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Abstract—The Lasso (Least Absolute Shrinkage and Selection
Operator) has been a popular technique for simultaneous linear
regression estimation and variable selection. In this paper, we
propose a new novel approach for robust Lasso that follows
the spirit of M -estimation. We define M -Lasso estimates of
regression and scale as solutions to generalized zero subgradient
equations. Another unique feature of this paper is that we
consider complex-valued measurements and regression parame-
ters, which requires careful mathematical characterization of the
problem. An explicit and efficient algorithm for computing the
M -Lasso solution is proposed that has comparable computational
complexity as state-of-the-art algorithm for computing the Lasso
solution. Usefulness of the M -Lasso method is illustrated for
direction-of-arrival (DoA) estimation with sensor arrays in a
single snapshot case.

Index Terms—Compressive sensing, beamforming, DoA esti-
mation, Lasso, sparsity

I. INTRODUCTION

We consider the complex-valued linear model y = Φβ+ε,
where Φ is a known n×p complex-valued measurement matrix
(or matrix of predictors), β = (β1, . . . , βp)

> is the unknown
vector of complex-valued regression coefficients (or system
parameters) and ε ∈ Cn denotes the additive noise. For ease
of exposition, we consider the centered linear model (i.e., we
assume that the intercept is equal to zero). The primary interest
is to estimate the unknown parameter β given y ∈ Cn and
Φ ∈ Cn×p. However, in many practical applications, the linear
system is underdetermined (p > n) or p ≈ n and the least
squares estimate (LSE) does not have a unique solution or is
subject to a very high variance. Furthermore, for large number
of predictors, we would like to identify the ones that exhibit
the strongest effects. Hence we wish to find a sparse solution
β̂, which sets weights for irrelevant predictors equal to 0. In
these cases one needs to regularize the regression coefficients
(i.e., to control how large they can grow). Another problem
with the LSE arises when there are outliers or the noise
follows a heavy-tailed non-Gaussian distribution. Then robust
estimation [1] is upmost importance for reliable estimation of
the unknown parameters.

The complex version of the popular Lasso [2] solves an
`1-penalized LS regression problem,

min
β
‖y −Φβ‖22 + 2λ‖β‖1 (1)

where λ > 0 is the shrinkage (penalty) parameter. As λ ∈
(0,∞) varies, the solution β̂λ traces out a path in Cp, with

β̂λ→0 then corresponding to the conventional LSE. We refer
the reader to [3] for a comprehensive account on Lasso. The
larger the value of λ the greater is the amount of shrinkage
for the coefficients (some of which can be shrunk all the way
to zero).

Robust Lasso is needed in case of heavy-tailed errors or
severe outliers. A popular focus in the literature for obtaining
robust Lasso estimates is to use a robust criterion in place
of the least squares (LS) criterion. Most robust loss functions
require a preliminary estimate of the scale of the error terms.
An accurate estimate of scale is difficult to obtain since
significant predictors are unknown (β is sparse and possibly
n < p). Therefore a joint estimation of regression and scale
becomes a necessity. In this paper, we propose a new approach
for robust Lasso that follows the spirit of M -estimation. We
define M -Lasso estimates of regression and scale as solutions
to generalized zero subgradient equations which are based on
general loss function. These equations are a sufficient and
necessary condition of a solution to the Lasso problem (1)
given that the loss function is the LS-loss. A unique feature of
this paper is that we consider complex-valued measurements
and regression parameters. This requires careful mathematical
characterization of the problem and proper tools from complex
function theory. A simple and efficient algorithm for comput-
ing the M -Lasso solution is also developed.

We illustrate how the proposed M -Lasso can be used for
DoA estimation of source signals using sensor arrays when
only a single snapshot is available. Indeed sparse regression
approaches for DoA estimation has been an active research
field; see [4], [5], [6], [7] and references therein. Our examples
illustrate that M -Lasso based on Huber loss function has
similar performance in DoA finding as Lasso (1) in complex
Gaussian noise, but superior performance in heavy-tailed non-
Gaussian noise or in face of outliers.

