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RegularizedM -estimators of scatter matrix
Esa Ollila,Member, IEEE,and David E. Tyler

Abstract—In this paper, a general class of regularizedM -
estimators of scatter matrix are proposed which are suitable
also for low or insufficient sample support (small n and large
p) problems. The considered class constitutes a natural gen-
eralization of M -estimators of scatter matrix (Maronna, 1976)
and are defined as a solution to a penalizedM -estimation cost
function. Using the concept of geodesic convexity, we prove
the existence and uniqueness of the regularizedM -estimators
of scatter and the existence and uniqueness of the solution
to the corresponding M -estimating equations under general
conditions. Unlike the non-regularizedM -estimators of scatter,
the regularized estimators are shown to exist for any data
configuration. An iterative algorithm with proven convergence
to the solution of the regularized M -estimating equation is
also given. Since the conditions for uniqueness do not include
the regularized versions of Tyler’s M -estimator, necessary and
sufficient conditions for their uniqueness are establishedsepa-
rately. For the regularized Tyler’s M -estimators, we also derive a
simple, closed form and data dependent solution for choosing the
regularization parameter based on shape matrix matching inthe
mean squared sense. Finally, some simulations studies illustrate
the improved accuracy of the proposed regularizedM -estimators
of scatter compared to their non-regularized counterpartsin low
sample support problems. An example of radar detection using
normalized matched filter (NMF) illustrate that an adaptive NMF
detector based on regularizedM -estimators are able to maintain
accurately the preset CFAR level.

Index Terms—Geodesic convexity, Complex elliptically sym-
metric distributions, M -estimator of scatter, Regularization, Ro-
bustness, Normalized matched filter

I. I NTRODUCTION

M ANY data mining and classic multivariate analysis
techniques require an estimate of the covariance matrix

or some nonlinear function of it, e.g., the inverse covariance
matrix or its eigenvalues/eigenvectors. Given an i.i.d. sample
z1, . . . , zn ∈ Cp from a centered, i.e.,E[z] = 0, (unspecified)
p-variate distributionz ∼ F , the sample covariance matrix
(SCM) R̂ = 1

n

∑n
i=1 ziz

H
i ∈ Cp×p is the most commonly

used estimator of the unknown covariance matrixR = E[zzH].
However, in high-dimensional (HD) problems, there are many
cases that the SCM simply can not be computed, is completely
corrupted, or is inaccurate. For example, low sample support
(LSS) (i.e.,p is of the same magnitude asn) is a commonly
occurring problem in diverse HD data analysis problems
such as chemometrics and medical imaging. In the case of
insufficient sample support (ISS), i.e., p > n, the inverse of
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the SCM can not be computed. Thus, for example, classic
beamforming techniques such as MVDR beamforming or the
adaptive normalized matched filter cannot be realized since
they require an estimate of the inverse covariance matrix.

Robust estimation is also a key property in HD data analysis
problems. Partly because outliers are more difficult to glean
from HD data sets by conventional techniques, but also due
to an increase of impulsive measurement environments and
outliers in practical sensing systems. The SCM is well-known
to be vulnerable to outliers and to be a highly inefficient
estimator when the samples are drawn from a heavy-tailed
non-Gaussian distribution. HD data poses additional problems
and difficulties since most robust estimators such asM -
estimators of scatter matrix [17] can not be computed in ISS
scenarios, or are equivalent to the SCM [29].

In this paper, we address this issue and propose a general
class of regularizedM -estimators of scatter matrix. This class
provides practical and actionable estimators of the covari-
ance (scatter) matrix even in the problematic ISS case. The
proposed class constitutes a natural generalization ofM -
estimators of scatter [17] and their complex-valued general-
izations [18], [22], and are defined as a solution to a penalized
M -estimation cost function that includes a fixed regularization
parameterα > 0. We prove the existence and uniqueness
of the regularizedM -estimators of scatter and the existence
and uniqueness of the solution to the correspondingM -
estimating equations under general conditions. Our derivations
are based on the concept of geodesic convexity which has been
previously utilized in [30], [33] in studying the uniqueness of
the non-regularizedM -estimators of scatter and in [31] which
studied regularized Tyler’sM -estimator of scatter matrix us-
ing a particular scale invariant geodesically convex penalty
function. An iterative algorithm with proven convergence to
the solution of the regularizedM -estimating equation is also
given. Our class include as a special case, when using a
tuned cost function corresponding top-variate complex normal
samples, the commonly usedshrinkageestimator of the sample
covariance matrix

R̂α,β = βR̂ + αI. (1)

which, in finance literature, is commonly called the Ledoit-
Wolf shrinkage estimator [16]. In a recent paper [7] in the
field of adaptive beamforming it was termed the general linear
combination (GLC) estimator, the term which we adopt in this
paper. It should be noted however that in [7], [16],R̂α,β was
not proposed as a minimizer to any optimization problem.

Our general conditions on uniqueness do not apply to the
regularized versions of Tyler’s [27]M -estimator and hence
this estimator is treated separately, with necessary and suffi-
cient conditions being established to ensure the uniqueness
of solution for the penalized Tyler’s cost function. Special
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cases of regularized versions of Tyler’sM -estimator have also
been recently studied in [24] under more strict conditions on
the sample, and also in [2], [4], but not in the context as a
solution to a penalizedM -estimation cost function. Estimation
of the regularization parameter using the expected likelihood
approach was proposed in [1], [3] for the regularized Tyler’s
M -estimator of [2], [4], whereas [6] based their analysis
on random matrix theory (bothn and p are large). For the
regularized Tyler’sM -estimators, we also derive a simple,
closed form and data dependent solution to compute the
regularization parameterα based on shape matrix matching
in the mean squared sense. We illustrate the usefulness of
the regularizedM -estimators of scatter in radar detection
application using normalized matched filter.

Finally, we note that although our derivations in the paper
are for complex-valued case, they generalize in an straightfor-
ward manner to real-valued case as well.

The paper is organized as follows. Section II reviews
complex elliptically symmetric (CES) distributions and the
maximum likelihood (ML) andM -estimators of the scatter
matrix parameters of the CES distributions [22]. Section III
then introduces the penalizedM -estimation cost function.
The stationary points are shown to be solutions to shrinkage
typeM -estimation equations. Interpretation of regularization
parameters are discussed and specific examples of regularized
M -estimators are given. In Section IV, general conditions are
presented to ensure the uniqueness of solution, with the proof
of uniqueness being based on the concept of geodesic convex-
ity. The regularized Tyler’sM -estimator is then considered in
Section V and numerical examples are given in Section VI.
Some of the proofs are reserved for the Appendix.

