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(CRB) is derived for demixing matrix estimation problem as well. Its usefulness is illustrated with a simulation study.

In this thesis, the mathematical and statistical aspects ofcomplex-valued signal processing are also addressed.
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Anturiryhmät ja niihin liittyvä monikanavaiset signaalinkäsittelytekniikat ovat avainteknologioita langattomissa
tiedonsiirtojärjestelmissä ja radiotaajuisissa mittauksissa. Tutkimuksen sovellusalueet löytyvät erityisesti
tietoliikennetekniikasta, sensoriverkoista ja biolääketieteistä. Anturiryhmiin perustuvassa signaalinkäsittelyn
sovelluksissa havaittu monikanavainen mittaus voidaan esittää lineaarisena sekoitteena alkuperäisistä lähdesignaaleista
jotka saapuvat useasta lähteestä samanaikaisesti anturiryhmään. Havaitun moniulotteisen mittausdatan avulla on
tarkoitus selvittää kiinnostuksen kohteena olevien parametrien, kuten lähdesignaalien tulosuunnat tai sekoitematriisin
arvo riippumattomien komponenttien analyysin ongelmassa.

Tässä tutkimuksessa on kehitetty uusia tilastollisia menetelmiä monikanavaisten signaalien käsittelyyn. Sen lisäksi on
analyyttisesti tarkasteltu teoreettisia estimointitarkkuuden alarajoja. Anturiryhmien signaalinkäsittelyssä työssä
keskitytään keilanmuodostukseen, signaalien tulosuuntien ja lukumäärän estimointiin. Kehitetyt tekniikat ovat
vankkoja siinä mielessä, että ne toimivat hyvin luotettavasti virheellisien tai poikkevien havaintojen sekä ei-Gaussisen
kohinan tapauksissa. Kehitettyjen tekniikoiden luotettavuus on todennettu sekä analyyttisesti että simulaatioiden avulla.

Kompleksiarvoisen riippumattomien komponenttien analyysin ongelmaan työssä on kehitetty kaksi uutta
estimaattoriperhettä sekoitematriisin estimointiin. Tutkimus parantaa analyysimenetelmän käytettävyyttä, sillä käyttäjä
voi valita laajan estimaattoriperheen sisältä sen estimaattorin joka tuottaa parhaita tuloksia kussakin ongelmassa.
Lisäksi työssä on johdettu Cramér-Rao estimointitarkkuuden alaraja sekoitematriisin estimoinnissa. Kehitettyjen
tekniikoiden luotettavuus ja johdetun alarajan hyödyllisyys on todennettu simulaatioiden avulla.

Tässä työssä on johdettu uutta matemaattista ja tilastollista teoriaa kompleksiarvoisten signaalien käsittelyyn. Työssä
on kehitetty uusia todennäköisyysmalleja sekä tilastollisia tunnuslukuja jotka karakterisoivat ja luokittelevat
kompleksiarvoisia signaaleja. Sen lisäksi on tarkasteltuCramér-Rao estimointitarkkuuden alarajoja kompleksiarvoisten
parametrien estimoinnissa.
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Chapter 1

Introduction

1.1 Motivation of the thesis

In signal processing and related fields, multichannel measurements are often encoun-

tered. For example, biomedical measurements such as MEG and EEG, radar sig-

nals, many communications signals are multivariate. The m-variate received signal

z = (z1, . . . , zm)T (sensor outputs) may be modelled in terms of the transmitted source

signals s1, . . . , sd possibly corrupted by additive noise vector n, i.e.

z = As + n (1.1)

= a1s1 + . . .+ adsd + n

where A = (a1 · · · ad) is the unknown m × d system matrix and s = (s1, . . . , sd)
T

contains the source signals. It is commonly assumed that d ≤ m. In practice, the

system matrix is used to describe the array geometry in sensor array applications,

MIMO (multiple-input multiple-output) channel in wireless multiantenna communica-

tion systems and mixing system in the case of signal separation problems, for example.

The vector and matrix quantities in the model can be real-valued or complex-valued

depending on the application and problem at hand. Source vector s can be modelled

as random or deterministic, observable or unobservable, and it can be referred to as

independent components, source signals, latent variables, common factors, principal

components, etc, again depending on the application. Also the system matrix A is

often named differently. In most cases, s and n are assumed to be mutually statisti-

cally independent with zero mean. An example of a multiantenna sensing system with

uniform linear array (ULA) configuration is depicted in Figure 1.1.

The model (1.1) is indeed very general, and covers for example the following im-

portant applications that constitute the core topics of this thesis:

In narrowband array signal processing [1–5] each vector ai represents a point in

known array manifold (array transfer function, steering vector) a(θ), i.e. ai = a(θi),

where θi is an unknown parameter, typically the direction-of-arrival (DOA) of the ith
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δ

z1(t) z2(t) zl(t) zm(t)

θ1 θ2 θd

s1(t)
s2(t) sd(t)

Figure 1.1: A uniform linear array (ULA) of m sensors with sensor displacement δ
receiving plane waves from d far-field point sources.

source, i = 1, . . . , d. Identifying A is then equivalent to the problem of identifying

θ1, . . . , θd. For example, in case of ULA with identical sensors,

a(θ) =
(
1 e−ω · · · e−(m−1)ω

)T
,

where ω = 2π(δ/λ) sin(θ) depends on the signal wavelength λ, the DOA θ of the signal

w.r.t. broadside, and the sensor spacing δ. The source signal vector s is modelled as

either deterministic or random, depending on the application. The application domain

include radar, wireless communications and sensor array processing.

In blind signal separation (BSS) based on independent component analysis (ICA)

[6–9], both the mixing system A and the sources s are unknown. The goal in ICA

is to solve the mixing matrix and consequently to recover the original sources from

their mixtures exploiting only the assumption that sources are mutually statistically

independent. ICA has been successfully applied in several applications including wire-

less communications, audio and speech signal separation, biomedical signal processing,

image processing, feature extraction and data-mining.

A common assumption imposed on the signal model (1.1) is that

Assumption (A1) noise n and/or source s possess circularly (or, spherically) sym-

metric distributions.

In addition, in the process of deriving optimal array processors, the distribution of the

noise n is typically assumed to be known also, the conventional assumption being that

Assumption (A2) noise n possess (circular complex, or, real) multivariate Gaussian

distribution.
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Furthermore, commonly in complex-valued case, if s is modelled as stochastic, then s

and n are both assumed to be independent with circular complex Gaussian distribution,

and consequently, sensor output z also has m-variate circular complex Gaussian distri-

bution. Note that noise and interference in indoor and outdoor mobile communication

channels as well as in sonar and radar signals have been shown to be contaminated by

non-Gaussian noise and interference thus violating Assumption (A2). See e.g. Mid-

deleton [10] and Williams and Johnson [11] and references therein.

1.2 Scope of the thesis

The objective of this thesis is to develop the theory and methodology as well as to

construct practical and reliable robust statistical inference procedures (estimators, de-

tectors) for multi-channel and sensor array signal processing applications. Another ob-

jective is to establish theory and relevant statistical inference procedures for complex-

valued signal processing. The applications considered are beamforming, DOA esti-

mation, estimation of the number of source signals, real- and complex-valued ICA,

and complex-valued signal processing. Particular attention is paid to violations of the

Assumption (A1) or (A2). The design goal of the developed methods is that they

work reliably and robustly when the conventional assumptions (e.g. of normality, or,

circularity) are not valid, and produce highly reliable estimates otherwise. Rigorous

mathematical theory should accompany the derived methods.

1.3 Contributions

This work contributes to the fields of multi-channel and array signal processing, prob-

ability theory and communications.

The contributions of the thesis include the following

• Two new classes of demixing matrix estimators for complex-valued ICA are pro-

posed as generalizations of FOBI [12] and SUT [13]. The proposed classes of

demixing matrix estimators add flexibility and versatility to complex-valued ICA

since distinct estimators within the same class can have largely different statis-

tical (robustness, accuracy) properties. Hence one can choose an estimator from

the class that yields the best results to the specific application at hand.

• A simple closed form expression of the Cramér-Rao bound (CRB) for the demix-

ing matrix estimation is derived, thus filling an important gap in the theoretical

foundations of real-valued ICA.

• A class of scatter matrix based Minimum Variance Distortionless Response (SMB-

MVDR) beamformers are proposed. Theoretical properties of SMB-MVDR beam-
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former weight vectors are studied by deriving their influence function and asymp-

totic covariance matrix under the class of complex elliptically symmetric (CES)

distributions.

• Maronna’s [14] celebrated M-estimators of scatter are extended to the complex-

valued case and their usefulness are illustrated in several practical signal process-

ing applications.

• The concept of circularity is studied and a degree of circularity, called circularity

quotient, is proposed and its properties are established. A generalized likelihood

ratio test (GLRT) of circularity is derived assuming complex normal sample. It

is shown that with a slight adjustment, the GLRT can be made asymptotically

robust with respect to departures from Gaussianity within the CES distribu-

tions. The asymptotic distributions of the tests under the null hypothesis are

established.

• The unconstrained and constrained CRB for complex-valued parameter estima-

tion are derived. An advantage of the complex CRB is that it is often easier to

calculate than its real form.

• Complex elliptically symmetric (CES) distributions are proposed and studied.

This wide class of distributions include the circular CES distribution [15], the

Cauchy distribution and the complex normal distribution [16, 17] as special cases

and hence can be used to model wide variety of random phenomena.

• Complex cumulants are derived in a mathematically rigorous manner and a novel

complex-valued extension of Taylor series is introduced.

1.4 Structure of the thesis

This thesis consists of an introductory part and 10 original publications. The publica-

tions are listed at page viii and appended at the end of the manuscript. They will be

referred in the text by Publication [I], Publication [II], or simply [I], [II], etc.

The introductory part of this thesis is organized as follows. Chapter 2 provides

an introduction to ICA. The real-valued instantaneous ICA model and the underly-

ing probabilistic concepts and assumptions are discussed and some benchmark ICA

methods are reviewed. Also an image analysis example is provided and the concern of

robust estimation in the ICA model is illustrated with simulation studies and plots of

the empirical influence functions of the estimators.

Chapter 3 reviews the fundamentals of processing of complex-valued signals, e.g.

complex-field and functions, Taylor’s R-theorem, main probabilistic tools, statistics

and concepts needed in uni- and multivariate complex-valued signal processing, such
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as covariance, pseudo-covariances, circularity quotient, complex-valued kurtosis. CES

distributions and circularity detectors withing this class are discussed with illustrative

examples. Also MLE of the scatter parameter of the CES distribution is derived.

Chapter 4 introduces the common signal model and the basic concepts employed in

array signal processing. A brief overview of widely used DOA estimation techniques are

given and the problem of estimating the number of signals is addressed. The emphasis

is on scatter matrix based (SMB) array processing. In particular, M-estimators of

scatters are reviewed and their robust performance is shown with several illustrative

array processing examples.

The chapters serve as a review of the work in Pubications [I]-[X] but also as a survey

of the state-of-the-art of the topics studied in this thesis.

1.5 Summary of publications

In this subsection, a brief overview of the publications are given.

In Publication [I], an extension of the whitening transformation for complex ran-

dom vectors, called the generalized uncorrelating transformation (GUT), is introduced.

GUT is a generalization of the SUT [13] based upon generalized estimators of the co-

variance and pseudo-covariance matrix, called the scatter matrix and spatial pseudo-

scatter matrix, respectively. It is shown that GUT is a demixing matrix estimator for

complex-valued ICA when at most one source random variable possess circularly sym-

metric distribution and sources do not have identical distribution. Special emphasis is

put on robust GUT estimators.

In Publication [II], a new class of demixing matrix estimators, called the diagonal-

izer of generalized covariance matrices (DOGMA), for complex-valued ICA are pro-

posed. The DOGMA class is a a generalization of FOBI [12] based upon two distinct

matrix-valued statistics, called the scatter matrix and the spatial scatter matrix. The

proposed approach is computationally attractive and an efficient algorithm that avoids

decorrelation of the data is proposed. Special emphasis is put on robust DOGMA

estimators.

In Publication [III], a simple closed form expression of the CRB for the demixing

matrix estimation is derived, thus filling an important gap yet existing in the theoretical

foundations of real-valued ICA. A simulation study comparing the performance of some

widely used ICA estimators with the CRB is given.

In Publication [IV], a class of scatter matrix based Minimum Variance Distortionless

Response (SMB-MVDR) beamformers are proposed. Statistical properties of SMB-

MVDR beamformer weight vectors are investigated by deriving their influence function

and asymptotic covariance matrix under the wide class of circular CES distributions.

The results clearly reveal the lack of robustness and inefficiency of the conventional
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MVDR beamformer in the face of non-Gaussianity.

In Publication [V], Maronna’s celebrated M-estimators of scatter are extended

to complex-valued case. Estimates of the noise and signal subspaces based on M-

estimators are then used to robustify the subspace DOA estimation methods. In addi-

tion, eigenvalues based on M-estimators of scatter are used to robustify the estimation

of number of signals using the minimum description length (MDL) criterion [18, 19].