Let us offer a brief outline of the paper. Robust loss func-
tions and their properties in complex-valued case are outlined
in Section II. Also the notion of pseudo-residual vector is
introduced which will be elemental in our developments. In
Section III, we recall the zero subgradient estimating equations
for Lasso solution and then define M -Lasso estimates of
regression and scale as solutions to generalized subgradient
equations. A highly efficient algorithm for computing the M -
Lasso estimates is also proposed. Finally, we consider the
direction finding application with sensor arrays in Section IV.
Section V concludes.
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Notations. The vector space Cn is equipped with the usual
Hermitian inner product, 〈a,b〉 = aHb, where (·)H = [(·)∗]>
denotes the Hermitian (complex conjugate) transpose. This
induces the conventional (Hermitian) `2-norm ‖a‖2 =

√
aHa.

The `1-norm is the defined as ‖a‖1 =
∑n
i=1 |ai|, where

|a| =
√
a∗a =

√
a2R + a2I denotes the modulus of a complex

number a = aR + aI . For a matrix A ∈ Cn×p, we denote
by ai ∈ Cn its ith column vector and a(i) ∈ Cp denotes the
Hermitian transpose of its ith row vector. Hence, this means
that we may write the measurement matrix Φ ∈ Cn×p as
Φ =

(
φ1 · · · φp

)
=
(
φ(1) · · · φ(n)

)H
.

II. ROBUST LOSS FUNCTIONS AND PSEUDO-RESIDUALS

Suppose that the error terms εi are i.i.d. continuous ran-
dom variables from a circular distribution [8] with p.d.f.
f(e) = (1/σ)f0(e/σ), where f0(e) denotes the standard
form of the density and σ > 0 is the scale parameter.
Robust loss functions commonly require knowledge of σ in
order to properly downweight outlying observations. Hence
the unknown scale σ needs to be estimated jointly with the
regression coefficient as a preliminary robust scale estimate is
generally not available.

We adopt the definition of loss function to complex-valued
case from [9]. Namely, we call ρ : C → R+

0 a loss function
if it is circularly symmetric, R-differentiable convex function
which satisfies ρ(0) = 0. Due to circularity assumption
(implying that ρ(eθx) = ρ(x)∀ θ ∈ R) it follows that
ρ(x) = ρ0(|x|) for some ρ0 : R+

0 → R+
0 . This illustrates

that ρ is not C-differentiable (i.e., holomorphic function)
since only functions that are both holomorphic and real-
valued are constants. The complex derivative [10] of ρ w.r.t.
x∗ = (xR + xI)

∗ is

ψ(x) =
∂

∂x∗
ρ(x) =

1

2

(
∂ρ

∂xR
+ 

∂ρ

∂xI

)
=

1

2
ρ′0(|x|)sign(x),

where

sign(e) =

{
e/|e|, for e 6= 0

0, for e = 0

is the complex signum function and ρ′0 denotes the real
derivative of the real-valued function ρ0. Function ψ : C→ C
will be referred in the sequel as score function.

For obtaining robust estimates, the utilized loss function
ρ(e) should assign smaller weights for large errors e than the
LS (or `2-)loss ρ(e) = |e|2. One most commonly used robust
loss function is due to Huber [11]. In the complex-valued case,
Huber’s loss function can be defined as follows [9]:

ρH,c(e) =

{
|e|2, for |e| ≤ c
2c|e| − c2, for |e| > c,

(2)

where c is a user-defined threshold that influences the degree of
robustness and efficiency of the method. Hence similar to the
real-valued case, Huber’s loss function is a hybrid of `2 and `1
loss functions ρ(e) = |e|2 and ρ(e) = |e|, respectively, using
`2-loss for relatively small errors and `1-loss for relatively

large errors. Moreover, it is convex and verifies the conditions
imposed on the loss function (R-differentiability and circular
symmetry). Huber’s score function becomes

ψH,c(e) =

{
e, for |e| ≤ c
c sign(e), for |e| > c

.

Note that Huber’s ψ is a winsorizing (clipping) function: the
smaller the c, the more clipping is actioned on the residuals.