Notations:Let H(p) denote the class positive definite Her-
mitian (PDH)p× p matrices,|A| the determinant of a square
matrixA. Furthermore,‖ · ‖ (resp.‖ · ‖1) denotes theℓ2-norm
(resp.ℓ1-norm) defined as‖A‖2 = Tr(AHA) =

∑
i

∑
j |aij |

2

(resp.‖A‖1 =
∑

i

∑
j |aij |) for anym× n matrix A.

II. PRELIMINARIES

A. Elliptical distributions

A continuous symmetric random vector (r.v.)z ∈ Cp has
a centeredcomplex elliptically symmetric (CES) distribution
[22] if its p.d.f. is of the form:

f(z) = Cp,g|Σ|
−1g

(
zHΣ−1z

)
,

where Σ ∈ H(p) is the unknown parameter, called the
scatter matrix, g : R+

0 → R+ is a fixed function called the
density generatorand Cp,g > 0 is a normalizing constant
ensuring thatf(z) integrates to one. We denote this case by
z ∼ CEp(0,Σ, g). If the covariance matrixR = E[zzH] of z
exists, then

R = c ·Σ (for somec > 0).

For example, wheng(t) = exp(−t), one obtains thep-variate
complex normal (CN) distribution, denotedz ∼ CN p(0,Σ);
In this case,R = Σ. For a detailed account on properties of
CES distributions, we refer the reader to [22]. Letz1, . . . , zn

denote an i.i.d. random sample from an unspecifiedp-variate
CES distribution as stated above.

The maximum likelihood estimator (MLE) of scatter matrix,
denotedΣ̂, minimizes the negative log-likelihood function
(divided byn)

L(Σ) =
1

n

n∑

i=1

ρ(zHi Σ
−1zi)− ln |Σ−1| (2)

whereρ(t) = − ln g(t). More appropriate notation would be
Ln(Σ|ρ) to emphasize the dependence onρ and the sample.
Critical points are then solutions to the estimating equation

Σ̂ =
1

n

n∑

i=1

u(zHi Σ̂
−1

zi)ziz
H
i (3)

whereu = ρ′ = −g′/g.

B. M -estimators of scatter

M -estimatorsof scatter are generalizations of the ML-
estimators of the scatter matrix of an elliptical distribution.
They can be defined by allowing a generalρ functions in (2),
not necessarily related to any elliptical densityg, in which
case we refer to (2) as a general cost function. The function
ρ is usually chosen so that the corresponding weight function
u = ρ′ is non-negative, continuous and non-increasing. Equa-
tion (3) is then referred to as anM -estimating equation. Some
examples ofM - and ML-estimators are given below.

SCM (the Gaussian MLE). In the Gaussian case,ρ(t) = t
andu(t) = ρ′(t) ≡ 1, so eq. (2) becomes

L(Σ) = Tr(R̂Σ−1)− ln |Σ−1|

where R̂ denotes the SCM. The (well-known)unique min-
imizer (assumingn ≥ p) of this function is the sample
covariance matrix, i.e.,̂Σ = R̂.

Complex Tyler’s [27]M -estimatoris based on the functions

ρ(t) = p ln t and u(t) = ρ′(t) =
p

t
.

Note that thisρ-function isnot related to any elliptical density
and the optimization problem (2) is now non-convex. Never-
theless, the estimator is actionable: a unique solution (upto
a scale) exists under mild conditions and the global solution
can be computed via simple fixed-point iterations; see [22],
[23], [27]. It should be noted that for Tyler’sM -estimator, the
summations in both (2) and (3) are taken only overzi 6= 0. In
the radar community, Tyler’sM -estimator is often referred to
as a fixed-point estimator, and it is known to admit numerous
ML-interpretations as shown in [5], [9], [11], [21], [28] inthe
real and complex cases.

Complex Huber’sM -estimatoris based on a weight function
of the form [19]u(s) = buc(t), where

uc(t) =

{
1, for t ≤ c2

c2/t, for t > c2

where c > 0 is a tuning constant that controls robust-
ness/efficiency of the method andb > 0 is a scaling constant
usually chosen so that the resultingM -estimator is consistent
to the covariance matrix for Gaussian data. As a consequence
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the value of the scaling constantb depends onc. See [10]
for more details. Note that forc → ∞, Huber’s estimator
approaches the SCM (i.e., constant weight function), and for
c→ 0, the estimator approaches Tyler’sM -estimator.

III. R EGULARIZED M -ESTIMATORS OF SCATTER MATRIX

To stabilize the optimization problem an additive penalty
term α · P(Σ) can be introduced to the cost function (2),
where α ≥ 0 denotes a fixed regularization parameter. A
popular focus in the literature has been to enforce sparsityon
the precision matrixK = Σ−1 by usingℓ1-penalty function

Pℓ1(Σ) = ‖Σ−1‖1 (4)

as is done in the real-valued case in [8], [32]. The use of the
ℓ1-penalty, though, to help enforce a sparse precision matrixis
dependent on the cost function (2) being convex inΣ−1, which
holds wheneverρ(t) itself is convex. However, robustM -
estimates of scatter typically have decreasing weight functions
u(t) and hence concaveρ-functions.

In this paper, we take a different approach and focus on a
penalty function of the form

P∗(Σ) = ‖Σ−1/2‖2 = Tr(Σ−1).

Notice that

Tr(Σ−1) =

p∑

j=1

1

λj(Σ)
,

whereλj(Σ)’s denote the ordered eigenvalues ofΣ. Thus the
penalty term restricts 1

λj(Σ) from growing without bound; this
is necessary in the ill-conditioned ISS case (n < p). In general,
our penalized cost functionis of the form

Lα(Σ) =
1

n

n∑

i=1

ρ(zHi Σ
−1zi)− ln |Σ−1|+ αP(Σ), (5)

whereα ≥ 0 is a (fixed) regularization parameter. For the case
P(Σ) = P∗(Σ) this becomes

L∗α(Σ) =
1

n

n∑

i=1

ρ(zHi Σ
−1zi)− ln |Σ−1|+ αTr(Σ−1) (6)

As will be illustrated below the parameterα can be best
described asridge (or spherizing)parameter.