In Publication [VI], a degree of circularity, called circularity quotient, is proposed

and studied. Its connection with the Pearson correlation coefficient ρ is established and

bounds on ρ given the circularity quotient (and vice versa) are derived. The GLRT of

circularity is shown to be a function of the modulus of the circularity quotient with

asymptotic χ2
2 distribution.

In Publication [VII], it is shown that with a slight adjustment the GLRT of circu-

larity can be made asymptotically robust with respect to departures from Gaussianity

within the CES distributions. The asymptotic distribution of the test under the null

hypothesis is established and simulations and a communication example are provided

to illustrate the usefulness and applicability of the proposed test. Connection between

the complex kurtosis and the marginal real kurtosis of a complex random variable with

a CES distributions is established.

In Publication [VIII], a concise and rigorous treatment of mathematical and sta-

tistical foundations of complex-valued signal processing is presented. Specifically,

complex-valued cumulants are derived in a mathematically rigorous manner and a

novel complex-valued extension of Taylor series is introduced.

In Publication [IX], the unconstrained and constrained CRB for complex-valued

parameter estimation are derived. The advantage of the complex CRB is that it is

often easier to calculate than its real form. It is shown that a statistic that attains a

bound on the complex covariance matrix alone do not necessarily attain the CRB.

In Publication [X], the CES distributions are proposed and its properties are stud-

ied. Also the conditional mean estimator within this class is studied and a likelihood

ratio test and the GLRT of circularity is derived assuming complex normality.

The results in Publications [I–VII], [IX] and [X] were derived independently by

the author of this thesis. The co-authors have helped in writing and structuring the

manuscript, planning the examples and steering/defining the research. In publication

[VIII], the idea of R-linearity, R-differential and the proposed circularity measure based

on characteristic function are due to Jan Eriksson. The proof of Theorem 2 is also by

him. The idea of complex cumulants using the 2nd characteristic function are due to

the author of this thesis. The proof of Theorem 1 is due to the author of this thesis. The

writing of the publication [VIII] and other concepts were done in close collaboration

with the co-authors. All the simulation software for the proposed methods in this

dissertation were written by the author of this thesis.



Chapter 2

Independent Component Analysis

Over the past two decades independent component analysis (ICA) has become a widely

used data analysis and signal processing technique with applications in many diverse

fields such as wireless communications, blind source separation, medical imaging, audio

and speech signal processing, image processing, feature extraction and data mining. See

text-books [8, 9] and their bibliographies for more details.

In this section we review the real-valued instantaneous ICA model and some com-

monly used methods of ICA. Also an image analysis example is provided and the

concern of robust estimation in the ICA model is illustrated with simulation studies

and plots of the empirical influence functions of the estimators. It is demonstrated

that the DOGMA method [II], which extends to real-valued case, offers a robust and

practical alternative.

2.1 ICA model

We consider the instantaneous noise-free real linear ICA model in which the observed

random vector x = (x1, . . . , xm)T is modelled as a linear mixture of the unobserved

(latent) source r.v. s = (s1, . . . , sd)
T ,

x = As (2.1)

where the real m × d mixing matrix A as well as the distributions of the sources are

assumed to be unknown and satisfy the assumptions

IC1 Sources s1, . . . , sd are statistically independent.

IC2 The number of mixtures m equals the number of sources d: m = d.

IC3 The columns ai of A, called the mixing vectors, are linearly independent.

IC4 At most one source has a Gaussian distribution.

7
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Figure 2.1: An illustration of the mixing system: three sound sources are linearly mixed
by a random mixing matrix. The mixing system and the original sound sources are
unknown and only the (microphone) recordings of the mixtures of the sound sources
are observed.

The goal in ICA is to estimate the demixing matrix W = A−1 allowing to separate

the independent components (IC’s) as s = Wx, where the (transposed) ith row vector

w ∈ R
d of W is called the ith demixing vector. Due to the assumptions IC2-IC4

separation is possible up to the fundamental indeterminacy (that allows permutation,

sign and scale changes) [6, 20]; We shall return to the ambiguities in the model in

Section 2.1.1 and Section 2.1.2. We shall write x ∼ FA to denote that x follows ICA

model.

We wish to point out that IC2 could be replaced by a more general assumption

that the number of mixtures is larger or equal to the number of sources (m ≥ d) in

which case the left inverse of A, W = (ATA)−1AT , is a demixing matrix achieving the

separation of the sources. Assumption IC2 is not a limitation since (assuming that the

number of sources are known) the dimensionality of x can be reduced e.g. by Principal

Component Analysis (PCA) [21].

� Example 1. Suppose that two mixing vectors a1 and a2 are parallel (i.e. linearly

dependent, a1 = aa2, for some a ∈ R). Then x has also statistical representation with

only d−1 sources by combining the 1st and 2nd source to a single source as1 +s2. This

case and also the simplest pathological cases, for example that A = (c)ij (i.e. aij ≡ c

for all i, j) are excluded by requiring IC3. �

The utility of ICA is commonly illustrated by the so called cocktail party problem.

Suppose there are three microphones and three sound sources. In a simplified model

(e.g. omitting multipath propagation, time delays), the microphone recordings are un-

known mixtures of the sound sources. The mixing depends naturally on the distance,

position and angle of the microphones relative to sound sources. Using ICA the orig-

inal sound sources can then be separated from the mixtures. See Figure 2.1 for an

illustration.

In the model and in the example above we have omitted the noise term that is

always present in real-world physical measurements. This so called noisy ICA model
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can be expressed as x = As+n, where the noise n is typically assumed to be d-variate

Gaussian random vector independent of the sources. With the additive noise, the ICA

model is more realistic. If the the signal to noise ratio (SNR) is high, the methods

for noiseless ICA typically yield satisfactory results; See e.g. simulation examples in

Publications [I,II]. Methods for noisy ICA are considered in [8, 22–24]

2.1.1 Fundamental indeterminacy of the ICA model

Let i1, i2, . . . , id denote any permutation of the set 1, 2, . . . , d. Vector

s0 = (si1α1, . . . , sidαd)
T , αi 6= 0,

whose elements are permuted and scaled version of the source r.v. s, is called the copy

of s. Note that also s0 has statistically independent components. Write

A0 =
(
ai1α

−1
1 ai2α

−1
2 · · · aidα

−1
d

)

for the matrix A whose columns are permuted accordingly and scaled by the divisor

of the scalar multiplier αi. Clearly, the mixture x does not have unique statistical

representation since

x = A0s0 = As.

and both A0s0 and As are valid generative ICA models for the observed mixture x

since the couples, (A0, s0) and (A, s), both satisfy assumptions IC1–IC3. This lead

to the so called fundamental indeterminacy: it is possible to identify A (and hence

W = A−1) only up to scaling, sign and permutation of its column vectors ai (resp.

row vectors wi); In addition, the scales, signs and the order of the IC’s s1, . . . , sd cannot

be determined without additional assumptions.

Hence separation of the IC’s from their mixtures should be understood as the de-

termination of a demixing matrix W, such that Wx = s0, i.e. W maps the mixtures

x to any copy of s. Thus A−1 is a demixing matrix, but, any matrix W that is equal

to A−1 up to permutation, sign and scale change of its row vectors, is a valid demixing

matrix as well.

2.1.2 Non-Gaussianity

Let us now shed some light on the non-Gaussianity requirement IC4. Suppose that

sources s1, . . . , sd have zero-mean normal (Gaussian) distribution. Due to scale ambi-

guity, we can assume that they are of unit variance. Thus si ∼ N(0, 1), i = 1, . . . , d

and hence s has d-variate standard normal distribution, denoted s ∼ Nd(0, I), where

I denotes the identity matrix. Next recall that the standard normal distribution re-

mains invariant under orthogonal linear transformations [25], that is, also Vs possesses
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Nd(0, I) distribution for any orthogonal matrix V (i.e. VTV = I). Hence a couple

(AV,Vs) yields a valid ICA model since

x = (AVT )Vs

and they satisfy IC1-IC3 (since Vs has independent N(0, 1) components and AVT

has full rank). Thus A can be at best identified up to a right multiplication by an

orthogonal matrix. Hence a necessary condition for A to be identifiable up to the

fundamental indeterminacy is that IC4 holds. In fact, in [20] it was shown that the

non-Gaussianity of the sources (except for possibly one) is also sufficient condition for

A to be identifiable up to the fundamental indeterminacy.

Note that IC4 is a necessary condition to estimate all the sources from the mixture.

If the goal is to extract all (or a subset of the) non-Gaussian sources IC4 is not required.

ICA methods that utilize deflation strategy [26] do not need IC4.

One of the reasons, why higher-order statistics (HOS) have attained popularity in

ICA, is their ability to measure non-Gaussianity. Commonly used HOS to measure

non-Gaussianity is the kurtosis, standardized and shifted 4th-order moment defined as

kurt(x) , γ(x)− 3, γ(x) ,
E[(x− E[x])4]

(σ2(x))2
(2.2)

where σ2(x) , E[(x−E[x])2] denotes the variance of a r.va. x. Kurtosis has the property

that it vanishes when x is a Gaussian random variable. Note however that there exists

non-Gaussian distributions that have vanishing kurtosis as well. In ICA literature,

kurtosis is also used to classify random variables: the term sub-Gaussian (resp. super-

Gaussian) refers to a r.va. whose kurtosis is strictly smaller (resp. strictly larger) than

zero [8]. The pitfall of employing HOS such as kurtosis is their non-robustness and

inaccuracy for small sample sizes.

2.2 Data pre-processing in ICA

Many ICA algorithms require that the data is centered (has zero mean) and whitened

(uncorrelated, or sphered). If the 2nd-order moments of the sources are assumed to

exist, then the mean vector E[x] and the covariance matrix C(x) = [Cov(xi, xj)] of the

mixture x are

E[x] = AE[s]

and

C(x) , E[(x− E[x])(x− E[x])T ] = AC(s)AT . (2.3)

Note that C(x) ∈ PDS(d), where PDS(d) denote the set of all d×d real positive definite

symmetric d× d matrices.
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The most common pre-processing step in ICA is to center the data,

x− E[x] = A(s− E[s]),

since advantage can be taken from the property that the centered data follows ICA

model with an additional feature that sources are of zero mean. In addition, thanks to

the scale ambiguity of the sources, one can now tacitly assume without loss of generality

(w.l.o.g.) that

IC5 Sources are of zero mean, E[si] = 0, and of unit variance, σ2
i ≡ σ2(si) = 1,

i = 1, . . . , d.

Another common pre-processing step in ICA is the whitening (or sphering, decorre-

lating) of the data. Let B = B(x) denote any whitening matrix of a r.v. x, i.e.

C(x)−1 = B
T
B holds. For example, the (unique) principal square-root matrix of

C(x)−1, B = C(x)−1/2. Then the whitened data

v = Bx

has uncorrelated components of unit variance, i.e. C(v) = I.

It is crucial to realise the difference between independence and uncorrelatedness.

Namely, if random variables xi and xj are independent, then they are are uncorrelated,

but the converse is not necessarily true. Indeed there can exists a strong dependency

between r.va.’s xi and xj , yet being uncorrelated.

� Example 2. Let x1 be any r.va. symmetric about zero (i.e. x1 =d −x1), y

any random variable independent of x1 and x2 = ax2
1 + by where a and b can be any

non-zero constants. Hence there is a strong dependency between x1 and x2, but they

are nevertheless uncorrelated. �

If x follows the ICA model, then the whitened mixture

v = Ãs where Ã = BA

also follows ICA models as the couple (Ã, s) necessarily satisfy assumptions IC1-IC4

as well. Let us denote by ∆ the diagonal matrix with the standard deviations σi of

the sources as diagonal elements, i.e. C(s) = ∆2. The fact that C(v) = BC(x)BT = I

together with (2.3) indicate that

Ã∆2ÃT = (Ã∆)(Ã∆)T = I,

which, in turn, implies that the scaled mixing matrix Ã∆ is orthogonal. But since the

scales of the columns ãi of Ã can not be identified we may contend w.l.o.g. that Ã is

an orthogonal matrix1. Thus the demixing matrix of the whitened mixture must be

1Or equivalently, since IC5 can be assumed, we may contend that ∆ = I, which in turn implies
that Ã is an orthogonal matrix
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orthogonal as well. Hence there exists an orthogonal matrix W̃ such that

s0 = W̃v = (W̃B)As

is a copy of s. Thus W̃B is a demixing matrix for the original mixture x = As.

By whitening the data, the ICA problem is reduced to a simpler problem of finding

orthogonal demixing matrix of the whitened mixture. Since the orthogonal demixing

matrix W̃ has roughly one half unknown parameters compared to the d2 unknown

coefficients of the demixing matrix W, the ICA problem is now considerably simpler.

Most ICA methods employ pre-whitening and thus they differ only in the way they

estimate the orthogonal demixing matrix of the whitened mixture.

It is important to realise that the ICA model itself does not require any moment

assumptions on the sources. Whitening implicitly assumes that the 2nd-order moments

of the sources exist. Many heavy-tailed distribution, however, do not possess finite

variance, take Cauchy or t3-distribution as examples. Thus ICA methods that require

whitening often perform poorly for heavy-tailed sources or when outliers (i.e. highly

deviating observations) are present.

