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Multiple measurements vector (MMV) model

m Multiple measurements vector (MMV) [DE11] model:
Vi=Ax;+e, I=1,...,L,

where
m A= (a; --- ay) € C"M known overcomplete matrix (M > N), called the dictionary
m x; € CM unobserved sparse signal vectors
m e¢; € CV unobserved zero mean white noise vector, cov(e;) = I

The column vectors a; of A are referred to as atoms.

m In matrix form:
Y = AX +E,

Key assumption

Signals x; are jointly K-sparse: X is K-rowsparse (i.e., only K rows are different from zero).
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Sparse signal recovery methods

Sparse signal recovery (SSR) methods aim at identifying the support
M =supp(X) = {i€ [M] : z;; # 0 for some j € [L]}
given only the data Yy 1, the dictionary Ay s, and the sparsity level K.
Popular approaches:
m Convex relaxation:
min |Y — AX|]? + M(X)

for some mixed matrix norm £(-) and proper choice of penalty \.

m Approximate solution for || - [|o pseudonorm, e.g., simultaneous normalized iterative hard
thresholding (SNIHT) [BCHJ14].

m Greedy methods: greedily add atoms to M that provide best fit to LS criterion as in
simultaneous orthogonal matching pursuit (SOMP) [TGS06].

m Covariance-based (see next slide) as M-SBL (Sparse Bayesian Learning) [WRO07],
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Covariance-based sparse signal recovery

m signal: circular Gaussian random variables with uncorrelated components:
x; ~CNu(0,T) with T = cov(x;) = diag(y)

where v € ]Rj‘z/’o contains signal powers with only K non-zero elements, i.e.,
M = supp(X) = supp(7).

m e, ~ CNy(0,02I) where o2 is the unknown noise variance.

m y;iid., x; and e; uncorrelated.

Under the above conditions, y; ~ CN n(0,3), with covariance matrix 3 = cov(y;) given by

M
S = ATA" + 521 = Z*y,,;aia'; + oL
=1
Covariance-based support recovery: minimize the neg. log-likelihood fnc (LLF) 4(~,0?) of
the data Y given A and sparsity K.



Introduction
ooomO

OMP formulation in [Elal0, Table 3.1]:

Initialization: Initialize k = 0, and set

e The initial solution x° = 0.
e Theinitial residual 1’ =b — Ax" = b.
e The initial solution support S° = Support(x’} = 0.

Main Iteration: Increment k by 1 and perform the following steps:

o Sweep: Compute the errors e(j) = min,, ||la;z; — r*~'|j3 for all j using the
optimal choice 2} = alT.rk‘] /3.

e  Update Support: Find a minimizer, ji of e(j): V j ¢ S, €(jo) < (), and
update S* = S U (o).

o Update Provisional Solution: Compute x*, the minimizer of |JAx—b||3 sub-
ject to Support{x) = Sk.
Update Residual: Compute r* = b — Ax*.
Stopping Rule: If |[r¥||, < €, stop. Otherwise, apply another iteration.

Output: The proposed solution is x* obtained after « iterations.

Sweep: solve MLE when all but one signal parameter is not known.
Update provisional solution: solve the MLE in non-sparse case.
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OMP formulation in [Elal0, Table 3.1]:

Initialization: Initialize k = 0, and set

e The initial solution x° = 0.
e Theinitial residual 1’ =b — Ax” = b.
e  The initial solution support S° = Support(x’) = 0.

Main Iteration: Increment k by 1 and perform the following steps:

e Sweep: Compute the errors e(j) = min,, [la;z; — r*~!|3 for all j using the
optimal choice 2} = aIT.rA“/||aj||§.

e  Update Support: Find a minimizer, ji, of e(j): V j ¢ S, €(jo) < (), and
update 8 = S U {jo}.

o Update Provisional Solution: Compute x*, the minimizer of JAx—b||3 sub-
ject to Support{x} = Sk.
Update Residual: Compute r* = b — Ax,
Stopping Rule: If |[r¥||, < &, stop. Otherwise, apply another iteration.

Output: The proposed solution is x* obtained after & iterations.

We can solve these steps also for our likelihood!
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Maximum likelihood estimation results [1/2]:

Gaussian negative LLF:

U(y,0% | Y,A) = tr((A diag(y)AP + 02I) ') + log | A diag(y) A" + o2
== ==

L
- 1
where ¥ = 7 Zyly'{' is the sample covariance matrix (SCM).
=1



CL-OMP
| |ulm|u]m}

Maximum likelihood estimation results [1/2]:

Gaussian negative LLF:

U(y,0% | Y,A) = tr((A diag(y)AP + 02I) ') + log | A diag(y) A" + o2
== ==

L
- 1
where ¥ = 7 Zyly'{' is the sample covariance matrix (SCM).
=1

Result 1. [FT01, YLS"10] The unique minimizer of the conditional neg. LLF for ~; > 0 (with
fixed {y;}jzi, 02) is:
4s = min tr((Z\; + yaal) 'E) + log |3\ + yaah|
Y
- 'S (2 - 2\) 2 a .
- 1 ) )
(a;' 2 a;)?

