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Multiple measurements vector (MMV) model

Multiple measurements vector (MMV) [DE11] model:

yl = Axl + el, l = 1, . . . ,L,

where
A = (a1 · · · aM) ∈ CN×M known overcomplete matrix (M > N), called the dictionary
xl ∈ CM unobserved sparse signal vectors
el ∈ CN unobserved zero mean white noise vector, cov(el) = σ2I

The column vectors ai of A are referred to as atoms.
In matrix form:

Y = AX + E,

Key assumption
Signals xl are jointly K-sparse: X is K-rowsparse (i.e., only K rows are different from zero).
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Sparse signal recovery methods

Sparse signal recovery (SSR) methods aim at identifying the support

M = supp(X) = {i ∈ [[M]] : xij ̸= 0 for some j ∈ [[L]]}

given only the data YN×L, the dictionary AN×M, and the sparsity level K.

Popular approaches:

Convex relaxation:
min

X
∥Y−AX∥2 + λℓ(X)

for some mixed matrix norm ℓ(·) and proper choice of penalty λ.
Approximate solution for ∥ · ∥0 pseudonorm, e.g., simultaneous normalized iterative hard
thresholding (SNIHT) [BCHJ14].
Greedy methods: greedily add atoms to M that provide best fit to LS criterion as in
simultaneous orthogonal matching pursuit (SOMP) [TGS06].
Covariance-based (see next slide) as M-SBL (Sparse Bayesian Learning) [WR07],
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Covariance-based sparse signal recovery

signal: circular Gaussian random variables with uncorrelated components:

xl ∼ CNM(0,Γ) with Γ = cov(xl) = diag(γ)

where γ ∈ RM
≥0 contains signal powers with only K non-zero elements, i.e.,

M = supp(X) = supp(γ).
el ∼ CNN(0, σ2I) where σ2 is the unknown noise variance.
yl i.i.d., xl and el uncorrelated.

Under the above conditions, yl ∼ CNN(0,Σ), with covariance matrix Σ = cov(yl) given by

Σ = AΓAH + σ2I =
M∑

i=1
γiaiaH

i + σ2I.

Covariance-based support recovery: minimize the neg. log-likelihood fnc (LLF) ℓ(γ, σ2) of
the data Y given A and sparsity K.
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OMP formulation in [Ela10, Table 3.1]:

Sweep: solve MLE when all but one signal parameter is not known.
Update provisional solution: solve the MLE in non-sparse case. 6
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OMP formulation in [Ela10, Table 3.1]:

We can solve these steps also for our likelihood!
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Maximum likelihood estimation results [1/2]: sweep

Gaussian negative LLF:
ℓ(γ, σ2 | Y,A) = tr((A diag(γ)AH + σ2I

=Σ

)−1Σ̂) + log |A diag(γ)AH + σ2I
=Σ

|

where Σ̂ =
1
L

L∑
l=1

ylyH
l is the sample covariance matrix (SCM).

Result 1. [FT01, YLS+10] The unique minimizer of the conditional neg. LLF for γi ≥ 0 (with
fixed {γj}j̸=i, σ2) is:

γ̂i = min
γ

tr((Σ\i + γaiaH
i )

−1Σ̂) + log |Σ\i + γaiaH
i |

= max

(
aH

i Σ
−1
\i (Σ̂−Σ\i)Σ

−1
\i ai

(aH
i Σ

−1
\i ai)2 , 0

)
,

where Σ\i = Σ− γiaiaH
i = array CM without the contribution of the i th source.
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Maximum likelihood estimation results [2/2]: update provisional solution

Result 2. (non-sparse, underdetermined case) [SN95] If M = K (so # of atoms = # of
sources), the unrestricted minimizers of the neg. LLF ℓ(γ, σ2) are

σ̂2 =
1

N−K tr
(
(I−AA+)Σ̂

)
γ̂ = diag(A+(Σ̂− σ̂2I)A+H)

provided that γ̂i > 0 for all i = 1, . . . ,K. (Note: A is N×K, γ is K× 1, A+ is the
pseudoinverse of A)

Remark. If γ̂ in Result 2 contains negative elements, then we calculate the constrained
(non-negative) solution using [Bre88, Algorithm I].
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CL-OMP steps

Initialization: Initialize k = 0 and set

The initial solution γ(0) = 0M×1, σ2(0) = tr(Σ̂)/N
The initial solution support M(0) = supp(γ(0)) = ∅
The initial CM: Σ(0) = A diag(γ(0))AH + σ2(0)I = σ2(0)I