Let Σ̂ denote the minimizer ofL∗α(Σ). The solutionΣ̂ nat-
urally depends onα but this is not made explicit for notational
convenience. It is easy to verify using matrix differentialrules
that a critical point of the penalized cost function (6) is a
solution to

Σ̂ =
1

n

n∑

i=1

u(zHi Σ̂
−1

zi)ziz
H
i + αI (7)

which is weighted and diagonally loaded form of the classic
M -estimating equation obtained whenα = 0. Expressing the
regularizedM -estimating equation in the form

I =
1

n

n∑

i=1

u(zHi Σ̂
−1

zi)Σ̂
−1

ziz
H
i + αΣ̂

−1
,

and then taking the trace shows that the solutionΣ̂ must satisfy

αTr(Σ̂
−1

) = p−
1

n

n∑

i=1

ψ(zHi Σ̂
−1

zi) (8)

whereψ(t) = tu(t).
GLC estimators. A class of regularized SCM can be ob-

tained by considering the cost functions of the formρ(t) = βt,
whereβ > 0 is a fixed scalar. In this case, the penalized cost
function (6) simplifies to the form

L∗α(Σ) = Tr
{
(βR̂ + αI)Σ−1

}
− ln |Σ−1|

where R̂ = 1
n

∑n
i=1 ziz

H
i denotes the SCM. The unique

minimizer Σ̂ of the function above is easily shown to widely
used GLC estimator (1), i.e.,̂Σ = R̂α,β. For β = 1, the
solution is the diagonally loaded SCM,̂Rα = R̂ + αI.
The interpretation of the GLC estimator as a solution to an
optimization problem (6) differs from the motivation for the
GLC estimator given in [16] or [7]. Note that the eigenvalues
of R̂α,β are λ̂i = βλ̂

R̂,i + α, where λ̂
R̂,i, i = 1, . . . , p

denote the eigenvalues of̂R. Thus α can be viewed as a
ridge parameter as it provides a ridge down the diagonal and
guarantees a non-singular solution. It can be also described as
aspherizing parametersince the larger the value ofα, the more
“spherical” the solution (i.e., asα gets larger, the solution is
shrunk towards the scaled identity matrixαI).

Regularized Tyler’sM -estimators.Penalization of Tyler’s
M -estimator, i.e., choosingρ(t) = p log t and henceu(t) =
p/t, is not possible since for this caseψ(t) = p, and so the
right hand side of (8) is zero. Alternatively, for some fixed
0 < β < 1, consider the functionρ(t) = pβ log t, which
gives the weight functionu(t) = pβ/t. The corresponding
regularizedM -estimating equations (7) are then given by

Σ̂ =
pβ

n∗

n∑

i=1,zi 6=0

ziz
H
i

zHi Σ̂
−1

zi

+ αI, (9)

wheren∗ = #{zi 6= 0; i = 1, . . . , n}. Hereafter, when using
this estimator, we assume without loss of generality thatn∗ =
n. Note that the solution̂Σ in (9) depends onzi only through
zi/‖zi‖, and soΣ̂ has the same the distribution-free property
over elliptical distributions as the unregularized Tyler scatter
matrix. That is, whenz ∼ CEp(0,Σ, g), the distribution of
z/‖z‖, and consequently the distribution ofΣ̂ does not depend
on the functiong.

A curious property of the regularized Tyler’sM -estimators
are that their shapes do not depend on the penalization tuning
parameterα. That is, for a given value of0 < β < 1, suppose
we consider two different values ofα, sayα1 andα2, and let
Σ̂1 and Σ̂2 represent the respective solutions to (9). It then
easily follows that

Σ̂1 =
α1

α2
· Σ̂2 (10)

and so, for any fixed0 < β < 1, the regularized Tyler’s
M -estimators are proportional to one another asα varies.
Consequently, when the main interest is on estimation of the
covariance matrix or scatter matrix parameter up to a scale,
as is the case in most applications, one can set without loss
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of generalityα = 1 − β, or equivalentlyβ = 1 − α, when
using a regularized Tyler’sM -estimator. For this choice, the
constraint (8) becomes simplyTr(Σ̂

−1
) = p.

Remark 1. In general, for a givenρ-function, sayρ1(t), a
class ofρ-functions can be generated by definingρβ(t) =
βρ1(t) for β > 0. The parameterβ then represents an
additional tuning constant which can be used to help obtain
desirable properties of the estimator.

Remark 2. It readily follows from its definition, that the
regularizedM -estimators of scatter̂Σ areunitary equivariant.
That is, ifΣ̂ denotes the solution to the penalized cost function
L∗α(Σ) in (6) based on the data setzi, i = 1, . . . , n, then
for any given unitary matrixU, the estimator based on the
transformed data setz⋆i = Uzi, i = 1, . . . , n is given by

Σ̂
⋆
= UΣ̂UH (11)

Note that non-regularizedM estimators are affine equivariant,
i.e., for this case (11) holds for any non-singularU.

IV. GEODESIC CONVEXITY, UNIQUENESS AND ALGORITHM

In this section, we show under general conditions that there
exists a unique minimizer to the penalized likelihood or cost
function given by (6). Hereafter, it is assumed that the function
ρ(t) satisfies the following condition.

Condition 1. The functionρ(t) is nondecreasing and continu-
ous for0 < x <∞. Also, the functionr(x) = ρ(ex) is convex
for −∞ < x <∞

If the function ρ(t) in differentiable, then the above con-
dition holds if and only if the weight functionu(t) ≥ 0 and
the functionψ(t) = tu(t) is nondecreasing. It readily follows
that Huber’s and Tyler’sM -estimators as well as the Gaussian
MLE satisfies Condition 1.

The concept of geodesic convexity for functions of PDH
matrices plays a key role in our proof of uniqueness. This
concept has been previously utilized in [30], [33] in studying
the uniqueness of the non-regularizedM -estimates of scatter
and in [31] in the case of regularized Tyler’s cost function.
A review of geodesic convexity for positive definite matrices
can be found in the aforementioned papers as well as in [26],
wherein further references can be found. We briefly review
here some important results.

Rather than treating the classH(p) as a convex cone inCp

and using notions from complex Euclidean geometry, one can
treatH(p) as a differentiable Riemannian manifold with the
geodesic path fromΣ0 ∈ H(p) to Σ1 ∈ H(p) being

Σt = Σ
1/2
0

(
Σ

−1/2
0 Σ1Σ

−1/2
0

)t

Σ
1/2
0 for t ∈ [0, 1]. (12)

Note thatΣt ∈ H(p) for 0 ≤ t ≤ 1 and consequentlyH(p) is
said to form ageodesically convex set. A functionh : H(p)→
R is then ageodesically convex functionif

h(Σt) ≤ (1 − t) h(Σ0) + t h(Σ1) for t ∈ (0, 1). (13)

If the inequality is strict, thenh is said to be geodesically
strictly convex. In thep = 1 dimensional real setting, geodesic
convexity/strict convexity is equivalent to the functionh(ex)

being convex/strictly convex inx ∈ R. Thus, Condition 1
presumesρ(t) to be geodesically convex.

The concept of geodesic convexity enjoys properties similar
to those of convexity in complex Euclidean space. In par-
ticular, if h is geodesically convex onH(p) than any local
minimum is a global minimum. Furthermore, if a minimum
is obtained inH(p) then the set of all minimums form a
geodesically convex subset ofH(p). If h is geodesically
strictly convex and a minimum is obtained inH(p), then it
is a unique minimum.

The following key result is given in [33] for real positive
definite symmetric matrices, although it also holds forH(p).
We omit the proof for the complex case since it is analogous
to the proof for the real case given in [33].