where 3\ ; = 3 — 'yiaia!j = array CM without the contribution of the it" source.
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Maximum likelihood estimation results [2/2]:

Result 2. (non-sparse, underdetermined case) [SN95] If M = K (so # of atoms = # of
sources), the unrestricted minimizers of the neg. LLF £(v,0?) are

provided that 4; > 0 for all i=1,..., K. (Note: Ais Nx K, vis K x 1, AT is the
pseudoinverse of A)

Remark. If 4 in Result 2 contains negative elements, then we calculate the constrained
(non-negative) solution using [Bre88, Algorithm I].
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CL-OMP steps

Initialization: Initialize £ = 0 and set

m The initial solution 4@ = 07,1, 020 = tr(X)/N
m The initial solution support M(® = supp(v(?)) = @
m The initial CM: 3(©) = A diag(y@)AH + 52O = 5201

Main Iteration (¢ =0,1,..., K—1):
Sweep: for each conditional MLE 4; (cf. Result 1), compute the errors (fits):
= tr((Z® + Y1) 718) + log | P + Y;a;a"]
for all 4. This is equivalent to computing:
e; = log(1 + 4a70Ma;) — 4,2,0™ a; + constant
where () = (%(0))~1

10
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CL-OMP steps

Update support: Find a minimizer, i of €;:

and update the support M*+D = AME) {4}

Update provisional solution: minimize the negative LLF s.t. supp(y) = M®*+1) e,
solve the underdetermined (non-sparse) case:

(g,&2) = argrgnglg(g o? | Y, A ),

where £ is the neg. LLF. (Note: solution via Result 2 or [Bre88, Algorithm 1])

Update CM:
S*D = A v diag(g) AN iy + 2L

11
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Algorithm 1: CL-OMP: Covariance Learning Orthogonal Matching Pursuit algorithm

Input S A K
Initialize: & = [tr(3)/p]I, M =0
fork=1,...,Kdo
Hev—1 ¢y =i
v = (Vi) Mx1, Vi ¢ max (%,O) // Result 1

€= ()« (log(l —Q—%-al'-"E*lai) — wia'ZT'E*lai) // errors (value of neg. LLF at

solution)

Mx1

M — MU {4} with 4 < argmingaq€; // choose source with smallest error
0% tr((IT— AMAL)E) // by Result 2

Ym  max (diag (AL(EA] — UQI)ALH),()) // by Result 2

Yme <0

3+ Adiag(vy)A" + %1

OLtput : M, ~, o2

12
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Simulation set-up

Methods:

m SOMP [TGS06, Algorithm 3.1]
m SNIHT [BCHJ14, Algorithm 1].
m M-SBL (joint maximization of o2 and ~, with o2 update [WR07, Eq. (21)] in M-step)

Set-up:# of atoms M = 256, sparsity level K = 4.

m Dictionary A: Gaussian random N x M measurement matrix, unit-norm columns.

m Support M = supp(X): randomly chosen from {1,..., M} for each trial.

m Noise e;: white circular Gaussian with variance o2

m Sparse signal: [x;]; ~ CN(0,7;), for j € M.

m SNR: frst source 10log;, 71/02 while others have 1 dB, 2 dB, and 4 dB lower SNR.

13
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Simulation set-up

m (Empirical) probability of exact recovery,
1 Z
PER= =Y 1(M® = M®
T; (MO = M®),

where 1(-) denotes the indicator function, and M(® denotes the estimate of the true
signal support M) for #" MC trial

m # of MC trials 7'= 2000.

14
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Study 1: M =256, K=4, L =16, while varies.

Probability of Exact Recovery

N=28

0.8

0.6

|- -SOMP

—<— CL-OMP

-&-SNIHT
-+-M-SBL
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‘ ke
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SNR (101log,v1/02) SNR (10log,v1/0?) SNR (10log,, 02 /0?)

M-SBL not consistent; SOMP and SNIHT perform poorly in small N. 5
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Study 2: M = 256, K =4, N = 16, while varies
L=16

—<— CL-OMP
-%-SOMP

0% @~ SNIHT

Probability of Exact recovery

|
2 4 6 8 10

SNR (101log,v1/02) SNR (10log,v1/0?) SNR (10log,v1/0?)

Other methods perform poorly in small L and low SNR. 1%
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How about DOA estimation?

—<— CL-OMP
IAA-APES
MUSIC

- 4+- Root-MUSIC

—CRLB

SNR (dB)
K = 4 Gaussian sources; L =125, N=20, M = 1801 (A6 = 0.1°)
0 = (—30.1°, —20.02°, —10.02°, 3.02°). MC trials = 2000. 17
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Conclusions

m We proposed a covariance learning orthogonal matching pursuit (CL-OMP) algorithm.

m CL-OMP outperformed traditional SSR methods

m Especially, when N or L is small, or in low SNR, the SNIHT and SOMP performed very
poorly compared to CL-OMP

m As DOA estimation method, CL-OMP outperformed MUSIC, Root-MUSIC, IAA-APES.

MATLAB and python codes available at github:
https://github.com/esollila/CovLearn

18
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