Now recall that in robust regression, the loss function acts
on standardized residual vector r/σ, where r ≡ r(β) = y −
Φβ denotes the residual vector for some candidate β ∈ Cp
of regression coefficient vector and σ is the scale. The loss
function then defines a pseudo-residual, defined as

rψ ≡ rψ(β, σ) = ψ

(
y −Φβ

σ

)
σ (3)

where ψ-function acts coordinate-wise to vector r/σ, so
[ψ(r/σ)]i = ψ(ri/σ). Some remarks of definition (3) are
in order. First, note that if ρ(·) is the conventional LS-loss,
ρ(e) = |e|2, then ψ(e) = e, and rψ is equal with the
conventional residual vector, so rψ = y − Φβ = r. Second,
for Huber’s loss function, pseudo-residual vector rψ has ith

element equal to ri if |ri| < cσ and equal to (cσ)sign(ri)
otherwise. In other words, residuals that are farther apart from
zero than c times the scale σ are trimmed (downweighted).
This is the underlying principle for robustness of Huber’s loss
function. Third, note that the multiplier σ in (3) is essential in
bringing the residuals back to the original scale of the data.

Since σ is unknown in practise, robust loss function ρ(e),
such as Huber’s loss above, require a preliminary robust scale
estimate σ̂ in order to determine if e should be downweighted
or not. In sparse regression problems, obtaining such an esti-
mate is more difficult task than in the conventional regression
problem since now the significant predictors (columns of Φ)
are not known (β is sparse and possibly n < p). Suppose
that a preliminary robust regression estimate β̂init can be
computed (n > p case) and then used to compute a robust
scale statistic σ̂ (e.g., median absolute deviation) based on
r̂ = y−Φβ̂init. Such a scale estimate is biased and can sig-
nificantly underestimate the true σ due to overfitting when the
number of predictors p is large. This then implies too severe
downweighting. So robust loss function and underestimated
σ̂ results in pseudo-residuals which can severely downweight
’good’ residuals (not just outliers). Similarly, all residuals can
be left intact if σ̂ is an overestimate (too large).

III. ROBUST COMPLEX M -LASSO

The earlier approaches for robust Lasso are based on an idea
of adding an `1-penalty to a robust criterion function since the
LS criterion function, J`2(β) = ‖y − Φβ‖22, is sensitive to
outliers. For example, [12] utilize the least absolute deviation
(LAD) criterion, J`1(β) = ‖y −Φβ‖1, LTS-Lasso of [13] is
based on the least trimmed squares (LTS) criterion, whereas
[14] utilized Huber’s criterion function Q(β, σ) in (9).

Our approach is different from these earlier approaches.
Namely, we define Lasso estimator as a solution to generalized



zero subgradient equations that is based on general loss
function ρ(e). Our approach follows the spirit of M -estimation
[11], [1] where the principal idea is to define an estimator as a
solution to generalized maximum likelihood (ML-)estimating
equations.

We start by recalling the zero subgradient equation for
complex-valued Lasso problem (1). Note that the utilized LS
criterion function J`2(β) in Lasso problem (1) is convex
(in fact strictly convex if n > p) and R-differentiable but
the `1-penalty function ‖β‖1 is not R-differentiable at a
point where at least one coordinate βj is zero. However, we
can resort to generalization of notion of gradient applicable
for convex functions, called the subdifferential [15]. For a
complex function f : Cp → R we can define subdifferential
at a point β as

∂f(β) = {z ∈ Cp : f(β′) ≥ f(β) + 2Re(〈z,β′ − β〉)
for all β′ ∈ Cp}.

Any element z ∈ ∂f(β) is then called a subgradient of f at
β. The subdifferential of the modulus |βj | is

∂|βj | =

{
1
2 sign(βj), for βj 6= 0
1
2s for βj = 0

where s is some complex number verifying |s| ≤ 1. Thus
subdifferential of |βj | is the usual complex derivative when
βj 6= 0, i.e., ∂|βj | = ∂

∂β∗
j
|βj | for βj 6= 0. Then a necessary

and sufficient condition for a solution to the Lasso problem (1)
is that ∂(J`2(β) + 2λ‖β‖1) ∈ 0 which gives zero subgradient
equation

−φH
i

(
y −Φβ̂

)
+ λŝj = 0 for j = 1, . . . , p (4)

where ŝj is 2 times an element of the subdifferential of
|βj | evaluated at β̂j , i.e., equal to sign(β̂j) if β̂j 6= 0 and
some complex number lying inside the unit complex circle
otherwise. Given the Lasso solution β̂, the natural scale
estimate σ̂2 is then

σ̂2 =
1

n

n∑
i=1

∣∣yi − φH
(i)β̂

∣∣2 =
1

n
‖r̂‖22 (5)

where r̂ = y−Φβ̂ denote the residual vector at the solution.
Given the considerations in Section II, it appears wise to

estimate the unknown parameters β ∈ Cp and σ > 0 jointly.
Thus we seek for a pair (β̂, σ̂) which verify the generalized
(zero subgradient) estimating equations, which we refer to as
Lasso M -estimating equations, of the form

