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Regularized)M -estimators of scatter matrix

Esa Ollila,Member, IEEEand David E. Tyler

Abstract—In this paper, a general class of regularizedM- the SCM can not be computed. Thus, for example, classic
estimators of scatter matrix are proposed which are suita® peamforming techniques such as MVDR beamforming or the
also for low or insufficient sample support (smalin and large  54antive normalized matched filter cannot be realized since

p) problems. The considered class constitutes a natural gen- th . timate of the i . i
eralization of M-estimators of scatter matrix (Maronna, 1976) ey require an estumate of the inverse covariance matrix.

and are defined as a solution to a penalized/-estimation cost ~ Robust estimation is also a key property in HD data analysis
function. Using the concept of geodesic convexity, we prove problems. Partly because outliers are more difficult to glea

the existence and uniqueness of the regularized/-estimators from HD data sets by conventional techniques, but also due
of scatter and the existence and uniqueness of the solutionyy 51 increase of impulsive measurement environments and

to the corresponding M-estimating equations under general . . . . .
conditions. Unlike the non-regularized M -estimators of scatter, outliers in practical sensing systems. The SCM is well-kmow

the regularized estimators are shown to exist for any data t0 be vulnerable to outliers and to be a highly inefficient
configuration. An iterative algorithm with proven convergence estimator when the samples are drawn from a heavy-tailed
to the solution of the regularized M-estimating equation is non-Gaussian distribution. HD data poses additional il
also given. Since the conditions for uniqueness do not indie 54 difficulties since most robust estimators such Mds

the regularized versions of Tyler's M-estimator, necessary and - . .
sufficient conditions for their uniqueness are establishedsepa- estimators of scatter matrix [17] can not be computed in ISS

rately. For the regularized Tyler's M-estimators, we also derive a SCe€narios, or are equivalent to the SCM [29].
simple, closed form and data dependent solution for choosgnthe In this paper, we address this issue and propose a general

regularization parameter based on shape matrix matching inthe  class of regularized/-estimators of scatter matrix. This class
mean squared sense. Finally, some simulations studies nate  qyides practical and actionable estimators of the cevari

the improved accuracy of the proposed regularized\/-estimators - . .
of scatter compared to their non-regularized counterpartsin low ance (scatter) matrix even in the problematic ISS case. The

sample support problems. An example of radar detection usig Proposed class constitutes a natural generalization\fef
normalized matched filter (NMF) illustrate that an adaptive NMF  estimators of scatter [17] and their complex-valued gdnera

detector based on regularized)/-estimators are able to maintain jzations [18], [22], and are defined as a solution to a peedliz
accurately the preset CFAR level. M -estimation cost function that includes a fixed regulanirat
Index Terms—Geodesic convexity, Complex elliptically sym- parametera. > 0. We prove the existence and uniqueness
metric distributions, M-estimator of scatter, Regularization, Ro- of the regularized\/-estimators of scatter and the existence
bustness, Normalized matched filter and uniqueness of the solution to the correspondidg
estimating equations under general conditions. Our désiva
. INTRODUCTION are based on the concept of geodesic convexity which has been

M ANY data mining and classic multivariate analysi®reviously utilized in [30], [33] in studying the uniquersesf

techniques require an estimate of the covariance matH}¢ Non-regularized/-estimators of scatter and in [31] which
studied regularized Tyler'd/-estimator of scatter matrix us-

ing a particular scale invariant geodesically convex pgnal

Z1,....2, € CP from a centered, i.eE[z] = 0, (unspecified) function._An iterative algorithm With proven convergence t
p-variate distributionz ~ F, the sample covariance matrix € solution of the regularized/-estimating equation is also
(SCM) R — %Z?:l zizll € CP*? is the most commonly given. Our clags include as a specu’_:tl case, when using a
used estimator of the unknown covariance maRix- E[zz"]. tuned cost function corresponc_imggia/arl_ate complex normal
However, in high-dimensional (HD) problems, there are ma mples, the commonly usefirinkagesstimator of the sample

cases that the SCM simply can not be computed, is complet&R¥arnance matrix

corrupted, or is inaccurate. For example, low sample suppor R.s = SR + ol (1)
(LSS) (i.e.,p is of the same magnitude a9 is a commonly . oo _ ) _
occurring problem in diverse HD data analysis probleanh'Ch’ in finance I|_terature, is commonly called the L_ed0|t-
such as chemometrics and medical imaging. In the casep!f shrinkage estimator [16]. In a recent paper [7] in the

insufficient sample support (ISS)e., p > n, the inverse of field of adaptive beamforming it was termed the general linea
’ ' combination (GLC) estimator, the term which we adopt in this
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cases of regularized versions of TyleN$é-estimator have also denote an i.i.d. random sample from an unspecifiedriate
been recently studied in [24] under more strict conditions cCES distribution as stated above.

the sample, and also in [2], [4], but not in the context as a The maximum likelihood estimator (MLE) of scatter matrix,
solution to a penalized/-estimation cost function. Estimationdenoted3X, minimizes the negative log-likelihood function
of the regularization parameter using the expected likelth (divided byn)

approach was proposed in [1], [3] for the regularized Tgler’ 1

M-estimator of [2], [4], whereas [6] based their analysis LX) = _Zp(z?zrlzi) —In |27 (2)
on random matrix theory (both and p are large). For the ni4

regularized Tyler'sM-estimators, we also derive a Simplewherep(t) — —Ing(t). More appropriate notation would be

closed form and data dependent solution to compute tk2(2|p) to emphasize the dependence oand the sample.

regularization parameter based on shape matrix matchingeiica| points are then solutions to the estimating equmti
in the mean squared sense. We illustrate the usefulness of

the regularized)M -estimators of scatter in radar detection 1
application using normalized matched filter. n 4
Finally, we note that although our derivations in the paper , ,
are for complex-valued case, they generalize in an straight whereu = p' = —¢'/g.

ward manner to real-valued case as well.