2.3 Review of ICA methods

In this section, we provide a short review of ICA methods. Up to date, thanks to

the vast interest in ICA during the past two decades, there exists a broad array of

ICA methods; see e.g. [6, 8, 9, 27] for a comprehensive account. We have chosen to

represent the FastICA [28–30] and JADE [7, 31] methods in more detail since they have

become benchmark methods of ICA. Also reviewed are FOBI [12] and its generalization,

DOGMA (publication [II]) as it extends to the real-valued case [32].

2.3.1 Anatomy of ICA algorithms

Roughly speaking, there exists two main branches of ICA methods, the optimization

group and the algebraic group of ICA algorithms.

In the optimization group, the first step is to formulate a criterion function which

serves as a measure of independence (or of non-Gaussianity). Criterion function J is

a statistical functional J : F → R+ = [0,∞), i.e. a real-valued function of d-variate

probability distributions F ∈ F , where F denotes a set of all distributions on Rd (or a

large subset of it) such that J (F ) exists. A sensible criterion function should have at

least the following properties:

(i) J (x) = 0 if r.v. x with the distribution F ∈ F has independent components.

(ii) J (x) > 0 for all or at least most distributions F ∈ F of x that do not have

independent components.



2.3 Review of ICA methods 13

(iii) J (Px) = J (x) for all permutation matrices P.

The idea is to find an invertible d× d matrix W that minimizes the criterion function

J (Wx) over all d× d real invertible matrices. For judicious choice of J (·), the found

minima WJ is a demixing matrix when x follows ICA model. If x is pre-whitened, then

the optimization problem is simplified to that of finding an orthogonal d × d matrix

W minimizing J (Wx).

If the r.v. x ∼ F possess a p.d.f., then the mutual information (MI)

MI(x) = EF

[
log

f(x)∏
i=1 fi(xi)

]
=

∫ ∞

−∞

log
f(x)∏
i=1 fi(xi)

f(x)dx

where f(·) and fi(·) denotes the p.d.f. of x and xi respectively (i = 1, . . . , d), then

satisfies property (iii), and also properties (i) and (ii) in a strict sense: MI(x) ≥ 0

with equality if and only if x has independent components. Hence MI is a contrast

function [6]. Comon [6] also proposed of using J (x) =
∑d

i=1 |cum4(xi)|2 where x is

assumed to be whitened and cum4(x) , E[(x−E[x])4]− 3(E[(x−E[x])2])2 denotes the

4th-order cumulant of a r.va. x.

Alternatively, one can search for a single demixing vector w ∈ Rd such that the

projection s = wTx of the r.v. x ∼ F minimizes/maximizes some criterion function

J (wTx). Such approaches are strongly related to projection pursuit [33, 34] method.

For example, FastICA (subject of Section 2.3.2) formulates a criterion function that

measures “non-Gaussianity”. To find all demixing vectors one can then use deflation

approach (one-unit, sequential extraction) [26], where the IC’s are extracted sequen-

tially, i.e. one after another. Typically, the constraint of uncorrelatedness with the

previously found sources is then used to prevent the optimization algorithm from con-

verging to previously found components.

In the algebraic group, the demixing matrix is sought using matrix algebra and

matrix-valued statistics. Several ICA methods, e.g. FOBI, DOGMA, CHESS (CHar-

acteristic function Enabled Source Separation) [35], JADE (and inherently related ten-

sorial methods [8, 23]) are examples of ICA methods that can be classified to this group.

Naturally, the distinction in not always so clear cut. For example, JADE could also be

classified to the optimization group (see e.g. [7]).

2.3.2 FastICA

Arguably, FastICA [28, 29] is one of the most popular and widespread method. Its

popularity can be attributed to its simplicity, ease of implementation, fast computation,

a user-friendly public-domain software [30] and flexibility to choose the nonlinearity

function.

We restrict our attention to the deflation-based FastICA method, referred as defla-

tionary FastICA or FastICA for short. There also exist symmetric (or, joint, simulta-
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neous extraction) mode, but originally [28] FastICA was put forth in deflation mode.

Advantage of the deflation-based FastICA over the symmetric FastICA is the ability to

estimate a single or a subset of the original IC’s which can be desirable in some appli-

cations [36]. Another advantage is the reduced computational load which can be sig-

nificant if only a small subset of sources needs to be extracted from a high-dimensional

data set. The downside is that errors can accumulate in successive deflation stages in

which case symmetric approach can provide better overall separation performance.

FastICA needs to assume that the sources have finite 2nd-order moments. Hence

we assume w.l.o.g. that IC5 holds. Let us now assume that the data is centered so

that E[x] = E[s] = 0 holds and define the inner product in the vector space Rd as

〈u,y〉 , E[(uTx)(yTx)] = uTCy, (2.4)

where C is the positive definite d×d covariance matrix of the centered x. This induces

the norm ‖ · ‖,
‖u‖2 , 〈u,u〉 = var(uTx) = uTCu.

Note that the standard inner product of Rd is the dot product with the corresponding

norm being the Euclidean distance (L2-norm) ‖w‖2 ,
√

wTw. Geometrically, a vector

w of Rd with unit norm ‖w‖ = 1 then lies on the ellipsoid (centered at the origin)

whose axis have endpoints at ±(1/
√
λi)ei, i = 1, . . . , d, where (λi, ei), i = 1, . . . , d

denote the eigenvalue-eigenvector pair of the positive definite covariance matrix C.

Nonlinearity in FastICA

As in [37, 38], we formulate the FastICA method without the unnecessary pre-whitening

stage. FastICA method is based on the idea of maximizing a “non-Gaussianity” mea-

sure |EF [G(wTx)] |, where G can be any twice continuously differentiable nonlinear

and nonquadratic function with G(0) = 0, and write g = G′ and g′ = G′′ for the 1st

and 2nd derivative of G, respectively. Function g is then called the nonlinearity. The

standard nonlinearities and their acronyms implemented in FastICA software [30] are

pow3 : g(s) = s3

tanh : g(s) = tanh(s)

gaus : g(s) = se−s
2/2

skew : g(s) = s2

Figure 2.2 shows their graphs. Nonlinearity pow3 (that corresponds to the original Fas-

tICA estimator [28]) is recommended for sub-Gaussian sources, gaus for super-Gaussian

sources (as it redescends to zero and thus gives outliers less weight) whereas tanh (which

is bounded, but less robust than gaus) is described as a “good general-purpose contrast

function” [29]. The nonlinearity skew corresponds to skewness optimization and it can
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Figure 2.2: The standard nonlinearities implemented in FastICA software [30]

be used only to extract a non-symmetric source; it is commonly used in applications

of FastICA to functional magnetic resonance imaging (fMRI) data since the estimated

spatial maps often possess skewed distributions [39]. If the distribution of the sources is

known, then the optimal nonlinearity is the location score function ϕ(s) , − d
ds

log f(s),

where f denotes the p.d.f. of the extracted source. In [40] symmetric FastICA approach

combined with adaptive estimation of the location score function using the Pearson sys-

tem is utilized.

Deflationary (k-unit) FastICA

The criterion must be optimized under a constraint on the scale of w, e.g. ‖w‖2 =

wTCw = 1. The 1-unit FastICA functional wg,1(F ) is then defined as

wg,1 = arg max
‖w‖=1

|E[G(wTx)] |.

The dependence of the solution on the choice of G is indicated in the subindex via its

derivative (nonlinearity) g. The above constrained optimization problem can be solved

by the FastICA algorithm that uses a fixed point scheme for finding a local extrema of

E[G(wTx)] subject to ‖w‖ = 1.

If we wish to find more than one source, then at the kth deflation-stage, an addi-

tional constraint of orthogonality of w with the previously found vectors wg,1, . . . ,wg,k−1
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is required, i.e.

〈w,wg,i〉 = wT
Cwg,i = 0 for i = 1, . . . , k − 1. (2.5)

This means that w yields a projection s = wTx that is uncorrelated with the previously

found sources wT
g,ix, i = 1, . . . , k − 1. Such a constraint is natural as independence

implies uncorrelatedness. The kth FastICA functional wg,k(F ) is thus defined as

wg,k = arg max
‖w‖=1

∣∣ E[G(wTx)]
∣∣ subject to (2.5).

If x follows ICA model, i.e. x ∼ FA, then under general assumptions (given below),

wg,k(FA) is equal to one of the demixing vectors that have not been found at the earlier

deflation stages but it is not known in advance which one. Therefore, we can assume

w.l.o.g. (since it is always possible to shuffle the sources si’s in such order due to

permutation ambiguity of the ICA problem), that the solution (local maxima) is the

kth demixing vector, i.e. wg,k(FA) = wk.

To find k ∈ {1, . . . , d} sources the FastICA requires the assumption
{

If k < d : E[g(sj)sj]− E[g′(sj)] 6= 0 ∀j = 1, . . . , k
If k = d : E[g(sj)sj]− E[g′(sj)] 6= 0 ∀j = 1, . . . , d− 1.

(2.6)

The last deflation stage requires special attention since the last source is fully deter-

mined based on the previous extractions: wg,d is the unit norm vector of Rd that

is orthogonal (in the inner vector space) to the previously found set of orthonormal

demixing vectors wg,1, . . . ,wg,d−1. This also means that the last extracted source can

be Gaussian. For example, in case of pow3 nonlinearity (g(s) = s3 and g′(s) = 3s2),

assumption (2.6) is satisfied if E[s4
j ]−3E[s2

j ] 6= 0, implying that the (zero mean and unit

variance) sources sj , j = 1, . . . , k need to have finite 4th-order moments with non-zero

kurtosis (k < d). Thus none of the sj’s, j = 1, . . . , k, can be Gaussian. Nonlinearities

tanh or gaus, however, do not require additional higher-order moment assumptions,

and in this respect, they are more appropriate choices for super-Gaussian sources.

The FastICA algorithm

The FastICA algorithm finds wg,k (for k = 1, . . . , d) by iterating the steps

Step 1. w← C
−1

E[g(wTx)x]− E[g′(wTx)]w

Step 2. w← proj⊥(w)

Step 3. w← w/‖w‖

until convergence, i.e. until current and previously found vectors are practically par-

allel. Above

proj⊥(w) = w −
k−1∑

j=1

〈w,wg,j〉wg,j
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is the projection of w onto the orthogonal complement of the subspace (of the inner

product space R
d) spanned by the previously found demixing vectors. This is required

for w to satisfy the constraint (2.5) whereas in Step 3 the vector is normalized to

satisfy the unit norm constraint. Observe that at the last deflation stage (k = d), the

algorithm needs only one iteration and step 1 can be omitted. Naturally, in practice

the expectations above are replaced by sample means. As highlighted earlier, it is not

known in advance which component the algorithm finds. It mainly depends on the

initial value of the iteration.

Note that more commonly the FastICA algorithm is represented for whitened data.

In the whitened space, the inner product (2.4) reduces to the dot product and the

algorithm above reduces to common form represented e.g. in [8, Table 8.3]. In the

whitened space, after finding the orthogonal demixing matrix by the FastICA algo-

rithm, the final step is to calculate the original demixing matrix as Wg ←WgC
−1/2,

where Wg = (wg,1 · · · wg,d)
T . A bulk of the research on FastICA so far has concen-

trated on the convergence speed of the FastICA algorithm (e.g. [8, 28, 29, 41–43]) and

only few to statistical properties of FastICA (e.g. [37, 38, 44, 45]).

A straightforward attempt to robustify FastICA algorithm by employing a robust

covariance matrix estimator in place of the conventional covariance matrix fails for at

least two reasons. First, the derivation that leads to FastICA algorithm essentially

depends on the conventional covariance matrix. Hence, when the covariance matrix

is replaced by some robust estimator, the algorithm experiences convergence problems

(also reported e.g. in [46, Sect. 2.4]). Second, although many robust covariance esti-

mators have been proven to be consistent estimators of the covariance matrix (up to

a multiplicative scalar constant) in the elliptical model, a robust estimator may not

estimate the covariance matrix in the ICA model.

2.3.3 FOBI

FOBI (Fourth-Order Blind Identification) method [12] was one of the first methods

to solve the ICA problem. Recently, it has also been used to discriminate between

multivariate models [47]. In FOBI, the demixing matrix is calculated algebraically

from the matrix product of the inverse of the covariance matrix C(x) and the kurtosis

matrix [II]

K(x) , E[(xTC(x)−1x)xxT ]

where x is assumed to be centered so that E[x] = 0 holds. Kurtosis matrix has the

properties:

• Equivariance under invertible linear transformations:

K(Gx) = GK(x)GT

for any non-singular d× d matrix G, i.e. it is a scatter matrix [II].
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• IC-property [II]: If s has independent components of zero mean, then K(s) reduces

to a diagonal matrix,

K(s) = ∆2 diag(κi + d+ 2 ),

where ∆ = diag(σi) and κi , kurt(si) denotes the kurtosis of the ith source.

These properties are essential in proving the following result.

Theorem 2.3.1 (Publication [II]). Assume that x follows ICA model, and that the

kurtosis of the sources s1, . . . , sd exists and are distinct, i.e. κi 6= κj. Then, it holds

that

[C(x)−1
K(x)]WT = diag(κi + d+ 2)WT ,

that is, the demixing vectors w1, . . . ,wd are the eigenvectors of the matrix C(x)−1K(x)

and the corresponding eigenvalues are κi + d+ 2, i = 1, . . . , d.