−φH
i rψ(β̂, σ̂) + λŝj = 0 for j = 1, . . . , p (6)

αn−
n∑
i=1

χ

(
|yi − φH

(i)β̂|
σ̂

)
= 0 (7)

where α > 0 is a fixed scaling factor (described later) and
function χ : R+

0 → R+
0 is defined as

χ(t) = ρ′0(t)t− ρ0(t). (8)

Recall that ρ(x) = ρ0(|x|). To simplify notation we write the
pseudo-residual vector rψ(β̂, σ̂) in (6) as r̂ψ .

Some remarks of this definition are in order. First, consider
the conventional choice, i.e., the LS-loss ρ(e) = |e|2. In this
case, r̂ψ = r̂, so (6) reduces to (4). Furthermore, since ρ0(t) =
t2 and ρ′0(t) = 2t, the χ-function in (8) is χ(t) = t2, and
(7) reduces to (5). In other words, for LS-loss, the M -Lasso
solution (β̂, σ̂) to (6)-(7) is the conventional Lasso estimate (so
β̂ is a solution to (1)) and σ̂ equals the standard scale statistic
in (5). Second, if λ = 0 (so no penalization and n > p), then
the solution to (6) and (7) is the unique solution to the convex
optimization problem

arg min
β,σ

{
Q(β, σ) = αnσ +

n∑
i=1

ρ

(
yi − φH

(i)β

σ

)
σ

}
. (9)

Important feature of the objective function Q(β, σ) above is
that it is jointly convex in (β, σ) given that ρ is convex. In
other words, for λ = 0 (and n > p), equations (6) and (7) are
necessary and sufficient condition for a solution to problem
(9). This objective function was originally studied by Huber
[1] in the real-valued case. Lasso penalized Huber’s criterion
was considered by Owen [14] and `0-penalization in real-
valued and complex-valued case in [16], [9], respectively.

Next we note that (6) can be written after recalling the
definition (3) more compactly as 〈φj , r̂ψ〉 = λŝ for j =
1, . . . , p. This mean that (after taking modulus of both sides)
the following holds

|〈φj , r̂ψ〉| = λ, if β̂j 6= 0 (10)

|〈φj , r̂ψ〉| ≤ λ, if β̂j = 0 (11)

i.e., whenever a component, say β̂j , of β̂ becomes non-zero,
the corresponding absolute correlation between the pseudo-
residual r̂ψ and column φj of Φ, |〈φj , r̂ψ〉|, meets the
boundary λ in magnitude, where λ > 0 is the penalty
parameter. This is well-known property of Lasso; see e.g.,
[3] or [7] in the complex-valued case. This property is then
fulfilled by M -Lasso estimates by definition. In the real-
valued case, [14] considered minimization of penalized Hu-
ber’s criterion Qλ(β, σ) = Q(β, σ) + λ‖β‖1. The solution of
minβ,σ Qλ(β, σ), however, is different from solutions to (6)-
(7). This can be verified by noting that the zero subgradient
equation ∂βQλ(β, σ) = 0 is different from (6). This also
means that solution for penalized Huber’s criterion based on
LS-loss function ρ(e) = |e|2 is not the Lasso solution (1). This
is somewhat counterintuitive. This equivalence with Lasso and
M -Lasso for LS-loss, however, holds.

The scaling factor α in (7) is chosen so that the obtained
scale estimate σ̂ is Fisher-consistent for the unknown scale
σ when {εi}ni=1

iid∼ CN (0, σ2). Due to (7), it is chosen so
that α = E[χ(e)], when e ∼ CN (0, 1), holds. For many loss
functions, α can be computed in closed-form. For example,
for Huber’s function (2) the χ-function in (8) becomes

χH,c(|e|) = |ψH,c(e)|2 =

{
|e|2, for |e| ≤ c
c2, for |e| > c

. (12)



In this case the estimating equation (7) can be written as

∑
i=1

∣∣∣∣∣ψH,c
(
yi − φH

(i)β̂

σ̂

)
σ̂

∣∣∣∣∣
2

= σ̂2nα⇔ σ̂2 =
1

nα
‖r̂ψ‖2

where r̂ψ = rψ(β̂, σ̂). The consistency factor α = α(c) can
be computed in closed-form as