The paper is organized as follows. Section Il review8. M-estimators of scatter
complex elliptically symmetric (CES) distributions andeth  )/-estimatorsof scatter are generalizations of the ML-
maximum likelihood (ML) and}M-estimators of the scatter estimators of the scatter matrix of an elliptical distribat
matrix parameters of the CES distributions [22]. Sectidn ||'|'hey can be defined by allowing a genepdunctions in (2),
then introduces the penalizedi/-estimation cost function. not necessarily related to any elliptical densityin which
The stationary points are shown to be solutions to shrinkaggse we refer to (2) as a general cost function. The function
type M-estimation equations. Interpretation of regularizatiop is usually chosen so that the corresponding weight function
parameters are discussed and specific examples of regalariz — ' is non-negative, continuous and non-increasing. Equa-
M-estimators are given. In Section 1V, general conditiores afion (3) is then referred to as aw -estimating equation. Some
presented to ensure the uniqueness of solution, with thef prexamples of\/- and ML-estimators are given below.

of uniqueness being based on the concept of geodesic convexsCM (the Gaussian MLE)n the Gaussian casp(t) =t
ity. The regularized Tyler's\/-estimator is then considered ingnd u(t) = p/'(t) = 1, so eq. (2) becomes

Section V and numerical examples are given in Section VI. N .
Some of the proofs are reserved for the Appendix. L(Z) =Tr(RET) —In|Z7

Notations:Let H(p) denote the class positive definite Herywhere R denotes the SCM. The (well-knowninigue min-
mitian (PDH)p x p matrices,|A| the determinant of a squarejmizer (assumingn > p) of this function is the sample
matrix A. Furthermore| - || (resp.|| - ||1) denotes thé;-norm  covariance matrix, i.e3 = R.

(resp.(;-norm) defined a§A ||* = Tr(A"A) = 3, 37 fai; | Complex Tyler’s [27]M -estimatoiis based on the functions
(resp.|Afl1 =32, >, lai;l) for anym x n matrix A.

3

~—1

u(z8Y z)z2! 3)

K2

p(t) =plnt and wu(t) =p'(t) = %7
[l. PRELIMINARIES Note that thisp-function isnotrelated to any elliptical density
A. Elliptical distributions A the optiization problem (2) 15 s wan-sonre. Never-

theless, the estimator is actionable: a unique solutiontgup
N X .~ @2 a scale) exists under mild conditions and the global satutio
a ce.ntleredcomplex elliptically symmetric (CES) distribution can be computed via simple fixed-point iterations; see [22],
[22] if its p.d.f. is of the form: [23], [27]. It should be noted that for Tyler’d/-estimator, the
f(z) = Cp7g|2|—lg(zHE—1z)’ summations in both (2) and (3) are takeq only axg#£ 0. In

the radar community, Tyler'd/-estimator is often referred to
where ¥ € H(p) is the unknown parameter, called thes a fixed-point estimator, and it is known to admit numerous
scatter matrixg : Rf — R* is a fixed function called the ML-interpretations as shown in [5], [9], [11], [21], [28] ithe
density generatoand C;,, , > 0 is a normalizing constant real and complex cases.
ensuring thatf(z) integrates to one. We denote this case by Complex Huber’s\I -estimatois based on a weight function
z ~ CE,(0,%, g). If the covariance matriR = E[zz'!] of z  of the form [19]u(s) = bu.(t), where

exists, then
- 1, for t < ¢?
R=c¢-¥ (for somec > 0). uet) = A/t,  fort > c?

A continuous symmetric random vector (r.«)e CP has

For example, whep(t) = exp(—t), one obtains the-variate where ¢ > 0 is a tuning constant that controls robust-
complex normal (CN) distribution, denoted~ CN,(0,X); ness/efficiency of the method and> 0 is a scaling constant

In this case,R = 3. For a detailed account on properties ofisually chosen so that the resulting-estimator is consistent
CES distributions, we refer the reader to [22]. lzgt...,z, to the covariance matrix for Gaussian data. As a consequence
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the value of the scaling constahtdepends on:. See [10] and then taking the trace shows that the solu¥bmust satisfy
for more details. Note that for — oo, Huber’s estimator n

approaches the SCM (i.e., constant weight function), amd fo an(f;_l) =p— 1 Zw(Z?E_lzi) (8)
¢ — 0, the estimator approaches TyleRig-estimator. ns

where(t) = tu(t).
Ill. REGULARIZED M-ESTIMATORS OF SCATTER MATRIX GLC estimatorsA class of regularized SCM can be ob-
To stabilize the optimization problem an additive penalt{pined by considering the cost functions of the fqrf) = 5t
term o - P(X) can be introduced to the cost function (2)where > 0 is a fixed scalar. In this case, the penalized cost
where « > 0 denotes a fixed regularization parameter. Aunction (6) simplifies to the form
popular focus in the literature has been to enforce spaosity Li(S) = Tr{(ﬁf{ +al)s } In [z

the precision matrixK = X' by using/;-penalty function
whereR = 1 Ly zizl' denotes the SCM. The unique

—1
Pa(®) == @) minimizer 3 of the funct|0n above is eaS|Iy shown to widely
as is done in the real-valued case in [8], [32]. The use of theed GLC estimator (1), i.eX = Rqp. For g = 1, the
¢,-penalty, though, to help enforce a sparse precision matrixsolution is the diagonally loaded SCMR, = R + oL
dependent on the cost function (2) being conveXin', which  The interpretation of the GLC estimator as a solution to an
holds wheneverp(t) itself is convex. However, robust/- optimization problem (6) differs from the motivation foreth
estimates of scatter typically have decreasing weighttions GLC estimator glven in [16] or [7]. Note that the elgenvalues

u(t) and hence concavefunctions. of Ry are \; = B)\R + «, where )\R 1= 1,.
In this paper, we take a different approach and focus ondenote the eigenvalues @. Thus a can be viewed as a
penalty function of the form ridge parameter as it provides a ridge down the diagonal and

ey am1/202 . guarantees a non-singular solution. It can be also destebe

Pr(E) == 17 =Te(Z77). a spherizing parameteince the larger the value of the more

Notice that “spherical” the solution (i.e., as gets larger, the solution is
P 1 shrunk towards the scaled identity matciX).

