.

A.2. Proofs and Additional Lemmas

To prove Theorem 1 we need the following Lemma.

Lemma 3. Let r be a constant scalar and write v = (1,0,...,0)T for a unit k-
vector. Let G denote a cdf of a k-variate spherical random vector x; = (241, . . .,
zi)T and let Gj,_1 denote a cdf of a (k— 1)-variate spherical random (sub)vector
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x, = (vi2,..., 7). Then Eg[V(x1,...,xp, )21 = rv,z] = ||z — 70||Vo(pe;
Gr_1), where p? = r2{1 — (z1 — r)?/||x — rv||?}, and V(-) and Vo(-) are defined
by (M) and (@), respectively.

Proof of Lemma 3. Let P be a kxk orthogonal (rotation) matrix (hence PP =
PTP = I, and abs{det(PT)} = 1) such that P(z — rv) = (|| — rv|},0,...,0)T.

Then
o (P _ (oM o)
Py Py ’

where P, is a (k — 1) X k-matrix. By symmetry, it is equivalent to solve the
expectation

Egq[V(x1,PTxy ..., Play, x)|x; = rv, x]
= FEq |abs {det (PTzL'g —xy...PTg, —xy & — :1:1)} |z = rv,m}
=FEq [abs {det (mg—Pml ...z —Px; P(:B—:Bl))} |1 = ro, m} abs{det(PT)}
[ T T
B To] — P& ... Th1 — P L1 || — 21| B
= Fq abs{det < y— Py ... @ — Poy 0 ‘ml =7rv,x

= ||z — rv|| Eq [abs {det (@} — Pyz1 ... @}, — Pywy ) } [&1 = ro]

1...1 1
= ||z — rv| Eq [abs {det <m’2 ., P2m1> } ’ml = rv]

= [l = ro| Vo([[ Pero|l; Gr-1)-

From ||Prv||?> = r%, we obtain the relation (p?rv)? + ||Prv|? = r? and, as

plrv = ||z — rv|| 71 (z1 — r)r, it follows that ||Pyrv||? = r2{1 — (21 — r)?/||z —
rv|?} = p?, which completes the proof.

Proof of Theorem 1. Let X = {x;,,...,x;,x;,...,x;,, T;} denote the data
set of 2k + 1 i.i.d. observations from the k-variate spherical distribution G. Fur-
ther, write I = (i1,...,i;) and J = (ji,..., k) for the k-sets of indices. Then let
the the scalar do(I) and the k-vector d(I) = (d1(I),...,d,(I))T be as in Section 6
and write Sj(x;) = sign{do(I) + d(I)Tx;}. By reversing the order of the expec-
tation and differentiation, (2] can be rewritten as R(x;; G) = Eq[Sr(x;)d(I)|x;].
Then note that

D(G) = E.,[R(z;; G)R(xi; G)] = E., [Ec[S1(2:)Sy(w:)d(1)d(J)" |=i]]
= B[Si1(x:)S;(z;)d(I)d(J])"]. (11)
It is now straightforward to show that the influence function of D at G is

IF (x; D, G)
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0
— o [ | [ Su@)Ss@)d(Dd)T A (@) - dG. (w5, )G ()| _
=R(z; G)R" (2; G) + 2k Eg|[S1(%:) Sy (x:)d(1)d(J)" |2, =] - (2k+1) D(G), (12)
where G, = (1 — ¢)G + €A, is the contaminated distribution.
We derive the influence function (I2) of D for a point in the direction of the
first axis, that is, we set = rv, where v = (1,0,...,0)7. Using the fact that for a
spherical random variable = (¥;)1<i<, (SiTx(;))1<i<t has the same distribution

for arbitrary s; € {—1,1} and permutation 7 of {1,..., k}, one immediately finds
that

IR B (G E)) o*
2k Bl S1(w) Sy (@i)d(I)d(]) @i, = rv] = ( 0 n(r; Gl ) ’

where
")/(T; G) = Qk EG[S[(IBZ)SJ(ml)dl(I)dl(J)‘mll = T’U]

€T
= 2% B, |BelSi(@)d (Do, = o2 ol G)

as Eq[Sj(x;)d(J)|x;] = R(xi;G) = q(||zi]]; G)x;i/||x;i|| by (@). Similarly, we
obtain

Ty
0(r; G) = 2kE,, [EG[&(wi)dzu)m p—— q<||wz-||;G>Hm—?H} .

Next, note that

0
Eq[Si(z;)di(I)|xi, = rv, 2] = Er EclV(xiy,. ...z, xi)|xi, =10, 2]

|l2; — rvl|Vo(pei; Gi—1)

8$Z'1
Ty — T
- m{‘/o(pzi; Gr-1) = P2 4(Pe;; Gr-1)}

where the first equality follows from reversing the order of expectation and
differentiation, the second equality follows from Lemma 3, and the third
equality follows by simple differentiation rules (use the chain rule to ob-
tain OVy(pa;; Gr—1)/0xi1 = q(pa;; Gk—1)0p.,/0xa (as Vi = q) and 0p,,/0xi1 =
—(2i1 — 7)pa; ||Ti — 7v|7?). Similarly, one can show that

E¢[Si(x;)da(I)|xi, = rv, x;]

2 2
52 (r — Pzi)
@i — rol| p

Zq
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This then yields the stated expressions for v(r; G) and n(r; G).
Then, as R(rv; G) = q(r; G)v, we may now write the influence function (I2])
of D for a point & = rv as

r;G) o”
0 n(r;G)Ik_1
={¢*(r; G)+7(r; @) —n(r; @) Yoo +n(r; G) I, — (2k + 1)D(G). (13)

IF (rv; D, G)=¢*(r; G)vv! + <7( ) - (2k+1)D(G)

An influence point in an arbitrary direction is obtained by setting @ = Prv = ru
for a well chosen orthogonal (PPT = I,) rotation matrix P = [u---uy]. The
influence function is then given by IF (z; D,G) = PIF (rv; D, G)PT which, by
(@3) and relations Pv = u, PPT = I}, and D(G) = (% /k)I, reduces to

IF (x; D,G) = {QQ(T‘; G) +~(r;G) — n(r; G)} uu’ — {2k: +1-— %} D(G),

which completes the proof.
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