Recall that the eigenvectors are subject to the same sign and scale ambiguity as

the demixing vectors, namely they are uniquely defined only up to a sign and positive

constant scalar. Usually, eigenvectors are defined to have a unit Euclidean norm to

get rid of the scale ambiguity and most eigenvector-eigenvalue extraction routines in

commercial software packages do so. By Theorem 2.3.1, a FOBI demixing matrix

estimator

Wfobi =
(
e1 · · · ed

)T
,

that contains the eigenvectors e1, . . . , ed of C(x)−1K(x) as rows (regardless of the nor-

malization of the eigenvectors used) is a valid demixing matrix estimator provided that

the sources have distinct kurtosis, that is, s0 = Wfobix is a copy of s.

FOBI is arguably among the simplest methods to solve the ICA problem. It can be

computed via standard eigenvector decomposition operating on matrix C(x)−1K(x).

Hence it is also computationally among the most efficient approaches to ICA.

FOBI algorithm (Publication [II], pp. 3798):

Step 1. Calculate the inverse of the covariance matrix Q(x) = C(x)−1.
Matlab code: Q = (X*X’/n)\eye(d); % X is d x n centered data matrix

Step 2. Calculate the kurtosis matrix K(x) = E[(xTQ(x)x)xxT ].
Matlab code: K = ones(d,1)*sum(X.*(Q*X)).*X*X’/n;

Step 3. Calculate the eigenvectors e1, . . . , ed of Q(x)K(x) and set Wfobi =(
e1 · · · ed

)T
.

Matlab code: [Wt L] = eig(Q*K); Wfobi = Wt’;
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Note that an efficient implementation of FOBI in Matlab requires only three lines

of code. This is in deep contrast to most ICA methods proposed thus far as it is not

based on high complexity iterative optimization of a non-linear function.

Alternatively, as was put forth in the original publication [12], the FOBI estimator

can be calculated via the steps :

1. Calculate the whitened data v = Bx, where B is any whitening matrix.

2. Calculate the eigenvalue decomposition (EVD) of the kurtosis matrix K(v) of

the whitened mixture v:

K(v) = ULUT , (2.7)

where U is the d × d orthogonal matrix of eigenvectors of K(v) as columns and

L is the d× d diagonal matrix of respective eigenvalues as diagonal elements.

3. Set Wfobi = UTB.

The original approach involves two steps, whitening of the mixture x followed by the

computation of the EVD of K(v). The earlier approach, however, is to be preferred as

it involves only one eigenvector extraction instead of two.

2.3.4 Extensions of FOBI

The FOBI method explained above has the limitation that it can only separate sources

with distinct kurtosis. If any two sources have identical distribution (up to location

and scale), then they have necessarily identical kurtosis due to location-scale invariance

property of the kurtosis: kurt(asi+ b) = kurt(si) for all a 6= 0 and b ∈ R. Thus sources

can not have identical distribution.

This limitation of FOBI originates from the lack of uniqueness of eigenvectors cor-

responding to an eigenvalue with multiplicity greater than one. Recall that FOBI

identifies demixing vectors as the eigenvectors e1, . . . , ed of C
−1(x)K(x); the respective

eigenvalues being λi = κi + d + 2 (Theorem 2.3.1). Thus two sources, say s1 and s2,

with identical kurtosis κ = κ1 = κ2, indicates an eigenvalue with multiplicity two,

λ = λ1 = λ2. In such instances, eigenvectors e1 and e2 no longer identify demixing

vectors w1 and w2 up to their sign and scale. Namely, although w1 and w2 are eigen-

vectors (corresponding to the eigenvalue λ), so is any w0 = a1w1 + a2w2 (a1, a2 ∈ R),

i.e. [C−1(x)K(x)]w0 = λw0. Hence the computed eigenvectors e1 or e2 are some un-

known linear combinations of w1 and w2, but we are not able to identify w1 and w2

from the sole knowledge of e1 and e2.
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Generalized FOBI

There exists a simple generalization of FOBI that avoids the assumption of distinct

kurtosis. See [7]. Let us define a cumulant matrix [7, Sect. 3.2.1] as follows

KM(x) , E[(xTMx)xxT ]− C(x)Tr[MC(x)]− C(x)MC(x)− C(x)MT
C(x),

where M is any d×d matrix and x is assumed to be centered (so E[x] = 0). The matrix

parameter M is a tuning parameter chosen by the user. How to choose M is discussed

at the end of this subsection. Observe that the cumulant matrix is symmetric, so

KM(x)T = KM(x), and possesses similar properties as the kurtosis matrix:

(C.1) Let x′ = Gx denote a linear transformation of d-variate r.v. x for any q × d

matrix G. Then

KM(x′) = GKN(x)GT ,

where N = GTMG is a d× d matrix and M is any d× d matrix.

(C.2) if s = (s1, . . . , sd)
T has independent components of zero mean (E[s] = 0), then

the cumulant matrix KM(s) is a diagonal matrix,

KM(s) = diag(c1m11, . . . , cdmdd),

where ci ≡ cum4(si) denotes the 4th-order cumulant of the ith source and mii is

the ith diagonal element of d× d matrix M, i = 1, . . . , d.

Hence if x follows ICA model and is centered (so E[s] = 0), then by (C.1) and (C.2),

we have that

KM(x) = AKN(s)AT ,

where N = ATMA and KN(s) = diag(cia
T
i Mai), For example, the choice M = I

yields KN(s) = diag(ci‖ai‖2).
An obvious generalization of the FOBI method is described next. The proof pro-

ceeds similarly as the proof of Theorem 2.3.1.

Theorem 2.3.2. Assume that centered x follows ICA model, a) kurtosis κi of the

sources exists, and b) λi = (σ2
i κi)a

T
i Mai are distinct for i = 1, . . . , d. Then, it holds

that,

[C(x)−1
KM(x)]WT = ΛWT ,

where Λ = diag(λi), that is, the demixing vectors w1, . . . ,wd are the eigenvectors of

the matrix C(x)−1KM(x) and the corresponding eigenvalues are λ1, . . . , λd.

Thus the generalized FOBI demixing matrix estimator WM that contains eigen-

vectors of C(x)−1KM(x) as rows (regardless of their normalization) is a valid demixing
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matrix estimator provided that the assumptions of Theorem 2.3.2 hold. If we choose

matrix M randomly, then the eigenvalues λ1, . . . , λd are distinct with probability one.

It is easy to show that if M = C
−1(x), then the corresponding estimator WM is the

FOBI estimator Wfobi. We note that originally Cardoso [7, Sect. 3.3.1] proposed using

another cumulant matrix KM(x) with distinct M in place of the covariance matrix in

calculating the demixing matrix. Herein we chose to use C(x) since then the method

can be interpreted as a generalization of FOBI.

Some problems still remains with the generalized FOBI approach. For example,

• The estimator lacks ICA-equivariance (in the sense of [48, Sect. II-C], [II,Def. 5]).

• The problem of selecting M. Although choosing M randomly guarantees distinct

eigenvalues, different choices can lead to different sample performance. Since the

eigenvalues λi also depend on the unknown mixing matrix A, it is not possible

to choose matrix M optimally, e.g. to guarantee large dispersion of eigenvalues.

One could, for example, compute the sample estimator ŴM for several randomly

chosen matrices M and retain the one with the largest eigenvalue spread.

• Inaccuracy for small sample sizes. By (C.2), KM(s) is a diagonal matrix. How-

ever, for small sample lengths (say n < 1000), the sample estimator calculated

from the source data matrix can be rather far from a diagonal matrix.

JADE

JADE (Joint Approximate Diagonalization of Eigenmatrices) [7, 31] is an elegant ap-

proach that solves the above problems associated with generalized FOBI estimator.

Let v = Bx denote the centered and whitened data. Hence E[v] = 0 and C(v) = I.

Recall that the whitened r.v. v also follows ICA model v = Ãs, where Ã = BA is an

orthogonal mixing matrix and E[s] = 0 due to centering. In an analogous fashion, the

properties (C.1) and (C.2) imply that

KM(v) = Ã diag(ciã
T
i Nãi) ÃT ,

where ãi denotes the ith column of Ã. Let {M1, . . . ,Mp} be a set of d × d tuning

matrices and Ki = KMi
(v), i = 1, . . . , p the corresponding p cumulant matrices. Let

us define a non-negative measure of non-diagonality of a matrix as Off(G) ,
∑

i6=j(gij)
2,

i.e. as the sum of squares of the off-diagonal elements of its matrix argument. Then

Off(G) = 0 iff G is diagonal, and the larger the measure Off(G) is the more ’non-

diagonal’ it looks like. Particularly, Off(W̃KiW̃
T ) = 0 when W̃ = Ã−1 = ÃT . For an

orthogonal matrix U define the joint-diagonality (JD) criterion as

JD(U) ,

p∑

i=1

Off(UKiU
T )
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which measures how close to diagonality an orthogonal matrix U can simultaneously

bring the set of p cumulant matrices generated by {Mi}. The idea in JADE is to find

the demixing matrix W̃ of the whitened data as the minimizer of the JD criterion

where the set {Mi} is chosen cleverly as a set of ’eigenmatrices’. At the population

level, the set of cumulant matrices can be exactly jointly diagonalized, but for finite

samples, the set {K̂i} calculated from the sample can only be approximately jointly

diagonalized. In finding the orthogonal matrix that minimizes the JD criterion, a

Jacobi algorithm [7, 31] is utilized. We note that Jacobi type of optimization is used by

other ICA methods as well, e.g. [6, 49]. Also the (approximate) joint diagonalization is

a commonly used approach that has a long history in ICA; see e.g. [35, 50–53].

Although JADE in essence solves the other two problems of generalized FOBI

method, yet the lack of ICA-equivariance remains. The downside is that due to the

pairwise processing (Jacobi technique), JADE is not well suited for high-dimensional

data sets.

DOGMA

FOBI suffers from its non-robustness (i.e. high sensitivity to outliers) and limited ver-

satility (e.g. existence of the 4th-order moments of the sources is required). DOGMA

(Diagonalizers Of Generalized covariance MAtrices) is a generalization of FOBI utiliz-

ing any distinct pair of scatter matrices with independent components (IC-)property

in place of the covariance and kurtosis matrix; see [32] for the real-valued case and

Publication [II] for the complex-valued case. Thus DOGMA estimators constitute a

large family of estimators that include FOBI as a particular special case.

A scatter matrix is a generalization of the covariance matrix. A positive definite

symmetric d× d matrix C(x) is called a scatter matrix if it is equivariant in the sense

that C(Gx) = GC(x)GT for any nonsingular d× d matrix G. The covariance matrix

C(·) and the kurtosis matrix K(·) are scatter matrices for distributions with finite

2nd- and 4th-order moments, respectively. Scatter matrix of a real-valued r.v. x is

a key concept in multivariate statistics and up to date there exists a broad array of

estimators one can choose from. One of the first proposals were M-estimators of scatter

by Maronna [14]. Since this pioneering work several competing robust estimators have

been proposed, e.g. minimum volume ellipsoid estimator [54], minimum covariance

determinant estimator [54], S-estimators [55, 56], τ -estimators [57], CM-estimators [58],

MM-estimators [59], sign and rank based scatter matrices [60, 61] to cite only a few.

Let C1(·) and C2(·) denote any pair of distinct scatter matrices. For purposes of

ICA we require that the selected scatter matrices possess IC-property, namely, C1(s)

and C2(s) are diagonal, i.e. [C1(s)]ij = 0 and [C2(s)]ij = 0 for all i 6= j when r.v. s has

independent components. Covariance matrix and kurtosis matrix possess IC-property.

Robust scatter matrix estimators however do not necessarily possess IC-property. If
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sources s1, . . . , sd have symmetric distribution (i.e. si has the same distribution as

−si), then a scatter matrix automatically has the IC-property.

Theorem 2.3.3 (Publication [II]). Assume that x follows ICA model and x is centered.

Suppose that a pair of scatter matrices C1(·) and C2(·) possess IC-property and that

λi = [C2(s)]ii/[C1(s)]ii, i = 1, . . . , d, are distinct. Then, it holds that

[C1(x)−1C2(x)]WT = ΛWT ,

where Λ = diag(λ1, . . . , λd). This means that the demixing vectors w1, . . . ,wd are

the eigenvectors of the matrix C1(x)−1C2(x) and the corresponding eigenvalues are

λ1, . . . , λd.

Again, due to fundamental indeterminacy of ICA model, a DOGMA demixing

matrix estimator containing the eigenvectors of C1(x)−1C2(x) as rows (regardless of

the used normalization) is a valid demixing matrix provided that the eigenvalues are

distinct. If C1 = C and C2 = K, then FOBI is obtained. The assumption of distinct

eigenvalues is required to separate all the sources. Namely, DOGMA demixing matrix

is not able to separate the set of sources with identical eigenvalue but the rest of

the sources are separated. Hence, the DOGMA method contains a built-in warning:

detection of two close eigenvalues is an indication that the corresponding sources may

not be reliably separated.