= Z N (E Regularized Tyler'sM -estimators.Penalization of Tyler's
j=1"" M-estimator, i.e., choosing(t) = plogt and henceu(t) =

where); (X)'s denote the ordered eigenvaluessdf Thus the »/1, IS not possible since for this cas€t) = p, and so the
penalty term restnctg from growing without bound: this right hand side of (8) is zero. Alternatively, for some fixed

is necessary in the ill- condltloned ISS caseq p). Ingeneral, 0 < £ < 1, consider the function(t) = plogt, which
our penalized cost functiois of the form gives the weight functioni(t) = pfS/t. The corresponding
regularizedM -estimating equations (7) are then given by
1 n
Lo(Z) =~ 21327 z) —In |27 + P 5 . " ZzH
(%) n;( n|E7 [ +aP(X), (5) E:Z_B 28 L, ©)

* Y, "z,
. . . . i=1,2,#0 %; Z;
wherea > 0 is a (fixed) regularization parameter. For the case

P(X) = P*(X) this becomes wheren, = #{z; # 0;i = 1,...,n}. Hereafter, when using
this estimator, we assume without loss of generality that
X 1 - H 1 1 n. Note that the solutio in (9) depends om; only through
La(®) = n ; p(zi X zi) —In X+ oTr(Z70) (6) z;/||z;||, and so3: has the same the distribution-free property
. o over elliptical distributions as the unregularized Tyleatser
As will be illustrated below the parameter can be best matrix. That is, whenz ~ CE,(0,X, g), the distribution of

described asidge (or spherizingparameter. o z/||z|, and consequently the distribution Bfdoes not depend
Let 32 denote the minimizer of?, (). The solutionX nat-  on the functiong.

urally depends on but this is not made explicit for notational A curious property of the regularized Tyler’d -estimators

convenience. Itis easy to verify using matrix differentiales  5re that their shapes do not depend on the penalizationgtunin

that a critical point of the penalized cost function (6) is &arameter. That is, for a given value di < 8 < 1, suppose

solution to we consider two different values of, saya; andas, and let
13 31 and X, represent the respective solutions to (9). It then
== > u(z)! ziz; +al (7)  easily follows that
i=1 5=, (10)

which is weighted and diagonally loaded form of the classic 2

M-estimating equation obtained when= 0. Expressing the and so, for any fixed < S < 1, the regularized Tyler's

regularizedM -estimating equation in the form M-estimators are proportional to one another casraries.
" Consequently, when the main interest is on estimation of the
1 A -1 .1 . . :
- Zu z;) zizl + a3, covariance matrix or scatter matrix parameter up to a scale,
ni— as is the case in most applications, one can set without loss
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of generalitya = 1 — 3, or equivalently = 1 — «, when being convex/strictly convex ir € R. Thus, Condition 1
using a regularized Tyler'd/-estimator. For this choice, thepresumes(t) to be geodesically convex.

constraint (8) becomes simpWr(ﬁJ_l) = p. The concept of geodesic convexity enjoys properties simila
Remark 1. In general, for a givep-function, sayp;(t), a to those of convexity in complex Euclidean space. In par-
class of p-functions can be generated by definipg(t) = ticular, if i is geodesically convex oft{(p) than any local

Bpi(t) for B > 0. The parameters then represents anminimum is a global minimum. Furthermore, if a minimum

additional tuning constant which can be used to help obta# obtained in?(p) then the set of all minimums form a

desirable properties of the estimator. geodesically convex subset &f(p). If h is geodesically
Remark 2. It readily follows from its definition, that the strictly convex and a minimum is obtained #(p), then it

regularizedM -estimators of scatte¥ are unitary equivariant is a unique minimum.

That is, if 32 denotes the solution to the penalized cost function The following key result is given in [33] for real positive

L (%) in (6) based on the data set, : = 1,...,n, then definite symmetric matrices, although it also holds #(p).
for any given unitary matrixU, the estimator based on theWe omit the proof for the complex case since it is analogous
transformed data sett = Uz,;, i = 1,...,n is given by to the proof for the real case given in [33].

IR §55) o (11) Lemma 1. If p(t) satisfies Condition 1, then the cost function

) ) ] .. L(X)in (2)is geodesically convex i € H(p). In addition,
Note that non—regularlzeM estimators are fa\fflne equivariant;s r(z) is strictly convex andspan{z,...,z,} = CP, then
i.e., for this case (11) holds for any non-singutér £(=) is geodesically strictly convex B € #(p).

Recall that when using the notion of convexity in com-

) ) B plex Euclidean space the cost functi@g{X) is convex in
In this section, we show under general conditions that thege-1 € H(p), but not in £ € H(p), wheneverp(t) is

exists a unique minimizer to the penalized likelihood ortcog .onyex function. This includes the well studied Gaussian
function given by (6). Hereafter, it is assumed that the fiomc casep(t) = t. As shown below, geodesic convexity has the

p(t) satisfies the following condition. interesting property that if2(X) is geodesically convex in