α = c2(1− Fχ2
2
(2c2)) + Fχ2

4
(2c2). (13)

Note that α depends on the threshold c. We will choose
threshold c as c2 = (1/2)F−1

χ2
2

(q) for q ∈ (0, 1). See [9].
Next we propose an explicit and efficient algorithm for

computing the M -Lasso solution. The algorithm follows the
idea of state-of-the-art algorithm, the cyclic coordinate descent
(CCD) [17], for computing the Lasso solution. Our algorithm
is a generalization of it in two aspects. First, it adapts it to the
complex-valued case and second, it generalizes the algorithm
to the robust M -estimation scenario. First recall that CCD
algorithm repeatedly cycles through the predictors updating
one parameter (coordinate) βj at a time (j = 1, . . . , p) while
keeping others fixed at their current iterate values. At jth
step, the update for β̂j is obtained by soft-thresholding a
conventional coordinate descent update β̂j + 〈φj , r̂〉, where
r̂ denotes the residual vector r̂ = r(β̂) at current estimate β̂.
For M -Lasso, similar updates are performed but r̂ replaced
by pseudo-residual vector r̂ψ and the update for scale is
obtained prior to cycling through the coefficients. The M -
Lasso algorithm proceeds as follows:

1) Update the scale σ̂2 ← σ̂2

αn

n∑
i=1

χ

(
yi − φH

(i)β̂

σ̂

)
2) For j = 1, . . . , p do

a) Update the pseudoresidual: r̂ψ ← ψ

(
y −Φβ̂

σ̂

)
σ̂

b) Update the coefficient: β̂j ← Sλ
(
β̂j + 〈φj , r̂ψ〉

)
3) Repeat Steps 1 and 2 until convergence

Above Sλ(x) = sign(x)(|x| − λ)+, x ∈ C, is the complex
soft-thresholding operator and (t)+ denotes the positive part
of t ∈ R: (t)+ = t if t > 0 and 0 otherwise. The M -Lasso
algorithm has comparable computational complexity as state-
of-the art algorithm for computing the Lasso solution (1).

IV. SINGLE SNAPSHOT DOA ESTIMATION

We consider uniform linear array (ULA) consisting of n
sensors with half a wavelength inter-element spacing that
receives k narrowband incoherent farfield plane-wave sources
from a point source (n > k). At discrete time t, the array
output (called snapshot) y ∈ Cn is a weighted linear combi-
nation of the signal waveforms s = (s1, . . . , sk)> corrupted
by additive noise e ∈ Cn, y(t) = A(θ)s + e, where
A = A(θ) is the n × k steering matrix parametrized by the
vector θ = (θ1, . . . , θk)> of (distinct) unknown direction-
of-arrivals (DoA’s) of the sources. We assume that only a
single snapshot is available. Each column vector a(θi), called
the steering vector, represents a point in known array man-
ifold, a(θ) = 1√

p (1, e−π sin(θ), · · · , e−π(n−1) sin(θ))>. The

objective of sensor array source localization is to find the
DoA’s of the sources, i.e., to identify the steering matrix A(θ)
parametrized by θ.

As in [4], we cast the source localization problem as
a sparse regression problem. We construct an angular grid
(look directions of interest) of size p � k, [θ] = {θ(i) ∈
[−π/2, π/2) : θ(1) > · · · > θ(p)}. If [θ] contains the true
DoA’s θi, i = 1, . . . , k, then the snapshot follows sparse linear
regression model, y = Φβ+ε, where the measurement matrix
Φ ∈ Cn×p has as its columns the steering vectors at consid-
ered look directions, i.e., φi = a(θ(i)). Thus identifying the
true DoA’s is equivalent to identifying the non-zero elements
of βj . Thus (M -)Lasso estimation becomes necessary since
often p > n and the LSE does not provide sparse solutions.
Note also that even if [θ] does not contain the true DoA’s
but has reasonably fine grid, one can identify good estimates
of true DoA’s as locations in the angular grid corresponding
to k largest coefficients of M -Lasso solution (given y and
Φ) β̂λ, where λ is such that the solution has ≥ 3 nonzero
coefficients. If the number of sources k is known, then more
obvious approach is to obtain the M -Lasso estimate β̂λ for a
penalty parameter λ that results in k-nonzero elements. Let us
denote the largest λ value that produces the desired k non-zero
coefficients by λ∗. The locations of the nonzero coefficients
of β̂λ? in the angular grid [θ] then give natural M -Lasso DoA
estimates.