2.4 Image analysis example

2.4.1 PC, whitening and IC-transform illustrated

Let x be a d-dimensional random vector and denote by EΛET the EVD of its covariance

matrix C(x). Consider the following linear transformations of a r.v. x:

• Principal Components (PC-)transformation:

z = ETx.

• Whitening transformation:

v = Bx = Λ−1/2z,

where B = Λ−1/2ET is a whitening matrix.

• IC-transformation using FOBI:

s = Wfobix = UTv

as Wfobi can be represented as Wfobi = UTB for an orthogonal matrix U; recall

Step 3 of the original FOBI algorithm on p. 19.
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Figure 2.3: Scatter plots of the aircraft data and the transformed data.

Hence the above transforms are linear mappings related as

x
ET

7−→ z
Λ

−1/2

7−→ v
UT

7−→ s.

These transforms are now illustrated with a simple image analysis example. Figure 2.3

depicts the picture of an aircraft that is segmented from the background using a simple

thresholding method. As a result we have a sample of n = 249 bivariate observations

x1, . . . ,xn. Also depicted are the scatter plots of the corresponding (PC-, whitened,

and IC-)transformed data based on sample statistics. Note the difference between the

IC and whitening transform. While whitening translates the data to be uncorrelated,

the IC-transform has the intuitive feature that the data appears as independent as

possible. This is manifested by the fact that the head and the wings of the aircraft are

now aligned with the axis.

2.4.2 Robustness concern illustrated

Now suppose that when the aircraft was segmented from the image, a single outlier

x0 = (−25, 20)T that is not from the surface of the airplane remained unnoticed, as
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shown in Figure 2.4. Also shown in the figure are the IC-transformed data using

FOBI and a robust DOGMA estimator employing Tyler’s and Huber’s M-estimator

of scatter with q = 0.9 as choices of scatter matrices. We recall that 0 < q < 1 is a

tuning constant that controls the robustness and efficiency of the Huber’s M-estimator

w.r.t. the nominal d-variate Gaussian distribution; the value q = 0.9 is commonly used

and it can be seen as a compromise that provides sufficient robustness and yet a very

small loss in efficiency at the normal model. As can be seen only the IC-transformed

data based on FOBI is affected by the outlier. The outlier has affected the rotation:

the aircraft is no longer aligned along the axis. IC-data using the robust DOGMA

estimator is unaffected by the outlier and attains good alignment with the axis.

This example illustrates the importance of robust estimation in ICA as outliers

can appear commonly in real-world data sets. We also point out that for the aircraft

data set with an outlier, the FastICA algorithm employing standard nonlinearities did

not converge. This feature illustrates the advantage that a method in the algebraic

group of ICA methods (such as FOBI and DOGMA) can have over the methods in the

optimization group (such as FastICA). It is a rather common feature for ICA methods

based on optimization of a criterion function that they can experience convergence

problems when the data contains spurious points or sample lengths are small.

2.5 Performance studies

2.5.1 Empirical influence functions

Let us denote by ŵj ≡ ŵj(Xn) the finite sample estimator of the jth demixing vector

wj based on the sample Xn = {x1, . . . ,xn}. A popular tool to measure robustness of an

estimator to an outlier is the empirical influence function (EIF) (also called sensitivity

function [62]). The EIF is defined as

EIF(x0; ŵj, Xn) , (n+ 1){ ŵj(Xn ∪ {x0})− ŵj(Xn) }.

The EIF thus calculates the standardized effect (normalized by the mass 1
n+1

of the

contamination) of an additional observation at x0 on the demixing vector estimator. A

robust estimator has an EIF that is a bounded function of the contamination point x0

which means that a large outlier x0 added to the given data set Xn cannot change the

estimator dramatically. In most cases, EIF is a consistent estimator of the theoretical

influence function [62, 63].

Figure 2.5 depicts the norms of the EIF’s of the demixing vector estimates ŵ1 and

ŵ2 in the case of two sources (s1 and s2 following a zero mean and unit variance t6 and

Uniform distribution, respectively) with no-mixing (i.e. A = I). In the simulations, we

used the FastICA software [30] with its default settings. The sample length is n = 2000

and the EIF plot is averaged over 500 Monte-Carlo runs in order to obtain a smooth
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Figure 2.4: Upper plot: the aircraft data with an outlier x0 = (−25, 20)T . Lower
plot: IC-transformed aircraft data with an outlier based on FOBI (left) and a robust
DOGMA method (right). The robust DOGMA method is unaffected whereas the
orientation of the IC-data using FOBI changes due to the outlier.

surface. As can be seen, FastICA using pow3 nonlinearity, is more influenced by an

outlier than FastICA using gaus nonlinearity. The key finding, however, is that the

EIF’s of the FastICA estimators are unbounded (regardless of the used nonlinearity)

but some “robustness” is offered by a robust choice of nonlinearity in the sense that the

norm of the EIF then grows less rapidly with the norm of the contamination point. The

EIF surfaces of the FastICA estimators also reveal that some observations are far more

influential than others: namely, observation x0 = (x, y)T that lie on the diagonals of

the plane (i.e. x and y coordinates have the same magnitude) has much larger impact

than an observation of the same length lying outside the diagonals. In fact, in [37, 38]

it was proved analytically based on the analysis of the theoretical influence function of

the FastICA functional, that the most influential points are of the form

x0 = A(r`), ` , (±1, , . . . ,±1)T , r ∈ R
+. (2.8)
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ŵ
1
,
X

n
)‖

−5

0

5

−5

0

5

0

50

100

xy −5

0

5

−5

0

5

0

1

2

3

4

5

xy

−5

0

5

−5

0

5

0

200

400

600

xy

‖E
IF

((
x
,
y
);

ŵ
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Figure 2.5: The surface plots of the Euclidean norms of the empirical influence functions
of ŵ1 (first row) and ŵ2 (second row) in the case of two sources (s1 and s2 following a
zero mean and unit variance t6 and Uniform distribution, respectively) with no-mixing
(A = I). Sample length was n = 2000 and the EIF plots are averaged over 500 samples.
Estimators used were (a) deflation-based FastICA with pow3 and (b) gaus nonlinearities
and (c) DOGMA utilizing Tyler’s M-estimator and Huber’s M-estimators with tuning
constant q = 0.9 as the choice of scatter matrices. Only DOGMA has bounded EIF.

Since in the simulation study the 2×2 mixing matrix equals A = I, the most influential

points (2.8) are indeed those that lie on the diagonals of the plane.

Let us now turn out attention to the EIF of the DOGMA estimator depicted in

Figure 2.5(c). The key observation is that the EIF’s are bounded. Hence an observation

x0 (no matter how large) always has a limited influence on the estimator. First, we wish

to highlight that due to the different standardization used by the above estimators, the

calculated demixing vector estimates were post-processed to have unit norm. Hence

the scales of the norms of the EIF’s for different estimators shown in Figure 2.5 are

comparable. As an example, if x0 = (6, 6)T , then ‖EIF(x0; ŵ1, Xn)‖ equals 686, 104,

and 0.86 in the case of FastICA with pow3 and gaus nonlinearities and DOGMA,

respectively. This means that the influence of a point x0 = (6, 6)T on the 1st demixing

vector estimator ŵ1 was about 700 times larger in the case of FastICA with pow3

nonlinearity as compared to the DOGMA estimator.
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2.5.2 A cautionary note

The quality of the separation can be assessed by calculating the interference to signal

ratio

ISR(V̂) =

√√√√ 1

d(d− 1)

{ d∑

i=1

( d∑

j=1

(v̂ij)2

max`(v̂i`)2
− 1

)}
.

where V̂ = (v̂ij) = ŴA and Ŵ an estimator of the demixing matrix W. The squared

ISR (with different scaling) was called the ICI (inter-channel interference) in [64]. Al-

ternatively, one could use the Amari performance index [65]. Perfect separation implies

that V̂ is equal to a matrix with one non-zero entry in each row and each column, yield-

ing ISR(V̂) = 0. When the quality of separation degrades, the value of ISR increases

and attains the maximum value of 1 when V̂ is non-singular with |v̂ij| equal in each

row i = 1, . . . , d. Attaining the maximum value 1 is highly pathological situation and

in practise an estimator never reaches it. More natural baseline of poor performance is

the value of ISR for a random non-singular matrix V̂ (i.e. when Ŵ represents a pure

guess). Then maximal ISR value 1 or its vicinity would indicate pathological/defective

(beyond poor) performance.

Calculating the plain guess baseline for ISR(·) requires generating a random non-

singular matrix which we calculate using the singular value decomposition (SVD) as

V̂ = U1LUT
2 , where U1 and U2 are randomly generated orthogonal matrices and L is a

diagonal matrix with values from Unif(0.01, 1) distribution. The baselines (calculated

as the mean over 50000 randomly generated non-singular matrices) at dimensions d =

2, 4, 8 were 0.482, 0.487, 0.463.

We consider bivariate ICA model where sources s1 and s2 have unit variance t6-

distribution and Uniform distribution, respectively. Sample length is n = 2000 and the

number of samples is 3000. To study the robustness of FastICA, we add a point to the

sample, and study its influence to the attained separation quality using the ISR. The

added point is generated as

x
(i)
0 = Asi with si = r(cos(ϑi), sin(ϑi))

T , i ∈ {1, 2}

where ϑ1 ∼ Unif(0, 2π), ϑ2 = π
4

and r ∈ [0,∞). The point x
(2)
0 is of the most-

influential type (2.8) whereas point x
(1)
0 represents a uniform random vector having

the same magnitude as x
(2)
0 ; observe that r = ‖x(1)

0 ‖ = ‖x(2)
0 ‖ and (cos(ϑ1), sin(ϑ1))

T

has a uniform distribution on the unit circle. Besides the deflation-based FastICA

estimators, we also include in our study JADE and DOGMA estimator employing

Tyler’s and Huber’s M-estimator of scatter matrix with tuning constant q = 0.9 as the

choice of scatter matrices. We set A = I in the simulations. Note that the choice of

A is immaterial as FastICA and the DOGMA estimators are equivariant (Publication

[II]) V̂ (and thus ISR) does not depend on the used mixing matrix A.
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For different methods, the effect of the added points x
(1)
0 (random outlier) and

x
(2)
0 (most influential outlier) on the mean ISR (calculated over 3000 trials) as the

function of r = ‖x(1)
0 ‖ = ‖x(2)

0 ‖ are depicted at Figure 2.6. In case of random outlier,

the FastICA estimates and JADE reach the plain guess baseline but they do not go

beyond it. As can be seen, most influential point in the data set can render the FastICA

estimates and also JADE seriously defective: the ISR values are consistently above the

critical plain guess baseline for large enough magnitude r. In fact, pow3 tends to the

pathological maximum ISR value 1, reaching ISR(V̂) = 0.978 at r = 35. Note that

the robust DOGMA estimator remains unaffected no matter how large the magnitude

r is. The fact that also JADE is prone to most influential points (2.8) indicates that

this feature originally observed analytically for FastICA in [37, 38] may be due to the

usage of the covariance matrix (for whitening) that is common to both methods.

Thus if the sample contains an observation that is a mixture of sources that possess

similar magnitude, then the performance of FastICA and JADE can be highly unre-

liable. Naturally, most influential points (2.8) occur with probability zero if sources

sequences are random samples from a continuous distribution. However, in real-world

applications, most influential points can occur frequently. For example, consider two

gray-scale images of different objects (e.g. persons) in a similar background that are

mixed linearly. Since the backgrounds of the images are similar, there exists many

source samples that have pixel values of similar magnitude. Hence when these images

are mixed, FastICA and JADE may perform very poorly due to occurrence of many

such influential points in the mixture. This suggest that one should try to remove such

influential points (2.8) prior to the analysis.

2.6 Discussion

Despite the increased interest on ICA during the past two decades, not much attention

has been paid to the robustness of the proposed estimators. In this thesis, we have

developed demixing matrix estimators that are robust. The robustness stems from the

robust matrix-valued statistics used in their construction. The main limitation of the

DOGMA family is that it is not able to separate sources with the same distribution.

Hence, an important task for future work, is to try to find approaches to circumvent

this problem.

Also the asymptotics of ICA estimators has been widely neglected in ICA stud-

ies. In Publication [III], we derived a compact CRB expression for demixing vector

estimation. Based on the maximum likelihood (ML) theory, the derived inverse of the

Fisher information matrix also equals the asymptotic covariance matrix of the maxi-

mum likelihood estimator (MLE) ŵml,k of the kth demixing vector wk, which obtains

the following form under mild assumptions on the source distributions (see Publication
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Figure 2.6: The effect of an added random point x
(1)
0 (upper plot) and most influential

point x
(2)
0 (lower plot) on the mean ISR as the function of the magnitude r = ‖x(1)

0 ‖ =

‖x(2)
0 ‖. Sample length n = 2000, number of trials 3000. In the presence of a most

influential point, the non-robust FastICA and JADE can perform severely worse than
a plain guess.
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[III] for details)

ASV(ŵml,k;FA) =

(
1

E[ϕ2
k(sk)s

2
k]− 1

)
wkw

T
k +

d∑

j=1
j 6=k

(
E[ϕ2

j (sj)]

E[ϕ2
k(sk)]E[ϕ2

j (sj)]− 1

)
wjw

T
j ,

where ϕj(s) , − d
ds

log fj(s) denotes the location score function for the jth source (and

fj denoting the p.d.f. of the jth source), j = 1, . . . , d. Thus if an asymptotic covariance

matrix of the demixing vector estimator is known, one can compute the asymptotic

efficiency (e.g. as the ratios of the matrix trace) w.r.t. to the optimal MLE.