Condition 1. The functiorp(t) is nondecreasing and continu-= € (p), then it is also geodesically convex¥i ' € #(p).
ous for0 < z < co. Also, the functiom(z) = p(e®) is convex ~ From Lemma 1, we readily obtain the following corollary,
for —oo < o < 00 which follows since the sum of two geodesically convex
. . . functions is easily seen to be geodesically convex, anduire s
.I.f the fungtlon p(t) in .dlfferentlgble, then the above CONGt 4 geodesically convex function and a geodesically $frict
dition ho!ds if and only '.f the weight fqncuom(t) > 0 and convex function is geodesically strictly convex.
the functiony(t) = tu(t) is nondecreasing. It readily follows
that Huber’s and Tyler'd//-estimators as well as the Gaussiaorollary 1. For p(t) satisfying Condition 1, ifP(X) is
MLE satisfies Condition 1. geodesically convex/strictly convex B € #(p), then the
The concept of geodesic convexity for functions of PDienalized cost functior,,(X) in (5) is geodesically con-
matrices plays a key role in our proof of uniqueness. Thigex/strictly convex irE € H(p) respectively.
concept has been previously utilized in [30], [33] in studyi
the uniqueness of the non-regularizétiestimates of scatter
and in [31] in the case of regularized Tyler's cost functio
A review of geodesic convexity for positive definite matgce
can be found in the aforementioned papers as well as in [26],

wherein further references can be found. We briefly revie (iler_,f t;l?’e pit'.al ordir|ng& = Bc'j (])cr ‘? <B h(.)tl_ds g af\.nci
here some important results. only i — A is positive semi-definite or positive definite,

Rather than treating the cla$g(p) as a convex cone ii? respectively. The matrix, /, can pe viewed as the ggpmetric
and using notions from complex Euclidean geometry, one ¢ an o3l and X, [26], and as in the case of positive real

treat 7(p) as a differentiable Riemannian manifold with thét']hun}bﬁrs’_'t is known to be less than the arithmetic mean in
geodesic path front, € H(p) to X1 € H(p) being € 1ollowing sense,

t
2 =3 (35723 ?) s oree 0,1, (12) Sij2 < (B0 +%1)/2, (14)

Note thatS, € #(p) for 0 < ¢ < 1 and consequenti(p) is With equality holding if and only 2, = 2_11_ It readily
said to form ageodesically convex seh functionh : #(p) — follows from its definition (12) that folK = %
R is then ageodesically convex functioif

IV. GEODESIC CONVEXITY, UNIQUENESS AND ALGORITHM

As Lemma 2 below shows, Corollary 1 applies to the
enalty function of interest here, i.e., B (X) = Tr(X™").
efore proceeding, some further results and notations are
ae}viewed. For Hermitian matriced and B of the same

t
K :K1/2 K—1/2K K—1/2 K1/2:2—17 15
h(Ze) < (1—1t) h(Zo) +t h(X) fort € (0,1).  (13) o ( 0 1o ) 0 k (19)

If the inequality is strict, them is said to be geodesicallyand consequently (14) also holds ®~!. Equation (15)
strictly convex. In thep = 1 dimensional real setting, geodesid¢ogether with the definition of geodesic convexity showg tha
convexity/strict convexity is equivalent to the functidiie”) geodesic convexity ifE implies geodesic convexity i .
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Taking the trace on both side of (14) when applie®Xo' If the M-estimating equatior(7) has a unique solutiorE,
then gives then the iterations

_ _ _ . 1 & .
Tr(El/12) <{Te(Zp ") + Te(20)} /2, Yhy1 = - Zu(z?zk 1zi)ziz? +al, (16)
=1
rk=0,1,..., converges to the solution ¢¥) for any initial
valueXy € H(p).

for ¥y # X,. That is, Tr(X~!) is midpoint geodesically

. . : . o7 fo
strictly convex in X. As with convex functions, midpoint
geodesic strict convexity along witlir(X ') being contin-
uous inX € H(p) is sufficient to imply geodesically strict Note that conditions for uniqueness of the regulariaée
convexity and hence we obtain our desired result. estimators are given in Theorem 1. For Tylel-estimator.
the conditions for uniqueness are given in next Section, in

* _ —1y ; i
Lemma 2. The penalty ternP*(X) = Tr(X™ ") is geodesi Theorems 3 and 4

cally strictly convex inx € H(p).

We note that another interesting geodesically convex penal V. THE REGULARIZED TYLER'S M -ESTIMATORS
function was proposed by Wiesel [31, Proposition 3]. WisselA. Existence and uniqueness

penalty has a specific property of being scale invariant. Important cases for which Lemma 3 and Theorem 1 do not
To this point, it has been shown that under the stated cqfy5|q are the regularized Tylers/-estimators since for these

ditions onp, the regularized loss function (6) is geodesicallxaseSO(t) — pB1Int is not bounded below. Hence these cases
strictly convex. To show that it has a unique minimum "Pequires special treatment.

H(p), and consequently to show the regularizddestimating

equation (7) admits a unique solution, it only needs to beorem 3. For p(t) = pSInt, with a fixed) < 5 < 1/p, the
shown that the minimum of (6) occurs in the interiorifp). Penalized cost functiod; (%) in (6), for a givena > 0, has
The following lemma shows that this holds and consequenfyunique minimum irt{(p), with the minimum being obtained
implies the subsequent theorem. at the unique solutiorE € H(p) to (9).

Lemma 3. If p(t) is bounded below, thes? (X) — oo as Proof: Sincez}'""z; > z'z;/\ (), it follows that

3 — 0H(p), i.e., the boundary oH(p). P o
LI(X)>C—pBln(X)+ ——+In)\(X) ),
Proof: Sincep(t) is bounded below, it only needs to be o(B) 2 pAIn A (E) ; <)\j(2) n A )>
shown that ifX — 9H(p) then
whereC' = % >, In(z!'z,;) does not depend oR. Again,
- a the lemma follows since for any> 0, a/A + cln A — oo as
+In)\;(X) ) =

-1 -1
—In X7 4 oTr(2 ):Z \(Z) A — 0 orasi — oo. n

=t Theorem 3 does not require any condition on the sample.
However,3 — 0H(p) if and only if \;(¥) — oo and/or However, to extend this result to/p < 5 < 1, the following
Ap(X) — 0. In either casepr/A +InXA — oo and so the Condition A is a sufficient condition and the following Con-
lemma is established. B dition B is a necessary conditions. These conditions hailds f

Theorem 1. If p(¢) is bounded below and satisfies Condizl/p > f§ whenever the sample is in *general position”, which

tion 1, then the penalized cost functidij,(X) in (6) has oceurs with prpba_bmty o_ne_wh_en sampling from a continuous
. L . . : complex multivariate distribution. Note that the suffidien
a unique minimum in(p). Furthermore, if p(t) is also

differentiable, then the minimum corresponds to the uniql?eondltlon A and the necessary Condition B only differ when

Ca . S . Tequality in the conditions is possible. Consequently, ghisr
?;))Iunonz € H(p) to the regularizedM -estimating equation little room for improvement on Conditions A.
. » .