Lemma 1. If ρ(t) satisfies Condition 1, then the cost function
L(Σ) in (2) is geodesically convex inΣ ∈ H(p). In addition,
if r(x) is strictly convex andspan{z1, . . . , zn} = Cp, then
L(Σ) is geodesically strictly convex inΣ ∈ H(p).

Recall that when using the notion of convexity in com-
plex Euclidean space the cost functionL(Σ) is convex in
Σ−1 ∈ H(p), but not in Σ ∈ H(p), wheneverρ(t) is
a convex function. This includes the well studied Gaussian
caseρ(t) = t. As shown below, geodesic convexity has the
interesting property that ifL(Σ) is geodesically convex in
Σ ∈ H(p), then it is also geodesically convex inΣ−1 ∈ H(p).

From Lemma 1, we readily obtain the following corollary,
which follows since the sum of two geodesically convex
functions is easily seen to be geodesically convex, and the sum
of a geodesically convex function and a geodesically strictly
convex function is geodesically strictly convex.

Corollary 1. For ρ(t) satisfying Condition 1, ifP(Σ) is
geodesically convex/strictly convex inΣ ∈ H(p), then the
penalized cost functionLα(Σ) in (5) is geodesically con-
vex/strictly convex inΣ ∈ H(p) respectively.

As Lemma 2 below shows, Corollary 1 applies to the
penalty function of interest here, i.e., toP∗(Σ) = Tr(Σ−1).
Before proceeding, some further results and notations are
reviewed. For Hermitian matricesA and B of the same
order, the partial orderingA ≤ B or A < B holds if and
only if B − A is positive semi-definite or positive definite,
respectively. The matrixΣ1/2 can be viewed as the geometric
mean ofΣ0 andΣ1 [26], and as in the case of positive real
numbers, it is known to be less than the arithmetic mean in
the following sense,

Σ1/2 ≤ (Σ0 +Σ1)/2, (14)

with equality holding if and only ifΣ0 = Σ1. It readily
follows from its definition (12) that forK = Σ−1

Kt = K
1/2
0

(
K

−1/2
0 K1K

−1/2
0

)t

K
1/2
0 = Σ−1

t , (15)

and consequently (14) also holds toΣ−1. Equation (15)
together with the definition of geodesic convexity shows that
geodesic convexity inΣ implies geodesic convexity inΣ−1.
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Taking the trace on both side of (14) when applied toΣ−1

then gives

Tr(Σ−1
1/2) <

{
Tr(Σ−1

0 ) + Tr(Σ−1
1 )

}
/2,

for Σ0 6= Σ1. That is, Tr(Σ−1) is midpoint geodesically
strictly convex in Σ. As with convex functions, midpoint
geodesic strict convexity along withTr(Σ−1) being contin-
uous inΣ ∈ H(p) is sufficient to imply geodesically strict
convexity and hence we obtain our desired result.

Lemma 2. The penalty termP∗(Σ) = Tr(Σ−1) is geodesi-
cally strictly convex inΣ ∈ H(p).

We note that another interesting geodesically convex penalty
function was proposed by Wiesel [31, Proposition 3]. Wiesel’s
penalty has a specific property of being scale invariant.

To this point, it has been shown that under the stated con-
ditions onρ, the regularized loss function (6) is geodesically
strictly convex. To show that it has a unique minimum in
H(p), and consequently to show the regularizedM -estimating
equation (7) admits a unique solution, it only needs to be
shown that the minimum of (6) occurs in the interior ofH(p).
The following lemma shows that this holds and consequently
implies the subsequent theorem.

Lemma 3. If ρ(t) is bounded below, thenL∗α(Σ) → ∞ as
Σ→ ∂H(p), i.e., the boundary ofH(p).

Proof: Sinceρ(t) is bounded below, it only needs to be
shown that ifΣ→ ∂H(p) then

− ln |Σ−1|+ αTr(Σ−1) =

p∑

j=1

(
α

λj(Σ)
+ lnλj(Σ)

)
→∞.

However,Σ → ∂H(p) if and only if λ1(Σ) → ∞ and/or
λp(Σ) → 0. In either case,α/λ + lnλ → ∞ and so the
lemma is established.

Theorem 1. If ρ(t) is bounded below and satisfies Condi-
tion 1, then the penalized cost functionL∗α(Σ) in (6) has
a unique minimum inH(p). Furthermore, if ρ(t) is also
differentiable, then the minimum corresponds to the unique
solutionΣ̂ ∈ H(p) to the regularizedM -estimating equation
(7).

Remark 3. The existence and uniqueness of the regularized
M -estimatesdo not require any conditions on the sample
z1, . . . , zn for any n ≥ 1. This is in contrast to the non-
regularizedM -estimates which requires a bound on the pro-
portion of the data that can lie in any subspace [13]. Fur-
thermore, non-regularizedM -estimates exist and are unique
for sparse samples, i.e. whenp < n, whereas non-regularized
M -estimators requiren ≥ p.

The regularizedM -estimating equation (7) gives rise to the
fixed point algorithm stated in Theorem below. The proof
of convergence, given in the Appendix, is similar to the
convergent proof for the non-regularizedM -estimators used
in [12]

Theorem 2. Assume thatρ(t) is continuously differentiable,
satisfies Condition 1 and thatu(t) = ρ′(t) is non-increasing.

If the M -estimating equation(7) has a unique solution̂Σ,
then the iterations

Σ̂k+1 =
1

n

n∑

i=1

u(zHi Σ̂
−1

k zi)ziz
H
i + αI, (16)

for k = 0, 1, . . ., converges to the solution of(7) for any initial
valueΣ̂0 ∈ H(p).

Note that conditions for uniqueness of the regularizedM -
estimators are given in Theorem 1. For Tyler’sM -estimator.
the conditions for uniqueness are given in next Section, in
Theorems 3 and 4

V. THE REGULARIZED TYLER’ SM -ESTIMATORS

A. Existence and uniqueness

Important cases for which Lemma 3 and Theorem 1 do not
hold are the regularized Tyler’sM -estimators since for these
casesρ(t) = pβ ln t is not bounded below. Hence these cases
requires special treatment.

Theorem 3. For ρ(t) = pβ ln t, with a fixed0 ≤ β < 1/p, the
penalized cost functionL∗α(Σ) in (6), for a givenα > 0, has
a unique minimum inH(p), with the minimum being obtained
at the unique solution̂Σ ∈ H(p) to (9).

Proof: SincezHi Σ
−1zi ≥ zHi zi/λ1(Σ), it follows that

L∗α(Σ) ≥ C − pβ lnλ1(Σ) +

p∑

j=1

(
α

λj(Σ)
+ lnλj(Σ)

)
,

whereC = pβ
n

∑n
i=1 ln(z

H
i zi) does not depend onΣ. Again,

the lemma follows since for anyc > 0, α/λ+ c lnλ→∞ as
λ→ 0 or asλ→∞.