Chapter 3

Complex-valued signal processing

Complex-valued random signals play an increasingly important role in many diverse

application areas such as biomedical sciences, physical sciences, communications, and

related fields. In this section we briefly review some important tools, statistics, mod-

els and estimators that are useful for handling complex-valued random signals. The

important problem of detecting circularity of complex random signals is also addressed.

3.1 Why complex-valued signal processing

Complex-valued random signals arise naturally in many application areas. For example,

most practical modulation schemes (e.g. M-QAM, QPSK, 8-PSK) in communications

are complex-valued and applications such as radar, sensor array processing [4], spec-

tral analysis of time series [66] and magnetic resonance imaging [67, 68] lead to data

that are inherently complex-valued. In some applications on the other hand, for exam-

ple in statistical shape analysis [69], great simplifications are achieved by representing

the observed 2-dimensional real-valued landmark data matrix as a complex vector and

then conducting the statistical analysis in the complex domain. Functional magnetic

resonance imaging (fMRI) data are originally acquired as complex-valued images while

virtually all fMRI studies use only the magnitude of the data in the analysis and disre-

gard the phase information. Recent studies [68, 70–72] have shown that fMRI analysis

in the complex domain can offer several advantages. Complex weighted median filters

has also been under active research; see e.g. [73] and references therein. The complex

valued representation is also compact and simpler in notations and for algebraic ma-

nipulations, and convenient for calculations by computer. It is evident that the need

of expertise in the analysis and statistical modelling and estimation of complex-valued

multivariate data and phenomena are rapidly increasing.

Analysis in the complex domain presents a number of challenges since solid mathe-

matical and statistical foundations, tools and algorithms for handling complex-valued

signals are lacking, or, are simply too scattered in the literature. There appears to be a
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need for concise, unified, and rigorous treatment of such topics. Several recent research

papers have profoundly widened our knowledge and understanding of complex-valued

random signals; see e.g. [16, 17, 74–83] and Publications [VIII,IX] to cite only a few.

Recent forthcoming text-book [84] is also devoted to this topic.

Many methods are based on unnecessary simplifying assumptions that limits their

usefulness, versatility and applicability in wider scenarios. Circular symmetry [77]

of complex-valued signals is the most commonly made simplifying assumption in the

statistical signal processing literature. Circular complex random variable possess the

property that it is statistically uncorrelated with its complex-conjugate. In case the

signals or noise are non-circular, we need to take the full 2nd-order statistics into

account when deriving or applying signal processing algorithms. Consequently optimal

estimation and detection techniques are different for circular and non-circular cases

and recent research have elucidated that significant performance gains can be achieved

by exploiting the circularity/non-circularity property of the complex-valued signals for

example in designing wireless transceivers [85] or array processors such as beamformers,

Direction-Of-Arrival algorithms [86, 87], blind source separation methods, etc. Also

performance bounds can differ in circular and non-circular cases. Several authors have

recently investigated the complex CRB theory; see Publication [IX] and [75, 88–92].

For example, widely linear processing [77, 79] can be advantageous for non-circular

data. In complex-valued ICA and BSS, algorithms that explicitly exploit non-circularity

statistics in their definition often give superior performance when the sources are non-

circular; see [64, 81, 93–96] and Publications [I,II]. A virtue of complex-valued ICA is

that it enables analysis of fMRI data in its native complex form [68].

3.2 Preliminaries

3.2.1 Complex field and functions

The set of complex numbers, denoted by C, is the plane R × R = R2 equipped with

complex addition operator + and complex multiplication operator · defined such that

for all z1 = (x1, y1), z2 = (x2, y2) ∈ R× R = C,

z1 + z2 = (x1 + x2, y1 + y2) ∈ C,

z1 · z2 = (x1x2 − y1y2, x1y2 + y1x2) ∈ C,

making it the complex field (C,+, ·). For notational convenience, we write z1z2 instead

of z1 ·z2. We identify the set of real numbers R with the set R×{0} ⊂ C which forms a

subfield of C. Therefore we write x = (x, 0) and in particular 0 = (0, 0) and 1 = (1, 0).

The complex number (0, 1), denoted by , is called the imaginary unit and it is the

solution to the equation z2 = z · z = −1. With this notation every complex z = (x, y)
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can represented in the form

z = x+ y (3.1)

since z = (x, 0) + (0, 1)(y, 0). This will be the more commonly used notation for a

complex number in this paper. The complex conjugate of z = (x, y) = x + y ∈ C

is defined as z∗ , (x,−y) = x − y. With this notation we can write the real part

and the imaginary part of z as Re[z] , x = 1
2
(z + z∗) and Im[z] , y = 

2
(z∗ − z)

respectively. The modulus of z = x + y is defined as the nonnegative real number

|z| =
√
x2 + y2 =

√
zz∗.

The open disk with center c = a + b ∈ C and radius r > 0 is defined as B(c, r) ,

{z ∈ C : |z − c| < r}. Naturally, the open disk in C is equivalent to open 2-ball in R
2

with center (a, b) and radius r. Throughout the paper U will stand for an open set in

C, i.e. for each c ∈ U there exists r > 0 such that B(c, r) ⊂ U . A function f of the

complex variable z = x+ y is a rule that assigns to each value z in U one and only one

complex number w = u+ v , f(z). The real and imaginary part of the function f(z)

are real valued functions of real variables x and y, i.e. u = u(x, y) , u(z) : U → R and

v = v(x, y) , v(z) : U → R. Conversely, two such functions define a complex function

f(z) = u+ v of z = x+ y over U .

The exponential function is defined as the complex number exp(z) , exp(x){cos(y)+

 sin(y)}, where exp(x) for real valued x denotes the usual exponential function. Any

nonzero complex number has a polar representation, z = |z| exp(θ), where θ =

arg(z) ∈ R is called as the argument of z. The unique argument θ = Arg(z) on the in-

terval −π ≤ θ < π is called as the principal argument. The complex logarithm of z 6= 0

is defined as the complex number log(z) , log |z|+ Arg(z) + 2nπ where n is an arbi-

trary integer. The particular value of the logarithm given by log |z|+ Arg(z) is called

the principal logarithm and will be denoted by Log(z). With these definition of the

complex logarithm and exponential one has the expected result that exp{log(z)} = z.

Since az ∈ C for all a ∈ R and z ∈ C, the field C is also a vector space over the

field R. Therefore there are two kinds of linear mappings. A function L : C → C is

F-linear (F = C, or R) if

L(az1 + bz2) = aL(z1) + bL(z2) ∀ z1, z2 ∈ C, a, b ∈ F. (3.2)

For example, the complex conjugation z 7→ z∗ is R-linear but not C-linear. It is clear

that function L is C-linear if and only if L(z) = αz where α = L(1). The next theorem

gives the explicit form of a R-linear mapping.

Theorem 3.2.1 (Publication [VIII]). Function L : C→ C is R-linear if and only if

L(z) = αz + βz∗, (3.3)

where α =
L(1)− L()

2
and β =

L(1) + L()

2
.
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Moreover, an R-linear function L is invertible if and only if |α| 6= |β|, and its

inverse function L−1 : C→ C is also an R-linear function,

L−1(z) = α′z + β ′z∗, (3.4)

where α′ =
α∗

|α|2 − |β|2 and β ′ =
−β

|α|2 − |β|2 .

Proof. Clearly the function defined by eq. (3.3) is R-linear. Therefore, we only need

to show that if L is R-linear then it may be written in the form (3.3). If L is R-linear,

then

L(z) = L(1 · x+  · y) = L(1)x+ L()y

Substituting (z+ z∗)/2 and (z∗− z)/2 in place of x and y yields the eq. (3.3). Denote

z′ = αz + βz∗. Then observe that L−1(z′) = z, i.e. the function L−1 defined in (3.4) is

the inverse of L which exists if |α| 6= |β|.
Corollary 1. Function L : C→ C is C-linear if and only if L is R-linear and L(1) =

−L().

We note that Theorem 3.2.1 can be generalized to multivariate mapping Cn → Cp,

and the form of R-linear mappings remains the same: it is the sum of C-linear mappings,

the first one acting on the vector argument and the latter on its conjugate.

3.2.2 Complex derivatives

In this section we consider three different notion of derivatives of a complex function:

directional derivative, complex partial derivatives, and complex derivative and their

interrelations.

Definition 3.2.1. The directional derivative of f : U → C at c ∈ U in the direction

t ∈ C with |t| = 1, denoted by Df,t(t), is defined by the equation

Df,c(t) = lim
r→0

f(c+ rt)− f(c)

r
, r ∈ R

provided this limit exists.

Directional derivative can be viewed as the rate of change of f(z) as z moves towards

c along the straight line through c in the direction t. Directional derivative of f = u+v

can be related with the first partial derivatives of u and v. Namely, it is straightforward

to verify that for a complex function f = u+ v : U → C and c ∈ U ,

Df,c(1) =
∂u

∂x
(c) + 

∂v

∂x
(c) ,

∂f

∂x
(c), Df,c() =

∂u

∂y
(c) + 

∂v

∂y
(c) ,

∂f

∂y
(c), (3.5)

provided that Df,c(1) and Df,c() exist. Function f can also have complex partial

derivatives (c.p.d.’s) defined next.
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Definition 3.2.2. Suppose that the complex function f = u+ v : U → C is such that

u and v possess first real partial derivatives at c ∈ U . Then we define

∂f

∂z
(c) ,

1

2

(
∂f

∂x
(c)− ∂f

∂y
(c)

)
,

∂f

∂z∗
(c) ,

1

2

(
∂f

∂x
(c) + 

∂f

∂y
(c)

)

and call them complex partial derivatives of f w.r.t. z and z∗ at c, respectively.

In [83, 97], the c.p.d.’s are called as the R-derivative and the conjugate R-derivative,

respectively. The differential calculus based on these operators is known as Wirtinger

calculus [96, 98], or, as we prefer, the CR-calculus [97]. From (3.5) we observe that

c.p.d.’s are related to directional derivatives as

∂f

∂z
(c) =

Df,c(1)− Df,c()

2
,

∂f

∂z∗
(c) =

Df,c(1) + Df,c()

2
(3.6)

provided that Df,c(1) and Df,c() exists.

If u = Re[f ] and v = Im[f ] possess first partial derivatives in some set U , then

∂f/∂z and ∂f/∂z∗ are complex functions from U to C. Thus they themselves can

have complex partial derivatives w.r.t z and z∗ at c ∈ U . There are called higher-order

c.p.d.’s. For example, ∂
∂z

( ∂f
∂z∗

) ,
∂2f
∂z∂z∗

, is a 2nd-order c.p.d. (one among the four) and

the total number of c.p.d.’s of order k ≥ 1 which can be formed is 2k.

The usefulness of the c.p.d.’s stems from an easily verifiable fact that they follow

formally the same sum, product, and quotient rules as the ordinary partial deriva-

tives. In particularly, ∂
∂z
z = 1, ∂

∂z
z∗ = 0 and more generally, due to product rule and

induction, one has the usual rules for polynomials

∂

∂z
znz∗m = nzn−1z∗m and

∂

∂z∗
znz∗m = mznz∗m−1.

However, it is easy to verify that the chain rule for the composition function (f ◦g)(c) =

f(g(c)) is not of the regular form (c.f. Publication [VIII], [83, 97]), but of the form

∂f ◦ g
∂z

(c) =
∂f

∂z

(
g(c)

)
· ∂g
∂z

(c) +
∂f

∂z∗
(
g(c)

)
· ∂g

∗

∂z
(c), (3.7)

∂f ◦ g
∂z∗

(c) =
∂f

∂z

(
g(c)

)
· ∂g
∂z∗

(c) +
∂f

∂z∗
(
g(c)

)
· ∂g

∗

∂z∗
(c). (3.8)

Hence one should be cautious as simple and direct adaptation of the results derived for

the real domain problems to complex domain can lead to wrong results and conclusions.

� Example 3. Suppose that (∂f ◦ g/∂z)(c) = (∂f/∂z)
(
g(c)

)
· (∂g/∂z)(c). If we

choose f(z) = z∗ and g(z) = z∗, then h(z) = (f ◦g)(z) = z. Due to previous results, we

have that ∂h/∂z = 1, ∂f/∂z = 0 and ∂g/∂z = 0. If the regular form of the chain rule

would hold, we would have 1 = 0 · 0 = 0, leading to contradiction. With the correct

chain rule (3.7) one verifies that 1 = 0 · 0 + 1 · 1. �
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As with usual partial derivatives, an important application of c.p.d.’s are related to

optimization. It is known [74, 76] that both c.p.d.’s (and their multivariate extensions)

vanish at stationary points of a function, but the (conjugate) c.p.d. ∂/∂z∗ defines the

direction of the maximum rate of change, i.e. it defines the complex gradient. In [83],

c.p.d.’s were used in constructing the complex-valued Newton-Raphson iteration rule.