Remark 3. The existence and uniqueness of the regulariz%%ni(::gggaﬁt'y;?zri29]}/ zugip(gt):br’];gf 1< dim{y) <p.
M-estimatesdo not require any conditions on the sample n pp '
z1,...,2, for any n > 1. This is in contrast to the non- Condition B. For any subspac¥® of C?, 1 < dim(V) < p,
regularized) -estimates which requires a bound on the prdhe inequality 1€Vt < di’;év) holds.
portion of the data th_at can Ii_e in any '_subspace [13]'. Fur- We then have the following general result, the proof of
thermore, non-regularized/-estimates exist and are unique, , . : .

: .~ Wwhich can be found in the Appendix.
for sparse samples, i.e. wherx n, whereas non-regularized
M -estimators require > p. Theorem 4. Suppose(t) = pBlnt,a >0 and0 < 5 < 1.

The regularized\/-estimating equation (7) gives rise to the a) If condition A holds, ther{6) has a unique minimum in
fixed point algorithm stated in Theorem below. The proof  #H(p), with the minimum being obtained at the unique
of convergence, given in the Appendix, is similar to the solutionX € H(p) to (9).
convergent proof for the non-regularizéd-estimators used b) If condition B does not hold, the(6) does not have a
in [12] minimum in#(p), and (9) has no solution i (p).

Theorem 2. Assume thap(t) is continuously differentiable, The existence and uniqueness of the regularized TyMFs
satisfies Condition 1 and thai(t) = p/(¢) is non-increasing. estimator, for the casé = 1 — «, has also been established in
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[24], but only under the condition that the data are in gelnera SinceX, is unknown, we estimate,, in (19) by the simple
position andn > p. For such samples, Conditions A and Bplug-in estimator
are automatically satisfied. -

Remark 4. A related regularized/-Tyler’s estimator was e - pI(®) — 1 — . (20)
proposed by Abramovich and Spencer [2] as the limit of the pTe(X) —1+n(p+ D{p~ (X )-—1}
algorithm .
g with 21) being Tyler's M-estimator normalized so that
n . H A — N
S (1— a)g Z szzj1 4ol X )=p wheqevern > y?. For.n < p, one can choose
niz; Vi z 3. to be a regularized Tyler's estimator with < n/p and
Vi1 < pZpg1/Tr(Ep41), a=1-4
wherea € (0,1) is a fixed regularization parameter. This V1. NUMERICAL EXAMPLES

algorithm represents a diagonally loaded (DL) version ef th , )
fixed-point algorithm given for Tyler's\/-estimator. Later, it - Simulations study
was shown by Chen, Wiesel and Hero [4], that the recursiveln our first simulation set-up, the covariance matkixis
algorithm above converges to a unique solution, referred aoreal-valued correlation matrix (i.e., componenishave
hereafter as the CWH estimator, regardless of the initializunit variances, real and imaginary parts are uncorrelaiéd)
tion. Here, convergence means convergenc&jnand not Toeplitz form
necessarily inX;. It is not clear whether this estimator can i
b ; ; i ; [2]1:p‘1 Jla pE (071)
e derived as a solution to a penalized cost function. J
Note that wherp is close to0, thenX is close to an identity
B. Estimation of the regularization parameter matrix and wherp tends tol, 3 tends a singular matrix of
rank 1. To assess the performance of the estimators, we use
the distance measure

D2 =D(2,3) = |[{p/ (=D} =8 - 1)

Let us define a scale measureXfe #, as
(%) = p/T(37), (17)

with V = X/7(X) being the respective shape matrix. Note - R )
that his implies the shape matrix is standardized so t4fich measures the ability of the estimathr to estimate
Tr(V-1) = p. Recall that the regularized Tylet/-estimator the scatter matrixX up to its scale, Sinc®?(c1%, ¢, 3) =
3 using8 =1—a, a € (0,1), represents an estimator of theP* (2, E)_ for any ¢;,¢ > 0 and D? = 0if 3 o E
shape matrixV since it satisfieé[k(ﬁfl) = p. We now focus In _the S|mulat|.on we consider the regul-anzed Tylens-
on this particular estimator, i.e., the regularized T@el!- estimators, t:.;\klng W'thOUt loss .Of generalfty= 1 — a, and
estimator with3 = 1 — a, and derive an oracle estimator OIIhe CWH estimators d|scussed. in Remark 4. We also compare
the parameten, or equivalently3, using a MSE criterion for the results to the (non-regularized) Tyle$-estimator. The
similarity in shape. sqmplegzl, ...,Z, are g_enerated frofi\, (0, %), Where tr_le
Let 3., denote aclairvoyant estimatoof 5 givens, — V, dimension of the data ip = 12. Recall that the simulation
results would be the same if we sampled from any centered
CES distribution, including compound Gaussian distritng,
since the distribution of;/||z;|| is the same for all such
_ ) _ ] distributions.
This _clalrvoyant e_st|mator corresponds t_o the first stephef t Figure 1 depicts the graphs dP? averaged overl000
algorithm (16), withu(t) = (1 — a)p/t, if we take ¥y a8 \c.trials as a function ofx for the CWH estimators and
the initial value. Since we are only interested3y and X, he regularized Tyler'si/-estimators (RegTYL) for the cases
up to a scale, our aim is to then choaseuch thatEglzi_a » = 0.01,0.5,0.8 and sample size is = 24. Also included in
is as close as possible to being a scaled copy of an 'de”é%ure 1 is the non-regularized Tyler’d -estimator of scatter
matrlx_. Th_us, we define thg oracle shr_mk_age paramejeas (TYL), which corresponds to RegTYL whem = 0. Figure 2
the minimizer of the following MSE criterion gives the corresponding results for a sample size of 48.
ap = argmin E[[| 272, — 1Tr(2;'2,)I)?]. In both figures, the solid vertical line depicts the value o t
@ P oracle estimatory, for the regularized Tyler's\M -estimator
A similar approach has been used in [4] for deriving an oracifiven by Theorem 5 and the dotted vertical line depicts the
value for the shrinkage parameterfor the CWH estimator. value of the oracle estimatai©" of CWH estimator given by
[4, Theorem 3].
The simulation results show the following. First, although
_ pTr(2o) — 1 (19) the performance of the regularized Tylerd/-estimator
PTr(Zo) — 14+ n(p+ D{p~1Tr(Xy?) — 1} (RegTYL) tends to the performance of Tylef¢-estimator as
In the real case, the oracle estimator is a — 0, an observation also illustrated in [24], the performance
of the CWH estimator can still be quite different from that
= p =2+ pTi(Zo) of Tyler's M-estimator even forx =~ 0. Second, the shape
p—2+pTr(Zo) + n(p+2){p'Tr(Z;%) — 1} distance curves are very different for RegTYL and CWH