Theorem 3 does not require any condition on the sample.
However, to extend this result to1/p ≤ β < 1, the following
Condition A is a sufficient condition and the following Con-
dition B is a necessary conditions. These conditions holds for
n/p > β whenever the sample is in “general position”, which
occurs with probability one when sampling from a continuous
complex multivariate distribution. Note that the sufficient
Condition A and the necessary Condition B only differ when
equality in the conditions is possible. Consequently, there is
little room for improvement on Conditions A.

Condition A. For any subspaceV of Cp, 1 ≤ dim(V) < p,
the inequality#{zi∈V}

n < dim(V)
pβ holds.

Condition B. For any subspaceV of Cp, 1 ≤ dim(V) < p,
the inequality#{zi∈V}

n ≤ dim(V)
pβ holds.

We then have the following general result, the proof of
which can be found in the Appendix.

Theorem 4. Supposeρ(t) = pβ ln t, α > 0 and 0 ≤ β < 1.
a) If condition A holds, then(6) has a unique minimum in
H(p), with the minimum being obtained at the unique
solutionΣ̂ ∈ H(p) to (9).

b) If condition B does not hold, then(6) does not have a
minimum inH(p), and (9) has no solution inH(p).

The existence and uniqueness of the regularized Tyler’sM -
estimator, for the caseβ = 1−α, has also been established in
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[24], but only under the condition that the data are in general
position andn > p. For such samples, Conditions A and B
are automatically satisfied.

Remark 4. A related regularizedM -Tyler’s estimator was
proposed by Abramovich and Spencer [2] as the limit of the
algorithm

Σk+1 ← (1 − α)
p

n

n∑

i=1

ziz
H
i

zHi V
−1
k zi

+ αI

Vk+1 ← pΣk+1/Tr(Σk+1),

where α ∈ (0, 1) is a fixed regularization parameter. This
algorithm represents a diagonally loaded (DL) version of the
fixed-point algorithm given for Tyler’sM -estimator. Later, it
was shown by Chen, Wiesel and Hero [4], that the recursive
algorithm above converges to a unique solution, referred to
hereafter as the CWH estimator, regardless of the initializa-
tion. Here, convergence means convergence inVk and not
necessarily inΣk. It is not clear whether this estimator can
be derived as a solution to a penalized cost function.

B. Estimation of the regularization parameter

Let us define a scale measure ofΣ ∈ Hp as

τ(Σ) = p/Tr(Σ−1), (17)

with V = Σ/τ(Σ) being the respective shape matrix. Note
that his implies the shape matrix is standardized so that
Tr(V−1) = p. Recall that the regularized Tyler’sM -estimator
Σ̂ usingβ = 1−α, α ∈ (0, 1), represents an estimator of the

shape matrixV since it satisfiesTr(Σ̂
−1

) = p. We now focus
on this particular estimator, i.e., the regularized Tyler’s M -
estimator withβ = 1 − α, and derive an oracle estimator of
the parameterα, or equivalentlyβ, using a MSE criterion for
similarity in shape.

Let Σα denote aclairvoyant estimatorof Σ̂ givenΣ0 = V,

Σα = (1 − α)
p

n

n∑

i=1

ziz
H
i

zHi Σ
−1
0 zi

+ αI. (18)

This clairvoyant estimator corresponds to the first step of the
algorithm (16), withu(t) = (1 − α)p/t, if we takeΣ0 as
the initial value. Since we are only interested inΣ0 andΣα

up to a scale, our aim is to then chooseα such thatΣ−1
0 Σα

is as close as possible to being a scaled copy of an identity
matrix. Thus, we define the oracle shrinkage parameterαo as
the minimizer of the following MSE criterion

αo = argmin
α

E
[
‖Σ−1

0 Σα −
1
pTr(Σ

−1
0 Σα)I‖

2
]
.

A similar approach has been used in [4] for deriving an oracle
value for the shrinkage parameterα for the CWH estimator.

Theorem 5. The oracle estimatorα0 is given by

αo =
pTr(Σ0)− 1

pTr(Σ0)− 1 + n(p+ 1){p−1Tr(Σ−2
0 )− 1}

. (19)

In the real case, the oracle estimator is

αo,R =
p− 2 + pTr(Σ0)

p− 2 + pTr(Σ0) + n(p+ 2){p−1Tr(Σ−2
0 )− 1}

SinceΣ0 is unknown, we estimateαo in (19) by the simple
plug-in estimator

α̂o =
pTr(Σ̂)− 1

pTr(Σ̂)− 1 + n(p+ 1){p−1Tr(Σ̂
−2

)− 1}
, (20)

with Σ̂ being Tyler’s M -estimator normalized so that
Tr(Σ̂

−1
) = p whenevern ≥ p. For n < p, one can choose

Σ̂ to be a regularized Tyler’s estimator withβ < n/p and
α = 1− β.

VI. N UMERICAL EXAMPLES

A. Simulations study

In our first simulation set-up, the covariance matrixΣ is
a real-valued correlation matrix (i.e., componentszi have
unit variances, real and imaginary parts are uncorrelated)of
Toeplitz form

[Σ]ij = ρ|i−j|, ρ ∈ (0, 1).

Note that whenρ is close to0, thenΣ is close to an identity
matrix and whenρ tends to1, Σ tends a singular matrix of
rank 1. To assess the performance of the estimators, we use
the distance measure

D2 ≡ D2(Σ, Σ̂) = ‖{p/Tr(Σ−1Σ̂)}Σ−1Σ̂− I‖2

which measures the ability of the estimatorΣ̂ to estimate
the scatter matrixΣ up to its scale, sinceD2(c1Σ, c2Σ̂) =
D2(Σ, Σ̂) for any c1, c2 > 0 and D2 = 0 if Σ ∝ Σ̂.
In the simulation we consider the regularized Tyler’sM -
estimators, taking without loss of generalityβ = 1 − α, and
the CWH estimators discussed in Remark 4. We also compare
the results to the (non-regularized) Tyler’sM -estimator. The
samplesz1, . . . , zn are generated fromCNp(0,Σ), where the
dimension of the data isp = 12. Recall that the simulation
results would be the same if we sampled from any centered
CES distribution, including compound Gaussian distributions,
since the distribution ofzi/‖zi‖ is the same for all such
distributions.

Figure 1 depicts the graphs ofD2 averaged over1000
MC-trials as a function ofα for the CWH estimators and
the regularized Tyler’sM -estimators (RegTYL) for the cases
ρ = 0.01, 0.5, 0.8 and sample size isn = 24. Also included in
Figure 1 is the non-regularized Tyler’sM -estimator of scatter
(TYL), which corresponds to RegTYL whenα = 0. Figure 2
gives the corresponding results for a sample size ofn = 48.
In both figures, the solid vertical line depicts the value of the
oracle estimatorαo for the regularized Tyler’sM -estimator
given by Theorem 5 and the dotted vertical line depicts the
value of the oracle estimatorαCWH

o of CWH estimator given by
[4, Theorem 3].