The simulation set-up is described next. The ULA receives
k = 3 sources at DoA’s θ1 = −5, θ2 = 0 and θ3 = 20
degrees and the noise ε has i.i.d. elements from CN (0, σ2)
distribution. The amplitudes of the sources are |s1| = 1,
|s2| = 0.6 and |s3| = 0.2 and the noise variance σ2 is
chosen such that the SNR = 10 log10(s̄2/σ2) = 15dB, where
s̄2 = 1

3 (|s1|2 + |s2|2 + |s3|2) = 0.4667 denotes the average
source power. The phase of each source si ∈ C is randomly
generated from Unif(0, 2π) distribution. We consider angular
grid [θ] = (−90,−85, . . . , 80, 85) with 5 degree spacing.
Thus the simulation set-up closely follows that of [7]. We
compare results of regular Lasso (= M -Lasso using LS-loss
function) to the results of robust M -Lasso using Huber’s loss
function ρH,c(·) with threshold c = 1.3774 corresponding to
q = 0.85. To compare robustness of the methods, we compute
the estimates also for corrupted data in which magnitude of
one measurement, y1, is scaled by a factor of 100. To depict
the M -Lasso solution paths, we compute the solution on a
grid of 200 values in (0, λmax) with equal spacings in the
logarithmic scale, where λmax denotes the smallest penalty
value that shrinks all the coefficients of M -Lasso estimates to
zero.

Left hand side column of Figure 1 shows the results
for the original data and the right hand side column for
the corrupted data. For each method, the upper row depicts
the M -Lasso coefficient paths, i.e., the graphs of |β̂λ,j | for
j = 1, . . . , p versus normalized ‖β̂λ‖. The dotted vertical
line identifies the solution β̂λ∗ which is then used in the
lower row plots. As can be seen the coefficient paths of
Lasso and Huber’s M -Lasso for original data are closely



similar. For corrupted data, however, the Lasso coefficient
paths completely change whereas the solution path for Huber’s
M -Lasso remains practically unaffected by the large outlier.
For original data both methods yield a solution β̂λ∗ that
identify the true DoA’s. However, for corrupted data, Lasso
yields estimates 20o, 45o, and 55o degrees. Thus curiously,
only the source s3 (from DoA θ3 = 20o) with lowest power
(SNR) is correctly identified whereas the two higher power
sources (θ1 = −5o and θ2 = 0o) are not. Huber’s M -Lasso,
however, correctly identifies the DoA’s of the true sources as
well as the order of the magnitudes. For each method, the
lower row in Figure 1 plots |〈a(θ(i)), r̂ψ〉| versus θ(i) on the
angular grid [θ]. The horizontal line indicates the value λ∗

(giving 3 nonzero coefficients) used and the dotted vertical
lines identify the true DoA’s of the sources. These plots
also illustrate that equations (10)-(11) hold, so the M -Lasso
algorithm has correctly found the solutions to (6) and (7). To
conclude, for original data, both methods produce similar plots
and the same correct DoA estimates, but for corrupted data,
only the robust Huber’s M -Lasso provides reliable estimates.

V. CONCLUSIONS

The robust M -Lasso estimates of regression and scale are
defined as solutions to generalized zero subgradient equations
in the spirit of M -estimation. An explicit and efficient algo-
rithm for computing the solution was proposed. The usefulness
of complex M -Lasso in DoA estimation of sources with sensor
arrays was illustrated using a simulated data set. Due to fast
algorithm, we recommend using M -Lasso in practical big data
applications due to its robustness properties.

REFERENCES

[1] P. J. Huber, Robust Statistics. New York: Wiley, 1981.
[2] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.

Royal Stat. Soc., Ser. B, vol. 58, pp. 267–288, 1996.
[3] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with

Sparsity: The Lasso and Generalizations. CRC Press, 2015.
[4] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruc-

tion perspective for source localization with sensor arrays,” IEEE Trans.
Signal Process., vol. 53, no. 8, pp. 3010–3022, 2005.