n H

P 7,7,
o= 1—04—5 — + ol 18
( )TLZ 7 Z?Z(lei (18)

Theorem 5. The oracle estimatot is given by

Qo

Qo R
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Fig. 1. DistanceD? of Tyler's M-estimator (TYL), regularized Tylerd/- Fig. 2. DistanceD? for shrinkage estimators RegTYL and CWH as a
estimator (RegTYL) and CWH estimator as a function of thén&lage param- function of the shrinkage parameter Set-up is as in Figure 1, but the sample
eter«. Results for different correlation matrix given byp = 0.05,0.5,0.8  size is twice largem = 48.

are given from top to bottom. The dimension was= 12, sample length

wasn = 24 and the results are averages of 1000 MC trials. The soligh.(res

#ﬂgﬁ%&'eéuggsgnifgéﬁitzgt,?nr:%f iﬁs[tf?-fgo?én? %%T VL estimator in matrix, and that RegTYL oracle estimator outperforms the

CWH oracle estimator whe®? is used as a criterion. In all
cases, fox having a Toeplitz form, the shrinkage estimators

estimators for the cases= 0.5 andp = 0.8. Only for the case (RegT_YL and CHW) outperform the (non-rggularized) Tylers
p = 0.05 are they similar. In general, though, the valuecof M—esumator (TYL). For.the case= 0',05’ which corrivsv,'f)onds
play a different role in RegTYL and CWH, and so comparin z bt—_:qng close to an identity m_atr|x, botky a_md g are
the two estimators for the samaeis not particularly meaning- ppr(_JX|mater one, as expected, 1€, b.Oth esU_matorsmngb
ful. Third, of primary interest is the performance of thedea heavily shrunk towards a scaled identity matrix.
estimators for RegTYL, obtained af,, and the performance of ) ) i
the CWH oracle estimator, obtained at say™. The figures B- Adaptive normalized matched filter example
illustrate that these two shrinkage generalizations okfyl  We address the problem of detecting a known complex
scatter matrix provide fairly different estimators of theater signal vectop in received data = yp+c, wherec represents
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the unobserved complemoise (clutter) r.v. andy € C is a of A is invariant to the signal vectop, the signal vector
signal parameter. The signal-absent vs. signal-presebtggn can be be chosen arbitrarily. In our simulatiopsjs fixed

can then be expressed && : |y| = 0 vs. Hy : |y] > 0. atp = (1,exp(ym),...,exp(y(p — 1)m).

We assume that follows a centered CES distribution with Given that the detector is invariant to the scalehfusing

a positive definite hermitian (PDH) scatter matrix parameta Unif(0, 1) distribution for the eigenvalue$; is equivalent
3. For this problem, we consider the widely usedrmalized to using alinif (0, b) distribution for some fixed > 0. Also,

matched filter (NMF) detectdB], [25] it is worth noting that due to the unitary equivariance (cf.
Ipis g2 H, Remark 2) ofy, the simulation results do not depend on how
A=A(z;p,X) = Z A (21) the orthogonal matriceB are generated, and they would have

(z"%"'2)(p"E"'p) been the same even® had been set td in every trial.
It is well known that the distribution ofA under H, is Figure 3 depicts empirical the PFA curves of the adaptive
Beta(1l,p — 1), i.e., it is distribution-free under the class ofdetectors. The solid curves. (= oo) depict the theoretical
CES distributions [15], [21]. Hence the detector is CFARFA curve (22) for NMFA with known X. As can be seen
under various commonly used clutter models (including the Figure 3(a), when the detector is based on Tylevls
K-distribution, ¢-distribution, inverse Gaussian distribution)estimator and the sample length is smalk 8,16, 32, there
Thus, to obtain a probability of false alarm (PFA) equal to exists a remarkably large gap between the observed PFA and
desired levelPra (e.9., Pra = 0.01), the rejection threshold the desired (theoretical) PFA. All of the shrinkage estima-
A can be set as tors are performing very well illustrating their usefulees
- - 1 ractical applications. RegTYL estimator has slightlytéet
Pra = Pr(A > NHp) = (1 = \)P (22) Eerformanggthan others ir£1J the sense that it is able to niminta
orA=1—Pp /P71 Seeeg. [21]. the empirical PFA very close to the theoretical (desired) PF
In practiceX is unknown and amdaptive NMF detectoh  for sample lengths: = 8,16, 32 considered. Note that same
is obtained by replacing by an estimate® as in [5], [9], graphs would be obtained (on the average) for the TYL,
[14], [15]. Note that the detector requires an estimateXof RegTYL and CWH estimators if the simulation samples are
only up to a scale sincA = A(z; p,cX) for all ¢ > 0. Since drawn from any other CES distribution due to distributioaef
the sample size: is rarely large compared to the dimensiomroperty of these estimators. This is not true, though, fier t
p (LSS/ISS cases) in many applications, the adaptive NMBLC estimator whose performance depends on the underlying
detector A based on the sample covariance matrix or afyES distribution. Furthermore, if the shape parametesf
M-estimator of scatter does not retain the CFAR propertige K-distribution is close to zero, then the performance of
since an) -estimator® (although consistent) can be a highlyGLC estimator degrades severely whereas the performance of