The simulation results show the following. First, although
the performance of the regularized Tyler’sM -estimator
(RegTYL) tends to the performance of Tyler’sM -estimator as
α→ 0, an observation also illustrated in [24], the performance
of the CWH estimator can still be quite different from that
of Tyler’s M -estimator even forα ≈ 0. Second, the shape
distance curves are very different for RegTYL and CWH
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(c) ρ = 0.8

Fig. 1. DistanceD2 of Tyler’s M -estimator (TYL), regularized Tyler’sM -
estimator (RegTYL) and CWH estimator as a function of the shrinkage param-
eterα. Results for different correlation matrixΣ given byρ = 0.05, 0.5, 0.8

are given from top to bottom. The dimension wasp = 12, sample length
wasn = 24 and the results are averages of 1000 MC trials. The solid (resp.
dotted) vertical line gives the oracle estimatorα0 of RegTYL estimator in
Theorem 5 (resp. of CWH estimator in [4, Theorem 3]).

estimators for the casesρ = 0.5 andρ = 0.8. Only for the case
ρ = 0.05 are they similar. In general, though, the value ofα
play a different role in RegTYL and CWH, and so comparing
the two estimators for the sameα is not particularly meaning-
ful. Third, of primary interest is the performance of the oracle
estimators for RegTYL, obtained atαo, and the performance of
the CWH oracle estimator, obtained at sayαCWH

0 . The figures
illustrate that these two shrinkage generalizations of Tyler’s
scatter matrix provide fairly different estimators of the scatter
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Fig. 2. DistanceD2 for shrinkage estimators RegTYL and CWH as a
function of the shrinkage parameterα. Set-up is as in Figure 1, but the sample
size is twice largern = 48.

matrix, and that RegTYL oracle estimator outperforms the
CWH oracle estimator whenD2 is used as a criterion. In all
cases, forΣ having a Toeplitz form, the shrinkage estimators
(RegTYL and CHW) outperform the (non-regularized) Tyler’s
M -estimator (TYL). For the caseρ = 0.05, which corresponds
to Σ being close to an identity matrix, bothα0 andαCWH

0 are
approximately one, as expected, i.e., both estimators are being
heavily shrunk towards a scaled identity matrix.

B. Adaptive normalized matched filter example

We address the problem of detecting a known complex
signal vectorp in received dataz = γp+c, wherec represents
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the unobserved complexnoise (clutter) r.v. andγ ∈ C is a
signal parameter. The signal-absent vs. signal-present problem
can then be expressed asH0 : |γ| = 0 vs. H1 : |γ| > 0.
We assume thatc follows a centered CES distribution with
a positive definite hermitian (PDH) scatter matrix parameter
Σ. For this problem, we consider the widely usednormalized
matched filter (NMF) detector[9], [25]

Λ ≡ Λ(z;p,Σ) =
|pHΣ−1z|2

(zHΣ−1z)(pHΣ−1p)

H1

≷
H0

λ (21)

It is well known that the distribution ofΛ under H0 is
Beta(1, p − 1), i.e., it is distribution-free under the class of
CES distributions [15], [21]. Hence the detector is CFAR
under various commonly used clutter models (including the
K-distribution, t-distribution, inverse Gaussian distribution).
Thus, to obtain a probability of false alarm (PFA) equal to a
desired levelPFA (e.g.,PFA = 0.01), the rejection threshold
λ can be set as

PFA = Pr(Λ > λ|H0) = (1− λ)p−1 (22)

or λ = 1− PFA
1/(p−1). See e.g. [21].

In practiceΣ is unknown and anadaptive NMF detector̂Λ
is obtained by replacingΣ by an estimatêΣ as in [5], [9],
[14], [15]. Note that the detector requires an estimate ofΣ

only up to a scale sinceΛ = Λ(z;p, cΣ) for all c > 0. Since
the sample sizen is rarely large compared to the dimension
p (LSS/ISS cases) in many applications, the adaptive NMF
detectorΛ̂ based on the sample covariance matrix or any
M -estimator of scatter does not retain the CFAR property
since anM -estimatorΣ̂ (although consistent) can be a highly
inaccurate estimator in LSS/ISS cases.

We illustrate that an adaptive NMF detector based on the
regularized Tyler’sM -estimator (RegTYL) usingβ = 1− α̂o

and α = α̂o, α̂o given by (20), is able to accurately retain
the same CFAR property as the theoretical NMF based on the
true scatter matrixΣ whereas the non-regularized Tyler’sM -
estimator (TYL) performs poorly due to the small sample size.
In addition, the following shrinkage estimators are included
in the study: the GLC, which again refers tôRα,β in (1),
with α and β being estimated as proposed in [7, cf. Eq.’s
(32) and (33)], and the CWH estimator of Remark 4 using
the plug-in oracle estimator̂αCWH

o as proposed in [4, cf. Eq.’s
(13) and (14)]. For each MC trial, the simulated data consists
of the received dataz (used as input to NMF detector) and
the secondary dataz1, . . . , zn (used as input to estimatêΣ).
The data sets are generated as i.i.d. random samples from
a p = 8 variateK-distributionCKp,ν(0,Σ) with ν = 4.5.
Since the chosenK-distribution is not heavy-tailed, the GLC
estimator is also expected to produce reliable estimates. This
would not be the case for choices ofν closer to 0. Using
10, 000 trials, the empiricalPFA (the proportion of incorrect
rejections) was calculated for a fixed thresholdλ. The true
scatter matrixΣ differed from trial to trial and was generated
randomly for each trial data set as follows: We first generated a
random complex unitaryp×p matrixP and a diagonal matrix
D = diag(d1, . . . , dp), with thedi’s arising from independent
Unif(0, 1) distributions. Using the EVD, the scatter matrix
Σ is then taken to beΣ = PDPH. Since the null distribution

of Λ is invariant to the signal vectorp, the signal vector
can be be chosen arbitrarily. In our simulations,p is fixed
at p = (1, exp(π), . . . , exp((p− 1)π).

Given that the detector is invariant to the scale ofΣ, using
a Unif(0, 1) distribution for the eigenvaluesdi is equivalent
to using aUnif(0, b) distribution for some fixedb > 0. Also,
it is worth noting that due to the unitary equivariance (cf.
Remark 2) ofΣ̂, the simulation results do not depend on how
the orthogonal matricesP are generated, and they would have
been the same even ifP had been set toI in every trial.

