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PROBLEM FORMULATION

•Consider data from K distinct classes (populations).
•Let {xk,i}nki=1 denote the data set of the kth class.
•Our aim is to estimate the p× p covariance matrices,

Σk = E[(xk − E[xk])(xk − E[xk])
>], k = 1, . . . , K,

where xk denotes a random vector from the kth class.
•The sample covariance matrix (SCM) of class k is

Sk =
1

nk − 1

nk∑
i=1

(xk,i − xk)(xk,i − xk)
>,

where xk = 1
nk

∑nk
i=1 xk,i.

• If p ≈ nk or p > nk, regularization of the SCM is
needed to reduce the variance and to ensure positive
definiteness.
•A natural regularization target is the pooled SCM.

We are interested in a regularized SCM for class k:

Σ̂k(β) = βSk + (1− β)S,

where β ∈ [0, 1], and the regularization target S is
the pooled (average) SCM:

S =

K∑
k=1

πkSk, where πk =
nk∑K
j=1 nj

.

Goal: determine the optimal regularization level,

β?k = arg min
β∈[0,1]

E
[
‖Σ̂k(β)−Σk‖2

F

]
.

Solution:

β?k =
(1− πk)tr

(
Σ2
k

)
− πkE

[
tr
(
S2
k

)]
+ δk

(1− 2πk)E [tr (S2
k)] + δk

, (1)

where δk =
∑

j π
2
jE
[
tr
(
S2
j

)]
− 2

∑K
j=1,j 6=k πjtr (ΣkΣj)

+
∑

i 6=j πiπjtr (ΣiΣj) .

We need to estimate:
tr (ΣiΣj), i 6= j, E

[
tr
(
S2
k

)]
, and tr(Σ2

k).

ESTIMATION OF PARAMETERS

•Assume {xi,k}Kk=1, ∀k, are from (unspecified) elliptical
distributions with finite 4th order moments.
•A consistent estimate of tr (ΣiΣj), i 6= j, is tr (SiSj).
•By using Corollary 1 from [1], one can show that

E
[
tr
(
S2
k

)]
= pη2

k (τ1(p + γk) + (τ2 + 1)γk) ,

where τ1 = (nk − 1)−1 + κk/nk and τ2 = κk/nk.
◦The elliptical kurtosis, κk = (1/3)·{excess kurtosis},

is estimated by the average elliptical sample kurto-
sis of the variables.
◦The scale, ηk = tr (Σk) /p, is estimated by η̂k =

tr (Sk) /p.
◦The sphericity, γk = ptr

(
Σ2
k

)
/tr (Σk)

2, is estimated
by [2]

γ̂sgn,k = ptr
(
S2

sgn,k
)
− p

nk
,

where the sample sign covariance matrix is

Ssgn,k =
1

nk

nk∑
i=1

(xk,i − µ̂k)(xk,i − µ̂k)
>

‖xk,i − µ̂k‖2
,

and µ̂k = arg min µ

∑nk
i=1 ‖xk,i − µ‖.

•An estimate of tr
(
Σ2
k

)
is obtained by pγ̂sgn,kη̂

2
k.

•As the final estimate of β?k, we use max{0,min{1, β̂k}}.
•We estimate β̂k for each class k, and denote the

method by Prop 1.

SIMULATION SET-UPS

1. Σk = kI.

2. (Σk)ij = kρ
|i−j|
k , where

ρ1 = −0.6, ρ2 = −0.2, ρ3 = 0.2, and ρ4 = 0.6.

•K = 4, p = 20, nk = 10k, and n =
∑

k nk = 100.
•The data was Student’s tν-distributed with ν = 10.
•µ1 = 0, and for the classes k = 2, 3, and 4, ‖µk‖ = 1 +k

in orthogonal directions.
• 300 Monte-Carlo trials.

MSE PERFORMANCE

The empirical NMSE, L̃k = Ave‖Σ̂k −Σk‖2F/‖Σk‖2F, for the set-ups
1 and 2 (from top to down). LB denotes the lower bound and
Oracle uses β?k from (1). Standard deviations are in parenthesis.

L̃1 L̃2 L̃3 L̃4 Sum

LB 2.04 (0.97) 0.65 (0.20) 0.30 (0.08) 0.24 (0.05) 3.24 (1.07)

Oracle 2.13 (1.09) 0.70 (0.29) 0.32 (0.12) 0.24 (0.05) 3.40 (1.23)

Prop 1 2.07 (0.97) 0.67 (0.20) 0.31 (0.08) 0.24 (0.05) 3.29 (1.06)

Pool 6.80 (1.85) 0.96 (0.37) 0.32 (0.13) 0.24 (0.05) 8.32 (2.38)

SCM 2.89 (1.63) 1.42 (0.84) 0.92 (0.35) 0.73 (0.41) 5.95 (1.94)

LB 1.17 (0.57) 0.87 (0.29) 0.37 (0.11) 0.22 (0.05) 2.63 (0.68)

Oracle 1.25 (0.71) 0.93 (0.40) 0.40 (0.17) 0.24 (0.09) 2.81 (0.90)

Prop 1 1.18 (0.60) 0.88 (0.30) 0.38 (0.12) 0.24 (0.07) 2.68 (0.72)

Pool 6.25 (1.77) 2.04 (0.73) 0.43 (0.23) 0.29 (0.05) 9.01 (2.71)

SCM 1.50 (1.05) 1.32 (0.75) 0.86 (0.34) 0.39 (0.31) 4.07 (1.36)

APPLICATION IN CLASSIFICATION
• In discriminant analysis, any new observation x is

assigned to class k̂ by the rule:

k̂ = arg min
k

(x− x̄k)
>Σ̂
−1

k (x− x̄k) + log |Σ̂k|.

• In RDA [3], Σ̂k(β) is further regularized towards
scaled identity by

Σ̂k(α, β) = αΣ̂k(β) + (1− α)
(
tr(Σ̂k(β))/p

)
I, (2)

and α, β ∈ [0, 1] are common across classes and chosen
via cross-validation.
•We applied (2) to our estimator by using

α̂k = max

{
0,

γ̂k − 1

γ̂k − 1 + (κ̂k(2γ̂k + p) + γ̂k + p)/nk

}
from [4]. We denote this estimator by Prop 2.
•CV is the RDA estimator in (2) with fixed α = 1.
•LDA uses the pooled SCM.
•Note: Prop 1 and Prop 2 are computationally sig-

nificantly more efficient than CV and RDA since no
cross-validation is needed.

SYNTHETIC DATA EXAMPLES
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Boxplots of the misclassification rate ×100 and β̂k for the set-ups
1 (left) and 2 (right). The black triangles denote β?k.

REAL DATA EXAMPLES

•Glass data set [5]: p = 9, n1 = 51 (window glass) and
n2 = 163 (non-window glass).
• Ionosphere data set [5]: p = 32, n1 = 126 (bad radar

return) and n2 = 225 (good radar return).
•A fraction 1/4 of the samples from each class were

used as training data.
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Boxplots of the misclassification rate ×100 for the glass data (left)
and the ionosphere data (right).
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