inaccurate estimator in LSS/ISS cases. RegTYL and CWH estimators remain unaffected.
We illustrate that an adaptive NMF detector based on the
regularized Tyler'sM -estimator (RegTYL) usingd = 1 — a, VIl. CONCLUSIONS

anda = &,, &, given by (20), is able to accurately retain A general class of regularizet{/ -estimators was proposed
the same CFAR property as the theoretical NMF based on tivat are suitable also for small and largep problems. The
true scatter matri® whereas the non-regularized TyleR$- considered class was defined as a solution to a penalized
estimator (TYL) performs poorly due to the small sample sizé/-estimation cost function that depends on a regularization
In addition, the following shrinkage estimators are inéddd parameterx > 0 which determines the shrinkage intensityto

in the study: the GLC, which again refers ﬁ)aﬁ in (1), General conditions for uniqueness of the solution werebesta
with « and 5 being estimated as proposed in [7, cf. Eq.Eshed using the concept of geodesic convexity. Remarkably
(32) and (33)], and the CWH estimator of Remark 4 usinipe regularizedM -estimators do not require any conditions
the plug-in oracle estimataiS™ as proposed in [4, cf. Eq.s to be placed on the sampia,...,z, for anyn > 1. Fur-

(13) and (14)]. For each MC trial, the simulated data cossighermore, the estimators are actionable: an iterativeriahgo

of the received data (used as input to NMF detector) andwith proven convergence to the solution of the regularizéd

the secondary datay, ..., z, (used as input to estimafs). estimating equation was provided. For the regularizedrgyle
The data sets are generated as i.i.d. random samples frbfrestimator, necessary and sufficient conditions for entste

a p = 8 variate K-distribution CK, ,(0,3) with v = 4.5. and uniqueness of the penalized Tyler's cost function were
Since the choselX -distribution is not heavy-tailed, the GLCestablished separately and a closed form (data dependent)
estimator is also expected to produce reliable estimateis. Tchoice for the regularization parameter was derived. We als
would not be the case for choices ofcloser to 0. Using showed that in the special case of using a tuned Gaussian
10,000 trials, the empiricalPra (the proportion of incorrect cost function, the unique solution to the penalized likedit
rejections) was calculated for a fixed threshaldThe true function is given by the widely used Ledoit-Wolf [16] (also
scatter matribxX® differed from trial to trial and was generatedcalled GLC [7]) shrinkage estimator of the sample covamanc
randomly for each trial data set as follows: We first generate matrix.

random complex unitary x p matrix P and a diagonal matrix ~ Finally, numerical examples illustrated the usefulnesthef

D = diag(ds, ..., dp), with thed;’s arising from independent proposed estimators. In the signal detection problem using
Unif(0,1) distributions. Using the EVD, the scatter matrixhe adaptive normalized matched filter, the regularized co-
3 is then taken to b& = PDP™. Since the null distribution variance matrix estimators were accurately maintaining th
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Fig. 3. Empirical Pra for adaptive detector employing different scatter Ne
matrix estimators undef -distributed clutter withv = 4.5 and different

parameters are chosen so that they optimize an application
specific metric for the problem at hand. This will be a subject
of future work.

APPENDIX
PROOF OFTHEOREM 2
Proof: Let & be the unigue solution to (7), and define

1

~—L1 O
V=% *%, X *. Algorithm (16) can then be re-expressed
as

n

1 ~—1
Vi1 =G(Vg) = — UV oy vyl + X
k+1 = G(Vi) n;um r YdYyiy; +aX
~—1
wherey; = X *z; fori = 1,...,n. From (7), it follows

that G(I,,) = I,. Note thatV, € H(p), and so let\; , >

-+ > Ap > 0 denote the eigenvalues &f;. The objective
is to then show thaV, — I, ask — oco. We first give two
lemmas.

Lemma 4.
a) /\Lk >1= )\1,k+1 < /\Lk'
b) /\1716 <1l= )\1,k+1 < 1.
C) Mk < 1= Apiy1 > Ak
d) A\ > 1= A1 > L

Proof: (a) Sincew(t) in non-increasing, and)(t) =
tu(t) is non-decreasing, it follows that(y"V,'y) <

u(ymy/Ae) = Mp(yy/Ae) /vty < Aru(yty), and
SO

n

1 o
Vit <Ak - Z;u(y?yi)yiy? +aX
i

~—1
= Al,kG(Ip) + (1 — /\17k)a2 .

1

Thus, Vi1 < M xG(I,) = A kI, and so part (a) follows.
(b) Since wu(t) is non-increasing, u(y"'V;'y) <
u(y"y /M k) < u(y"y). ConsequentlyVy 1 < G(I,) =1,,
and so part (b) follows.
The proofs for parts (c) and (d) are analogous. |

Lemma 5.
a) limsup Ay, < 1.
b) liminf A, > 1.