Figure 3 depicts empirical the PFA curves of the adaptive
detectors. The solid curves (n = ∞) depict the theoretical
PFA curve (22) for NMFΛ with known Σ. As can be seen
in Figure 3(a), when the detector is based on Tyler’sM -
estimator and the sample length is smalln = 8, 16, 32, there
exists a remarkably large gap between the observed PFA and
the desired (theoretical) PFA. All of the shrinkage estima-
tors are performing very well illustrating their usefulness in
practical applications. RegTYL estimator has slightly better
performance than others in the sense that it is able to maintain
the empirical PFA very close to the theoretical (desired) PFA
for sample lengthsn = 8, 16, 32 considered. Note that same
graphs would be obtained (on the average) for the TYL,
RegTYL and CWH estimators if the simulation samples are
drawn from any other CES distribution due to distribution-free
property of these estimators. This is not true, though, for the
GLC estimator whose performance depends on the underlying
CES distribution. Furthermore, if the shape parameterν of
the K-distribution is close to zero, then the performance of
GLC estimator degrades severely whereas the performance of
RegTYL and CWH estimators remain unaffected.

VII. C ONCLUSIONS

A general class of regularizedM -estimators was proposed
that are suitable also for smalln and largep problems. The
considered class was defined as a solution to a penalized
M -estimation cost function that depends on a regularization
parameterα ≥ 0 which determines the shrinkage intensity toI.
General conditions for uniqueness of the solution were estab-
lished using the concept of geodesic convexity. Remarkably,
the regularizedM -estimators do not require any conditions
to be placed on the samplez1, . . . , zn for any n ≥ 1. Fur-
thermore, the estimators are actionable: an iterative algorithm
with proven convergence to the solution of the regularizedM -
estimating equation was provided. For the regularized Tyler’s
M -estimator, necessary and sufficient conditions for existence
and uniqueness of the penalized Tyler’s cost function were
established separately and a closed form (data dependent)
choice for the regularization parameter was derived. We also
showed that in the special case of using a tuned Gaussian
cost function, the unique solution to the penalized likelihood
function is given by the widely used Ledoit-Wolf [16] (also
called GLC [7]) shrinkage estimator of the sample covariance
matrix.

Finally, numerical examples illustrated the usefulness ofthe
proposed estimators. In the signal detection problem using
the adaptive normalized matched filter, the regularized co-
variance matrix estimators were accurately maintaining the
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(b) GLC estimator usinĝα and β̂
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(c) Reg-TYL estimator usinĝαo
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Fig. 3. EmpiricalPFA for adaptive detector employing different scatter
matrix estimators underK-distributed clutter withν = 4.5 and different
sample lengthsn of the secondary data. The dimensionm = 8 and the
clutter covariance matrixΣ was generated randomly for each 10000 trials.

preset CFAR. All of the considered regularized estimators
outperformed the commonly used non-regularized estimator.
This is in line with previous works [1]–[4], [24] which have
nicely outlined the benefits of shrinkage type covariance ma-
trix estimators in different engineering applications. Itshould
also be noted that further benefits can be achieved when tuning

parameters are chosen so that they optimize an application
specific metric for the problem at hand. This will be a subject
of future work.

APPENDIX

PROOF OFTHEOREM 2

Proof: Let Σ̂ be the unique solution to (7), and define

Vk = Σ̂
− 1

2
Σ̂kΣ̂

− 1
2 . Algorithm (16) can then be re-expressed

as

Vk+1 = G(Vk) ≡
1

n

n∑

i=1

u(yH
i V

−1
k yi)yiy

H
i + αΣ̂

−1
,

whereyi = Σ̂
− 1

2
zi for i = 1, . . . , n. From (7), it follows

that G(Ip) = Ip. Note thatVk ∈ H(p), and so letλ1,k ≥
· · · ≥ λp,k > 0 denote the eigenvalues ofVk. The objective
is to then show thatVk → Ip as k → ∞. We first give two
lemmas.

Lemma 4.
a) λ1,k > 1⇒ λ1,k+1 < λ1,k.
b) λ1,k ≤ 1⇒ λ1,k+1 ≤ 1.
c) λp,k < 1⇒ λp,k+1 > λp,k.
d) λp,k ≥ 1⇒ λ1,k+1 ≥ 1.

Proof: (a) Sinceu(t) in non-increasing, andψ(t) =
tu(t) is non-decreasing, it follows thatu(yHV−1

k y) ≤
u(yHy/λ1,k) = λ1,kψ(y

Hy/λ1,k)/y
Hy ≤ λ1,ku(y

Hy), and
so

Vk+1 ≤ λ1,k
1

n

n∑

i=1

u(yH
i yi)yiy

H
i + αΣ̂

−1

= λ1,kG(Ip) + (1 − λ1,k)αΣ̂
−1
.

Thus,Vk+1 < λ1,kG(Ip) = λ1,kIp, and so part (a) follows.
(b) Since u(t) is non-increasing, u(yHV−1

k y) ≤
u(yHy/λ1,k) ≤ u(yHy). Consequently,Vk+1 ≤ G(Ip) = Ip,
and so part (b) follows.

The proofs for parts (c) and (d) are analogous.

Lemma 5.
a) lim supλ1,k ≤ 1.
b) lim inf λp,k ≥ 1.

Proof: The proof is by contradiction. To show part (a),
presumeλ1 ≡ lim supλ1,k > 1. By Lemma 4.b, this then
implies thatλ1,k > 1 for all k. So, by Lemma 4.a, it follows
that λ1,k is a strictly decreasing sequence and henceλ1,k ↓
λ1 > 1.

Next, note that Lemma 4 also implies that the sequences
λ1,k andλp,k are both bounded away from0 and∞. Hence,
there exists a convergent subsequenceVk(j) → V ∈ H(p),
with λ1(V) = λ1 > 1. Here, λ1(V) ≥ · · · ≥ λp(V) >
0 denote the eigenvalues ofV. Furthermore, by continuity,
Vk(j)+1 → G(V) with λ1{G(V)} = λ1. However, Lemma
4.a impliesλ1 = λ1{G(V)} < λ1(V) = λ1, a contradiction.
Hence part (a) holds. The proof to part (b) is analogous.

So, by Lemma 5 we have1 ≤ lim inf λp,k ≤ lim supλ1,k ≤
1, which implieslimλp,k = lim λ1,k = 1. Thus,Vk → Ip and
hence Theorem 2 holds.
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PROOF OFTHEOREM 4

Proof: (a) ExpressΓ = Σ−1 = γM with Tr(M) = 1,
and soL∗α,β(Σ) = L1(γ) + L2(M), where

L1(γ) = p(β − 1) ln(γ) + αγ

L2(M) =
pβ

n

{
n∑

i=1

ln(zHi Mzi)

}
− ln |M|.