[5] S. Fortunati, R. Grasso, F. Gini, M. S. Greco, and K. LePage, “Single-
snapshot DOA estimation by using compressed sensing,” EURASIP J.
Adv. Signal Process., vol. 2014, no. 1, pp. 1–17, 2014.

[6] A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamforming,”
J. Acoust. Soc. Am., vol. 136, no. 1, pp. 260–271, 2014.

[7] P. Gerstoft, A. Xenaki, and C. Mecklenbrauker, “Multiple and single
snapshot compressive beamforming,” J. Acoust. Soc. Am., vol. 138, no. 4,
pp. 2003–2014, 2015.

[8] E. Ollila, J. Eriksson, and V. Koivunen, “Complex elliptically symmetric
random variables – generation, characterization, and circularity tests,”
IEEE Trans. Signal Process., vol. 59, no. 1, pp. 58–69, 2011.

[9] E. Ollila, “Multichannel sparse recovery of complex-valued signals
using Huber’s criterion,” in Proc. Compressed Sensing Theory and its
Applications to Radar, Sonar and Remote Sensing (CoSeRa’15), Pisa,
Italy, Jun. 16 – 19, 2015, pp. 32–36.

[10] J. Eriksson, E. Ollila, and V. Koivunen, “Essential statistics and tools
for complex random variables,” IEEE Trans. Signal Process., vol. 58,
no. 10, pp. 5400–5408, 2010.

[11] P. Huber, “Robust estimation of a location parameter,” The Annals of
Mathematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[12] H. Wang, G. Li, and G. Jiang, “Robust regression shrinkage and
consistent variable selection through the LAD-Lasso,” J. Bus. Econ.
Stat., vol. 25, pp. 347–355, 2007.

0 0.2 0.4 0.6 0.8 1
Normalized k-̂6k1

0

0.2

0.4

0.6

0.8

1

j-̂
6
;j
j

31

32

33

0 0.2 0.4 0.6 0.8 1
Normalized k-̂6k1

0

0.5

1

1.5

2

2.5

j-̂
6
;j
j

31
32
33

-80 -60 -40 -20 0 20 40 60 80
3 (degrees)

0.05

0.1

0.15

0.2

jha
(3

);
r̂i

j

6

-80 -60 -40 -20 0 20 40 60 80
3 (degrees)

2.2

2.3

2.4

2.5

jha
(3

);
r̂i

j

6

Lasso (= M -Lasso using LS-loss function)

0 0.2 0.4 0.6 0.8 1
Normalized k-̂6k1

0

0.2

0.4

0.6

0.8

1

j-̂
6
;j
j

31

32

33

0 0.2 0.4 0.6 0.8 1
Normalized k-̂6k1

0

0.2

0.4

0.6

0.8

1

j-̂
6
;j
j

31

32

33

-80 -60 -40 -20 0 20 40 60 80
3 (degrees)

0.05

0.1

0.15

0.2

jha
(3

);
r̂ A

ij

6

-80 -60 -40 -20 0 20 40 60 80
3 (degrees)

0.05

0.1

0.15

0.2

0.25

jha
(3

);
r̂ A

ij

6

M -Lasso using Huber’s loss function

Fig. 1. Results for M -Lasso based on LS-loss and Huber’s loss function.
Left columns show results for the original data and the right column for the
corrupted data. For both methods, first row shows the coefficient paths. The
dotted vertical line identifies the solution β̂λ which is used in the plots below
and the dotted horizontal lines indicate the magnitudes |βj | of the true sources.
The second row depicts |〈a(θ(i)), r̂ψ〉| on the angular grid [θ]. The horizontal
line indicates the value of λ used and the dotted vertical lines identify the
true DoA’s of the sources.

[13] A. Alfons, C. Croux, and S. Gelper, “Sparse least trimmed squares
regression for analyzing high-dimensional large data sets,” Ann. Appl.
Stat., vol. 7, no. 1, pp. 226–248, 2013.

[14] A. B. Owen, “A robust hybrid of lasso and ridge regression,” Contem-
porary Mathematics, vol. 443, pp. 59–72, 2007.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[16] E. Ollila, H.-J. Kim, and V. Koivunen, “Robust iterative hard threshold-
ing for compressed sensing,” in Proc. IEEE Int’l Symp. Communications,
Control, and Signal Processing (ISCCSP’14), Athens, Greece, May 21
– 23, 2014, pp. 226–229.
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