Cauchy-Riemann equations and the complex derivative, defined below, are the prin-

cipal notions in the classical complex analysis [99–102].

Definition 3.2.3. Let f = u+ v : U → C. Then the equations

[a]
∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
, [b]

∂f

∂z∗
= 0, [c]

∂f

∂z
=
∂f

∂x
, [d]

∂f

∂x
= −∂f

∂y

which are pairwise equivalent, are called Cauchy-Riemann (C-R) equations.

Definition 3.2.4. Function f : U → C is said to have a derivative of f at c ∈ U if

lim
h→0

f(c+ h)− f(c)

h
∈ C

exists; The value of the limit is denoted by f ′(c).

Definition is in appearance the same as that for real functions of one real variable.

Despite of the apparent similarity, the complex case is remarkably different: h may

approach c in any manner from any direction without affecting the value of the limit.

Next lemma shows that the derivative is related to directional derivatives, c.p.d.’s

and C-R equations, but, particularly it demonstrates that possession of a derivative

impose severe restrictions on the function.

Lemma 3.2.1. If f = u + v : U → C possess a derivative at c ∈ U , then f is

continuous at c, Df,c(t) exists for all t ∈ C with |t| = 1, Cauchy-Riemann equations

hold at c and

f ′(c) = t∗Df,c(t) =
∂f

∂z
(c) =

∂f

∂x
(c).

Proof. A first consequence of the definition of derivative is that f is continuous at

c [100, p. 38]. Suppose that h approaches c along the straight line through c in the

direction t ∈ C with |t| = 1. Thus,

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
= lim

r→0
r∈R

f(c+ rt)− f(c)

rt
=

1

t
lim
r→0

f(c+ rt)− f(c)

r
,

which means that f ′(c) = t∗Df,c(t) for all t ∈ C with |t| = 1 (observe that t−1 = t∗).

This then means that f ′(c) = Df,c(1) = −Df,c(), which by (3.5) implies that Cauchy-

Riemann equations hold at c and that f ′(c) = (∂f/∂x)(c) = (∂f/∂z)(c).
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3.2.3 Differentiability and Taylor’s R-theorem

Function f : U → C is said to be holomorphic or C-differentiable on U if f has a

derivative at every point c ∈ U . Holomorphic functions form the hard core topic of

the classical complex analysis [99–102]. If f = u + v is holomorphic on U , then it

implies that f satisfies C-R equations in U , f is infinitely C-differentiable, u and v are

harmonic functions (i.e. they satisfy Laplace’s equations in U), and for each c ∈ U ,

the power series
∞∑

n=0

an(z − c)n (3.9)

with an = f (n)(c)/n! converges to f(z) for all z ∈ B(c, r) ⊂ U ; see [99–101]. Conversely,

if f is analytic in U , i.e. if for every c ∈ U there is a power series of the form (3.9)

that converges to f(z) for all z in some neighbourhood of c, then f is holomorphic

on U . This is the reason why in many textbooks the terms holomorphic and analytic

are used interchangeably. As an example, all polynomial functions in z with complex

coefficients are holomorphic on the whole complex plane C and so is the exponential

functions exp(z).

It is thus clear that holomorphic functions form a rather restricted class of complex

functions. The concept of C-differentiability being too stringent condition for many

signal processing applications. For example, consider a real function of a complex

variable, e.g. a cost function in optimization that arise naturally in a number of signal

processing applications [74, 89], or, solving the maximum likelihood (ML-)estimate of

a complex parameter where the problem is to maximize the (real-valued) likelihood

function with respect to a complex parameter. However, a real function of a complex

variable either has complex derivative at a point equal to zero, or else, the derivative

does not exists; moreover, if the (real-valued) function is differentiable on U , then the

function is a constant. Also from the point of view of probability theory of complex

random variables, it is the non-holomorphic functions that are of major importance.

A less restrictive notion is R-differentiability (Publication [VIII]).

Definition 3.2.5. Function f : U → C is said to be R-differentiable at c ∈ U if there

exists an R-linear function L : C→ C such that

f(c+ h)− f(c) = L(h) + |h|ε(h) and lim
|h|→0

ε(h) = 0. (3.10)

The R-linear function L is called the R-differential of f at c and we denote it by Lf,c.

The function f is said to be R-differentiable if it is R-differentiable at every point c ∈ U .

Note that the differential Lf,c is C-linear if and only if f is C-differentiable at c,

and then Lf,c(h) = f ′(c)h. Some important results are now collected in the following

theorem illustrating that the c.p.d.’s play essential role.
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Theorem 3.2.2. Let f = u+ v : U → C be R-differentiable at c ∈ U . Then

[a] Df,c(t) exists for all t ∈ C with |t| = 1 and Lf,c(t) = Df,c(t).

[b] Lf,c is unique, first order partial derivatives of u and v exists at c and

Lf,c(1) =
∂f

∂x
(c) and Lf,c() =

∂f

∂y
(c).

[c] for all h ∈ C,

Lf,c(h) =
∂f

∂z
(c) · h+

∂f

∂z∗
(c) · h∗.

Proof. [a] Due to (3.10) and since Lf,c is R-linear, we have

f(c+ rt)− f(c) = Lf,c(rt) + |rt|ε(rt) = rLf,c(t) + |r|ε(rt),

where r ∈ R. Dividing by r and taking the limit when r → 0 shows that Lf,c(t) =

Df,c(t).

[b] If L?f,c is another R-linear map for which eq. (3.10) holds, then L?f,c(1) = Df,c(1) =

Lf,c(1) and L?f,c() = Df,c() = Lf,c() by [a]-part of the theorem. This means that

L?f,c = Lf,c due to Theorem 3.2.1, so Lf,c is unique. The last statement follows since

Lf,c(1) = Df,c(1) and Lf,c() = Df,c() and (3.5).

[c] Recalling eq. (3.6), the result follows immediately from [b]-part of the theorem and

Theorem 3.2.1.

� Example 4. Consider the case f(z) = |z|2. Then

f(c+ h)− f(c) = (c+ h)∗(c+ h)− c∗c = c∗h + ch∗ + |h|2 = L(h) + |h|ε(h),

where L(h) = c∗h + ch∗ and ε(h) = |h|. First we observe that ε(h) → 0 as |h| → 0.

Then we observe that L is R-linear function since it is of the form (3.3). Furthermore,

L is C-linear if and only if c = 0. Thus, f(z) = |z|2 is R-differentiable at every point

c ∈ C with R-differential Lf,c(h) = c∗h + ch∗ and C-differentiable only at the point

c = 0 with the derivative f ′(0) = 0. Furthermore, by Theorem 3.2.2[c], we observe the

expected result that (∂f/∂z)(c) = c∗ and (∂f/∂z∗)(c) = c. �

It is a celebrated result of complex analysis that C-differentiable function possess

a complex analogue of convergent Taylor series (3.9) and Taylor’s formula. Let us call

eq. (3.10) as the first-order Taylor’s R-formula. Functions with continuous c.p.d.’s of

order m in U are denoted by Cm(U).

Theorem 3.2.3 (Taylor’s R-theorem; Publication [VIII]). Assume that f = u + v ∈
Cm+1(U). Then,

f(c+ h)− f(c) =

m∑

p=1

p∑

n=0

h∗nhp−n

n!(p− n)!

∂pf

∂zp−n∂z∗n
(c) + |h|mε(h) (3.11)

and lim|h|→0 ε(h) = 0.
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An import special case occurs when ∂
∂z∗
f ≡ 0, i.e. f satisfies C-R equations in U .

This implies that f is holomorphic (and hence the power series (3.11) converges) and

the Taylors series takes the usual form from the complex analysis: f(c + h) − f(c) =∑∞
n=1

hn

n!
∂nf
∂zn (c).

3.3 The augmented signal model

Let us first recall the isomorphism between vector spaces Cd and R2d. Write

c̄ ,

(
a
b

)
(3.12)

for the composite real-valued vector of c = a + b ∈ C
d. The mapping c 7→ c̄ is a

group isomorphism between additive Abelian groups Cd and R2d.

The representation for complex random vectors exploited in the seminal works of

[16, 17] is the so called augmented model, where a 2d-variate complex-valued augmented

vector

ĉ ,

(
c
c∗

)

is formed by stacking the complex vector and its complex conjugate c∗. The two

augmented models are related via invertible linear transform :

c̄ = Mĉ ⇔ ĉ = M−1c̄ = 2MH c̄ (3.13)

where

M ,
1

2

(
I I
−I I

)

with inverse M−1 = 2MH . Above (·)H denotes the Hermitian transpose, (M)H =

(M∗)T .

Let us next recall the following mapping from Publication [IX]. Observe that in

[IX], the mapping was represented in a more general case that includes non-square

matrices as well.

Definition 3.3.1 (Publication [IX]). Define 〈·〉C : R
2d×2d 7→ C

2d×2d as a mapping

〈G〉C = 2M−1GM (3.14)

that is, 〈(
Re[A] Re[B]
Im[A] Im[B]

)〉

C

=

(
A− B A + B

(A + B)∗ (A− B)∗

)

for all A ∈ Cd×d and B ∈ Cd×d.
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Mapping 〈·〉C of G ∈ R2d×2d produces a complex 2d× 2d matrix of the form

〈G〉C =

(
C D
D∗ C∗

)
(3.15)

where C and D are complex d × d matrices. Hence we shall call matrix 〈G〉C as the

augmented matrix of C and D. Note that G = 1
2
M〈G〉CM−1.

Let PDH(d) and CS(d) denote the set of d × d positive definite Hermitian and

complex symmetric matrices, respectively.

� Example 5. We point out that the real quadratic form,

Q(z̄|Γ) , z̄T Γ̄
−1

z̄, (3.16)

where Γ ∈ PDS(2d), possesses an equivalent complex representation

Q(ẑ|〈Γ〉C) = ẑH 〈Γ〉−1
C

ẑ, (3.17)

where 〈Γ〉C ∈ PDH(2d) by Publication [IX]. This follows since

Q(z̄|Γ) = ẑHMHΓ−1Mẑ = ẑH 1
4
〈Γ−1〉C ẑ = ẑH 〈Γ〉−1

C
ẑ,

where we used (3.13) and the property that 〈G−1〉C = 4〈G〉−1
C

for G invertible; see

Publication [IX]. �

� Example 6. Another useful property is that

det(G) = 2−2d det(〈G〉C). (3.18)

which will come handy in the study of CES distributions. This property follows by

observing that det(G) = det(1
2
M〈G〉CM−1) = 2−2d det(M) det(M)−1 det(〈G〉C). �

3.4 Fundamentals of complex random vectors

3.4.1 Complex distribution

A complex r.v. z = x + y ∈ Cd is comprised of a pair of real r.v.’s x and y in Rd.

The distribution of z on Cd determines the joint real 2d-variate distribution of x and

y on R2d and conversely due to isomorphism (3.12) between Cd and R2d. Hence the

distribution of z is identified with the joint (real 2d-variate) distribution of z̄,

Fz(c) , Pr(x ≤ a,y ≤ b) ≡ Pr(z̄ ≤ c̄)

where c = a + b ∈ Cd. In a similar manner, the probability density function (p.d.f.)

of z = x + y is identified with the joint p.d.f. f(z̄) = f(x,y) of x and y. Hence f(z)

will be used as an equivalent alternative notation for f(z̄). It is worth pointing out
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that in some applications (e.g. for optimization purposes [74, 76]) it is preferable to

write the p.d.f. f(z) in the form f(z, z∗) that separates z and its conjugate z∗ as if

they were independent variates.

Now recall that the mean (or expectation) of a complex r.v. z is defined as E[z] =

E[x] + E[y]. Recall that the expectation can be used to define important alternative

characterization of the real r.v. z̄ via the concept of characteristic function (c.f.). The

c.f. of the composite real r.v. z̄ is a function Φz̄ : R2d → C, defined as

Φz̄(c̄) , E
[
exp{(c̄T z̄)}

]
, c̄ ∈ R

2d

which by utilizing complex notations takes the form

Φz(c) = E
[
exp{Re(cHz)}

]
= E

[
exp

{

2
(cHz + cTz∗)

} ]
, c ∈ C

d.

Relationship between moments and the characteristic function in the univariate case

(d = 1) were established in Publication [VIII].

Characteristics of a complex r.v. can be described via symmetry properties of its

distribution. The most commonly made symmetry assumption in the statistical signal

processing literature is that of circular symmetry. See e.g. [77]. Circularity, or lack of

it (non-circularity) is the fundamental concept differentiating complex signal analysis

from the real case. Complex r.v. z is said to be circular or, to have a circularly

symmetric distribution, if its distribution remains invariant under multiplication by

any (complex) number on the unit complex sphere, i.e.

z =d e
θz, ∀ θ ∈ R,

where notation =d should be read “has same distribution as”. A circular r.v. z, in

general, does not necessarily possess a density. However, if it does, then its p.d.f f(z)

satisfies

f(eθz) = f(z) ∀ θ ∈ R.