Now if Σ → ∂H(p) then eitherγ → 0, γ → ∞, or M →
∂H(p). If γ goes to zero or infinity, it readily follows that
L1(γ)→∞ since for anyc > 0, αγ − c ln γ →∞ asγ → 0
or asγ →∞.

So, we only need to consider what happens toL2(M)
as M → ∂H(p). Since the set of positive semi-definite
Hermitian matrices with trace one is compact, it is sufficient
to consider a sequenceMk → M, whereM is a singular
positive semi-definite Hermitian matrix with trace one. Hence
1 < rank(M) < p. Let λ1(M) ≥ · · · ≥ λp(M) denote the
eigenvalue ofM. Since eigenvalues are continuous functions,
λj(Mk) → λj(M). The spectral value decomposition gives
Mk =

∑p
j=1 λj(Mk)θk,jθ

H
k,j , whereMkθk,j = λj(Mk)θk,j

with θ
H
k,jθk,m = δj,m. By compactness, it can be assumed

without loss of generality thatθk,j → θj , j = 1, . . . , p,
with θ

H
j θm = δj,m. For j = 1, . . . , p, let Sj denote the

subspace ofCp spanned by{θj , . . . , θp}, Sp+1 = {0} and
Dj = Sj\Sj+1 = {z ∈ Cp | z ∈ Sj , z /∈ Sj+1}. Also, let
nj = #{zi ∈ Dj} andNj = #{zi ∈ Sj}.

For nj ≥ 1 and zi ∈ Dj, zHi Mkzi ≥ λj(Mk)|θ
H
k,jzi|

2 ≥
λj(Mk)ck,j , where

ck,j = min{|θH
k,jzi|

2;zi ∈ Dj}

→ cj = min{|θH
j zi|

2; zi ∈ Dj} > 0.

For nj = 0, let ck,j = cj = 1. Hence,

L2(Mk) ≥
pβ

n

p∑

j=1

nj ln(ck,j)

+

p∑

j=1

(
pβnj

n
− 1

)
ln{λj(Mk)}.

The first term on the right converges topβn
∑p

j=1 nj ln(cj) >
−∞ and for j ≤ r = rank(M), 0 < λj(M) < 1. So, to
complete the proof of part (a), it only needs to be shown that

L3(Mk) =

p∑

j=r+1

(
pβnj

n
− 1

)
ln{λj(Mk)} → ∞.

Condition A implies pβNj

n < p − j + 1 for j = 2, . . . p.
Also, sincenj = Nj − Nj+1 with Np+1 = 0, it follows

that
(

pβnj

n − 1
)
< aj , whereaj =

(
p− j − pβNj+1

n

)
for

j = 2, . . . , p. Condition A also insures thataj ≤ 0 and so(
pβnj

n − 1
)

is strictly negative. Finally, forj = r + 1, . . . , p,

ln{λj(Mk)} → −∞. Thus, each term inL3(Mk) must go to
∞.

b) If condition B does not hold, then there exists a subspace
Vo such thatno

n > do

pβ , whereno = #{zi ∈ Vo} and do =

dim(Vo), with 1 ≤ do < p. Construct a sequenceΓk = Σ−1
k ∈

H(p) having eigenvalues1 andγk,o with multiplicities p− do
and do respectively, withγk,o → 0. Also, for everyk, let
the eigenspace associated withγk,o be Vo. Part (b) will then
follow by showingL∗α(Σk)→ −∞.

To show this, note thatL∗α(Σk) = La,k + Lo,k, where

Lo,k =

(
pβno

n
− do

)
ln(γk,o) and

La,k =
pβ

n





∑

zi∈Vo

ln(zHi zi) +
∑

zi /∈Vo

ln(zHi Γkzi)



−αTr(Γk).

It readily follows thatLa,k → La < ∞. Also, Lo,k → −∞
sincelog(γo,k)→ −∞ and pβno

n > do.

PROOF OFTHEOREM 5

Proof: Denote

C =
p

n

n∑

i=1

ziz
H
i

zHi Σ
−1
0 zi

= Σ
1/2
0

( p
n

n∑

i=1

uiu
H
i

)
Σ

1/2
0 (23)

whereui = Σ
−1/2
0 zi/‖Σ

−1/2
0 zi‖ for i = 1, . . . , n. Hence the

clairvoyant estimator isΣα = (1−α)C+αI. First, note that
the MSE criterion is

∆(α) = E
[
‖Σ−1

0 Σα −
1
pTr(Σ

−1
0 Σα)I‖

2
]

= Tr
(
Σ−2

0 E
[
Σ2

α

])
−

1

p
E
[
Tr2(Σ−1

0 Σα)
]
,

and observe that

Tr(Σ−1
0 Σα) = Tr

(
(1− α)

( p
n

n∑

i=1

uiu
H
i

)
+ αΣ−1

0

)

= p(1− α) + αTr(Σ−1
0 ) = p

where the 3rd identity follows from the fact thatTr(Σ−1
0 ) =

p. This result then implies that finding the minimum of
∆(α) is equivalent to finding the minimum of∆∗(α) =

Tr
(
Σ−2

0 E
[
Σ2

α

])
.

A closed-form expression for∆∗(α) can be obtained by
using the following identities:

E[C] = Σ0 (24)

E[C2] =
p{Σ2

0 +Tr(Σ0)Σ0}

n(p+ 1)
+
(n− 1

n

)
Σ2

0. (25)

The proofs rely on the representation ofC in (23) in terms
of i.i.d. r.v.’s ui, which possess a uniform distribution on
complexp-sphere, and properties of their moments as stated
in [20, Lemma 4]. The derivations are similar to the Proof of
Theorem 2 in [4] and are therefore omitted.

To conclude the proof of Theorem 5, note that

E[Σ2
α] = E[((1 − α)C+ αI)2]

= 2α(1− α)E[C] + α2I+ (1− α)2E[C2]
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and hence, using (24), (25) and the propertyTr(Σ−1
0 ) = p,

we obtain

∆∗(α) =2α(1− α)p+ α2Tr(Σ−2
0 )

+ (1− α)2
{
p(p+ pTr(Σ0))

n(p+ 1)
+
(n− 1

n

)
p

}

=α2(Tr(Σ−2
0 )− p) + (1 − α)2

p(pTr(Σ0)− 1)

n(p+ 1)
+ C

where the constantC does not depend onα. The minimizerαo

of ∆∗(α) (and hence of∆(α)) is thusαo = a/(a+ b), where
a (resp.b) denotes the multiplier term of(1− α)2 (resp.α2)
in the expression of∆∗(α) above. This then gives the stated
result for the complex-valued case.

The proof for the real-case follows similarly, the only
difference being that the identity in Eq. (25) in the real case
becomes

E[C2] =
p

n(p+ 2)
{2Σ2

0 +Tr(Σ0)Σ0}+
(n− 1

n

)
Σ2

0.
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