Main Iteration (k = 0, 1, . . . ,K− 1):

1 Sweep: for each conditional MLE γ̂i (cf. Result 1), compute the errors (fits):

ϵi = tr((Σ(k) + γ̂iaiaH
i )

−1Σ̂) + log |Σ(k) + γ̂iaiaH
i |

for all i. This is equivalent to computing:

ϵi = log(1 + γ̂iaH
i Θ

(k)ai)− γ̂iaiΘ
(k) ai + constant

where Θ(0) = (Σ(0))−1.
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CL-OMP steps

1 Update support: Find a minimizer, ik of ϵi:

ϵik ≤ ϵi, ∀i ̸∈ M(k),

and update the support M(k+1) =M(k) ∪ {ik}
2 Update provisional solution: minimize the negative LLF s.t. supp(γ) =M(k+1), i.e.

solve the underdetermined (non-sparse) case:

(ĝ, σ̂2) = argmin
g,σ2

ℓ(g, σ2 | Y,AM(k+1)),

where ℓ is the neg. LLF. (Note: solution via Result 2 or [Bre88, Algorithm I])
3 Update CM:

Σ(k+1) = AM(k+1) diag(ĝ)AH
M(k+1) + σ̂2I.
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Algorithm 1: CL-OMP: Covariance Learning Orthogonal Matching Pursuit algorithm

Input : Σ̂, A, K
Initialize: Σ = [tr(Σ̂)/p]I, M = ∅

1 for k = 1, . . . ,K do
2 γ = (γi)M×1, γi ← max

(
aH

i Σ
−1(Σ̂−Σ)Σ−1ai
(aH

i Σ
−1ai)2 , 0

)
// Result 1

3 ϵ = (ϵi)←
(
log(1 + γiaH

i Σ
−1ai)− γiaH

i Σ
−1ai

)
M×1 // errors (value of neg. LLF at

solution)

4 M←M∪ {ik} with ik ← argmini ̸∈M ϵi // choose source with smallest error

5 σ2 ← 1
N−k tr

(
(I−AMA+

M)Σ̂
)

// by Result 2

6 γM ← max
(
diag

(
A+

M(Σ̂− σ2I)A+H
M
)
, 0
)

// by Result 2

7 γM∁ ← 0

8 Σ← A diag(γ)AH + σ2I
Output : M, γ, σ2
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Simulation set-up

Methods:

SOMP [TGS06, Algorithm 3.1]
SNIHT [BCHJ14, Algorithm 1].
M-SBL (joint maximization of σ2 and γ, with σ2 update [WR07, Eq. (21)] in M-step)

Set-up:# of atoms M = 256, sparsity level K = 4.

Dictionary A: Gaussian random N×M measurement matrix, unit-norm columns.
Support M = supp(X): randomly chosen from {1, . . . ,M} for each trial.
Noise ei: white circular Gaussian with variance σ2

Sparse signal: [xi]j ∼ CN (0, γj), for j ∈M.
SNR: frst source 10 log10 γ1/σ

2 while others have 1 dB, 2 dB, and 4 dB lower SNR.
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Simulation set-up

(Empirical) probability of exact recovery,

PER =
1
T

T∑
t=1

I
(
M̂(t) =M(t)),

where I(·) denotes the indicator function, and M̂(t) denotes the estimate of the true
signal support M(t) for tth MC trial
# of MC trials T = 2000.
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Study 1: M = 256, K = 4, L = 16, while N varies.
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M-SBL not consistent; SOMP and SNIHT perform poorly in small N. 15
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Study 2: M = 256, K = 4, N = 16, while L varies
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How about DOA estimation?
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K = 4 Gaussian sources; L = 125, N = 20, M = 1801 (∆θ = 0.1o)

θ = (−30.1o,−20.02o,−10.02o, 3.02o). MC trials = 2000. 17
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Conclusions

We proposed a covariance learning orthogonal matching pursuit (CL-OMP) algorithm.
CL-OMP outperformed traditional SSR methods
Especially, when N or L is small, or in low SNR, the SNIHT and SOMP performed very
poorly compared to CL-OMP
As DOA estimation method, CL-OMP outperformed MUSIC, Root-MUSIC, IAA-APES.

MATLAB and python codes available at github:
https://github.com/esollila/CovLearn
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