Proof: The proof is by contradiction. To show part (a),
presume); = limsupA;; > 1. By Lemma 4.b, this then
implies that)\; , > 1 for all k. So, by Lemma 4.a, it follows
that \; 5, is a strictly decreasing sequence and hehge |

> 1.
xt, note that Lemma 4 also implies that the sequences

sample lengths: of the secondary data. The dimensien = 8 and the A1 and\, x are both bounded away frothandoco. Hence,
clutter covariance matri%: was generated randomly for each 10000 trials. there exists a convergent subsequeﬁb&:j) — V € H(p),

with A\ (V) = Ay > 1. Here, A(V) > -+ > A\, (V) >
0 denote the eigenvalues &f. Furthermore, by continuity,

preset CFAR. All of the considered regularized estimatolé ;);; — G(V) with \;{G(V)} = A;. However, Lemma
outperformed the commonly used non-regularized estimatdra implies\; = A\ {G(V)} < A1 (V) = A1, a contradiction.
This is in line with previous works [1]-[4], [24] which haveHence part (a) holds. The proof to part (b) is analogoum.
nicely outlined the benefits of shrinkage type covariance ma So, by Lemma 5 we have < liminf A, ;; < limsup A; <
trix estimators in different engineering applicationssfould 1, which implieslim A, , = lim A\, , = 1. Thus,V;, — I, and
also be noted that further benefits can be achieved whengunirence Theorem 2 holds. [ |
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PROOF OFTHEOREM 4 H(p) having eigenvalue$ and~;, , with multiplicities p — d,
Proof: (a) Express’ = X! = M with Tr(M) = 1, and d_o respectively, V\/_ith'Yk,o = 0. Also, for everyk, let
and soL;, 4(%) = L1(7) + Lo(M), where the eigenspace associated with, be V,. Part (b) will then
' follow by showing L} (3)) — —oc.
Li(y) =p(B—1)In(y) + ay To show this, note that’ (2x) = La.x + Lok, Where
o pp & H ) _
Ly(M) = o {2111(@ Mzz)} In [M]. Loy = <pﬁnno B do) In(yes) and

Now if ¥ — 0H(p) then eithery — 0, v — oo, or M —

OH(p). If v goes to zero or infinity, it readily follows that

Li(7y) — oo since for anyc > 0, ay —clny — oo asy = 0 Lak = Z%ﬁ > In(z'z) + Y In(z'Thzi) p—aTr(Ty).
or asy — oo. z;€Vo zi ¢V,

So, we only need to consider what happensZtg(M)
as M — OM(p). Since the set of positive semi-definite
Hermitian matrices with trace one is compact, it is suffitie
to consider a sequendel, — M, where M is a singular
positive semi-definite Hermitian matrix with trace one. lden PROOF OFTHEOREM5
1 < rankM) < p. Let \y(M) > --- > X,(M) denote the
eigenvalue ofM. Since e|genvalues are continuous functions, Proof: Denote
Aj(Mg) = Aj (M) The spectral value decomposition gives

It readily follows thatL, , — L, < co. Also, L, — —oo
r?mcelog(%,k) — —o0 and oo > L, ]

Mk = Z (Mk)é)k 70k L whereM .0, J= A (Mk)H;w p Z 5 25/2( Z wu )23/2 (23)
with 0,€7J0k7m = 0;m. By compactness, it can be assumed 2o Z;

without loss of generality thad,; — 6;, j = 1,...,p, s Lo

with 65'0,, = 6;,,. For j = 1,....p, let S; denote the whereu; = %, 2:/|15g " ?2;| for i = 1,...,n. Hence the

subspace ofC? spanned by{0,,...,0,}, S,+1 = {0} and clairvoyant estimator i&, = (1 — «a)C + ol. First, note that
Dj = S\Sj+1 ={z € CP |z e S;,z ¢ Sj+1}. Also, let the MSE criterion is
= #{Zl € Dj} ande = #{Zi S 57} _ B
For n; >1 and Z; € Dj, Z?Mkzi > /\j(Mk)|01,f,7zl|2 > A(a) = E[HEO 12& - %TI.(EO 12a)IH2]
Aj(My)ex,;, where _ ’I‘r(ESQE[Ei]) — ZE[T(3 5],
Chj = min{|01,ijzi|2;zi € D;} p
—cj = min{la?zilz;zi € D;} > 0. and observe that

Forn; =0, let ¢y ; = ¢; = 1. Hence, (S8, = ( (1-a ( Z“Z ) taxy )
p
pB
M;) > . Z:ny In(cy, ;) =p(l—a)+ aTr(EO )=p

ppn; where the 3rd identity follows from the fact thax(Z;"') =
+Z( n' _1) In{A;(My)}. p. This result then implies that finding the minimum of
=1 A(a) is equivalent to finding the minimum of\*(a) =
The first term on the right converges £ >y njln(c;) > Tr(EgQE[EiD

—oo and forj < r = rankM),0 < A\j(M) < 1. So, to A closed-form expression foA*(a) can be obtained by
complete the proof of part (a), it only needs to be shown thgéing the following identities:

p .
LyMp) = Y <@ - 1) In{\; (M)} — 0. E[C] = % (24)
j=r+1 2 —
j=r+ E[C?] = p{35 + Tr(X0) X0} n (n 1)2(2)' (25)
Condition A implies 22X < p — j + 1 for j = 2,...p. n(p+1) n

Also, Sgi‘l?e”.j = Nj = Njp1 with Npyy = O,Mi\; follows  the proofs rely on the representation 6fin (23) in terms
that (pTJ - 12 < aj, wherea; = (p—j - pn—”l) for of i.i.d. rv’s u;, which possess a uniform distribution on
j = 2,...,p. Condition A also insures that; < 0 and so complexp-sphere, and properties of their moments as stated
@ — 1) is strictly negative. Finally, foj =r+1,...,p, in[20, Lemma 4]. The derivations are s_imilar to the Proof of
n{\; (M)} — —oc. Thus, each term its(Mj,) must go to Theorem 2 in [4] and are therefore omitted.
. To conclude the proof of Theorem 5, note that
b) If condition B does not hold, then there exists a subspace
V, such thatZe > g—;, wheren, = #{z; € V,} andd, = , o
dim(V,), with 1 < d, < p. Construct a sequendg = X, ' € =2a(1 - a)E[C] + o’ T+ (1 — a)°E[C7]

E[X2] = E[((1 — «)C + al)?]

[e3
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