In the univariate case (d = 1), this is equivalent to saying that the composite r.v. (x, y)T

is spherically symmetric. The p.d.f f(z) = f(x, y) is then a function of |z|2 = x2 + y2

only, i.e. f(z) = C ·g(|z|2) for some non-negative function g(·) and normalizing constant

C [103]. Hence the regions of constant contours are circles in the complex plane, thus

justifying the name for this class of distributions. In the vector case, however, the

term “circular” is a bit misleading since for d ≥ 2, it does not imply that the regions

of constant contours are spheres in complex Euclidean k-space. R.v. z is said to

be symmetric, or to have a symmetric distribution, if z =d −z. Naturally, circular

symmetry implies symmetry.
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3.4.2 Statistics of complex random vectors

Univariate case

Second-order moments. Important characteristics of a complex r.va. z can also be

described via its moments. We recall that the variance of z = x+ y,

σ2(z) , E[|z − E[z]|2] = σ2(x) + σ2(y)

does not carry information about the correlation between the real and the imaginary

part of z, but this information can be retrieved from the pseudo-variance [104]

τ(z) , E[(z − E[z])2] = σ2(x)− σ2(y) + 2E[(x− E[x])(y − E[y])]

since the covariance between x and y can be obtained as Cov(x, y) = 1
2
Im[τ(z)]. For

simplicity of notation, we write τ and σ2 if the r.va. z is understood from the context.

Similar notation is adopted for other statistics defined below. The ratio of pseudo-

variance and the variance,

%(z) ,
τ

σ2

is called the circularity quotient of z; see Publication [IX]. If z is circular, then τ =

% = 0. Hence a r.va. z with vanishing pseudo-variance is said to be 2nd-order circular.

Naturally, 2nd-order circularity does not imply that the distribution of the r.va. is

circular.

A degree of circularity. The modulus of the circularity quotient, |%|, is called as the

circularity coefficient [81] of z and Arg(%) as the circularity angle (Publication [VI]).

Circularity coefficient measures the “degree of circularity” as it equals the squared

eccentricity of the ellipse defined by the real covariance matrix of z̄ = (x, y)T ; see

Publication [VI] for details. Hence its maximum and minimum value are

|%| =
{

0, iff x and y are uncorrelated with equal variances

1, iff x or y is a constant, or x is a linear function of y.

Note that |%| = 1 if z is purely real-valued such as BPSK modulated communication

signal, or, if the signal lie on a line in the scatter plot (also called constellation or

I/Q diagram) as is the case for BPSK, ASK, AM, or PAM-modulated communications

signals. Asymptotic distribution of the MLE of the circularity coefficient was recently

studied in [105] and [106].

Higher-order moments. A r.va. z has p+1 pth-order moments, namely α0;p, α1;p−1,

α2;p−2, . . . , αp;0 where

αn;m(z) , E[znz∗m],

for m,n ∈ N0 = {0, 1, 2, . . .}. Again for simplicity of notation we often write αn;m if

the r.va. z is understood from the context. Similarly for related quantities. Note that
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symmetric moments are redundant in the sense that αm;n = α∗
n;m. In an analogous

fashion one can also define pth-order central moments; see Publication [VIII]. The

relationship between moments and the c.f. Φz(c) of a complex r.va. z was established

in Publication [VIII], namely,

αn;m =

(
2

j

)m+n
∂m+nΦz

∂cm∂c∗n
(0). (3.19)

Equation (3.19) together with the Taylors R-series (3.11) at zero then gives an expan-

sion for the characteristic function of a r.va. z (Publication [VIII]),

Φz(c) = 1 +

p∑

m=1

(
j

2

)m m∑

n=0

c∗ncm−n

n!(m− n)!
αn;m−n + o(|c|p)

as c→ 0, provided that z has finite pth-order moment.

Kurtosis. There can be several different paths to generalize the notion of kurtosis

for a complex r.va. z. Normalized 4th-order moment of a complex r.va. z can be

defined as

γ(z) ,
E[|z − E[z]|4]

(σ2)2
. (3.20)

Then the real-valued measure

kurt(z) , γ − |%|2 − 2

is the most commonly used generalization of the kurtosis for a complex r.va. z (e.g.

[64, 96, 107]). In [83] it was pointed out (based on complex 4th-order cumulants) that

there exists in fact three natural measures of complex kurtosis. Note that if z is purely

real r.va. (i.e. y = Im[z] = 0 with probability one), then %(z) = 1 and kurt(z) and

γ(z) coincide with the definition given in (2.2) for a real r.va. A complex Gaussian

r.va. has kurtosis kurt(z) = 0. It is not clear in the literature what the complex

kurtosis really measures. In Publication [VII] some light was shed on this question by

deriving a connection between the complex kurtosis of z and the (real) kurtosis of its

real and imaginary part within the wide class of CES distributions. Namely, it was

shown that if z has a CES distribution (e.g. complex Gaussian distribution), then

kurt(z) = 1
3
(2 + |%|2)kurt(x), where kurt(x) = kurt(y) is the common kurtosis of the

real and imaginary part of a r.va. z possessing a CES distribution. Since the complex

kurtosis is simply a scaled version (the scaling factor obtaining values on the interval

[2
3
, 1]) of the real kurtosis, the usual “peakedness combined with heavy-tailedness”

interpretation of the kurtosis applies for the complex kurtosis in this case.

Multivariate case

For simplicity of presentation, let us assume that the complex r.v. z ∈ Cd has mean

zero, i.e. E[z] = 0. R.v. z is further assumed to be non-degenerate in any subspace of

Cd.
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Second-order moments A complete second-order description of complex r.v. z is

given by its covariance matrix

C(z) , E[zzH ]

= E[xxT ] + E[yyT ] + (E[yxT ]− E[xyT ]) ∈ PDH(d)

and the pseudo-covariance matrix [104]

P(z) , E[zzT ]

= E[xxT ]− E[yyT ] + (E[xyT ] + E[yxT ]) ∈ CS(d).

Pseudo-covariance matrix is also called relation matrix in [77] or complementary co-

variance matrix in [80]. For simplicity of notation, we write C and P if the r.v. z is

understood from the context. Similar notation is adopted for other quantities. R.v. z

is said to be 2nd-order circular [77] or proper [104] if P = 0, or equivalently, if

E[xxT ] = E[yyT ] and E[xyT ] = −E[yxT ]. (3.21)

It is well-known (e.g. [17], Publication [IX]) that

〈C(z̄)〉C =

(
C(z) P(z)
P(z)∗ C(z)∗

)
= C(ẑ), (3.22)

i.e. operator 〈·〉C maps the covariance matrix of the composite real r.v. z̄ to the

covariance matrix of the augmented r.v. ẑ. As we shall see later in Section 3.3 the

assumption (3.21) on the covariance structure of the real part x and imaginary part y

of z is crucial in writing the p.d.f. f(z̄) of the multivariate normal distribution using

the complex notation so that it would resemble closely the real case; see [89, 108, 109].

Circularity matrix and circularity coefficients. There can be several different ways

to extent the concept of circularity quotient % to the vector case. Since % = [σ2]−1τ ,

one possible extension is

%(z) , C
−1

P , (3.23)

referred to as the circularity matrix of z. Furthermore, since the circularity coefficient

is the modulus |%| =
√
%%∗, one possible way to extent this concept to the vector

case, is to call the square-roots of the eigenvalues of the matrix %%∗ as the circularity

coefficients of z. The eigenvalues of %%∗ are real-valued and take values on the interval

[0, 1] (See Publication [I, Theorem 2]). Hence, also in this sense, the square-roots

of the eigenvalues are valid extensions of the circularity coefficient |%| ∈ [0, 1] to the

multivariate case.

Strong Uncorrelating Transform. It is easy to show that circularity coefficients can

also be calculated as the singular values of the symmetric matrix K(z) , BP(z)BT ,

called as the coherence matrix [110], where B is a whitening matrix of r.v. z, i.e.
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C(z)−1 = B
H

B. This means that there exists a unitary matrix U such that symmetric

matrix K(z) has a special form of SVD, called Takagi factorization [111], such that

K(z) = UΛUT , where Λ is a diagonal matrix consisting of circularity coefficients.

Thus, if we now define matrix W ∈ Cd×d as W = B
HU, where B and U are defined

as above, then it is easy to verify that the transformed data s = WHz has strongly-

uncorrelated components, i.e. C(s) = I and P(s) = Λ. Hence the matrix W is called

the strong-uncorrelating transform (SUT) [13, 81]. A more general concept, called the

generalized uncorrelating transform (GUT), is obtained by utilizing any scatter matrix

and pseudo-scatter matrix in place of the covariance matrix and pseudo-covarariance

matrix above; see Publication [I] for details. SUT and GUT have found applications

for example in complex-valued ICA.

Information and pseudo-information matrices. Let f(z|θ) denote the p.d.f. of the

r.v. z ∈ Cd depending on the unknown complex parameter θ ∈ Ck. Central to complex

CRB theory are the information matrix and the pseudo-information matrix, defined as

(Publication [IX]):

Iθ , E[∇θ
∗ ln f(z; θ){∇θ

∗ ln f(z; θ)}H ],

Pθ , E[∇θ
∗ ln f(z; θ){∇θ

∗ ln f(z; θ)}T ]

where the complex gradient [74] is defined as ∇θ
∗ = (∂/∂θ∗)T = (∂/∂θ∗1 , . . . , ∂/∂θ

∗
k)
T .

Only if the pseudo-information matrix vanishes (Pθ = 0), then C(t) ≥ I
−1
θ

gives

a CRB for an unbiased estimator t of θ, otherwise the bound depends on pseudo-

information matrix also; See Publication [IX] for details. Above, notation C ≥ D

means that the matrix C−D is positive semidefinite.

3.5 A review of CES distributions

A complex r.v. z = x + y of Cd has d-variate (centered) circular CN distribution if

z̄ = (xT ,yT )T has 2d-variate real normal distribution with mean zero and 2d× 2d real

covariance matrix C(z̄) of special form (3.21), i.e. P = 0. Since the introduction of

the circular CN distribution in [108, 109], the assumption (3.21) seem to be commonly

thought as essential - although it was based on application specific reasoning - in writ-

ing the normal p.d.f. into representative complex form with natural and interpretable

complex-valued parameters. In fact, the prefix “circular” is often dropped when re-

ferring to circular CN distribution as it has due time become the commonly excepted

complex normal distribution. In the seminal works [16, 17] an intuitive complex-valued

expression for normal density was derived without the unnecessary 2nd-order circular-

ity assumption (3.21). The essential key result used in the derivation was the complex

augmented representation (3.22) of the real covariance matrix C(z̄).

A natural extension of the circular CN distribution is obtained by allowing x and

y to possess a 2n-variate real elliptically symmetric distribution (RES) with the re-
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striction as in (3.21) on the scatter parameter. This class of distributions are called

circular complex elliptically symmetric (CES) distributions, the properties of which are

studied in [15, 112]. The extension of the RES distribution for the non-circular case

was proposed and studied in Publication [X].

3.5.1 Complex normal distribution

For simplicity of presentations assume that the complex r.v. z has mean zero. A com-

plex r.v. z is said to have a CN distribution if z̄ has 2d-variate real normal distribution.

By (3.22) and since the normal distribution is uniquely parametrized by the covariance

matrix C̄ ≡ C(z̄), we express this by notation z ∼ CNd(C,P). The case of circular CN

distribution (i.e. P = 0) is then denoted by CNd(C) for short.

The p.d.f. of the 2d-variate real normal distribution

fCN(z̄|C̄) = (2π)−d det(C̄)−1/2 exp(−1
2
Q(z̄|C̄) )

can be written with complex notations using (3.17) and (3.18) and the augmented

vector z̄ as

fCN (ẑ|Ĉ) = π−d det(Ĉ)−1/2 exp(−1
2
Q(ẑ|Ĉ) )

where Ĉ ≡ 〈C̄〉C is the short hand notation for the covariance matrix (3.22) of ẑ, i.e.

the augmented covariance matrix. In the case of circular CN distribution, P = 0, we

have that

Ĉ =

(
C 0
0 C

∗

)
,

which yields Q(ẑ|Ĉ) = 2zHC
−1z and det(Ĉ) = det(C)2. Hence the p.d.f. of the circular

CN distribution can be written in the form

fCN (z|C) = π−d det(C)−1 exp(−zHC
−1z) (3.24)

which closely resembles the classical real normal distribution.

3.5.2 Definition

Complex r.v. z = x + y ∈ C
d has (centered) CES distribution if z̄ has (centered, or,

symmetric about zero) 2d-variate RES distribution, i.e. if its density function1 has the

form

fCE(z̄|Γ) = C det(Γ)−1/2g(Q(z̄|Γ) ) (3.25)

where g(·) is a non-negative function, called the density generator, Γ ∈ PDS(2d) is the

scatter parameter, and Q(z̄|Γ) is the quadratic form (3.16). Above C is a normalizing

1RES distributions can also be defined more generally via the characteristic function (thus avoiding
the assumption of the existence of a density function) [103]
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constant that could be absorbed into function g, but with notation g can be independent

of the dimension d. Write G` , {g : [0,∞) → [0,∞)|
∫ ∞

0
td+`−1g(t) < ∞}. Then, any

nonnegative function g ∈ G0 is a valid density generator of a d-variate CES distribution

and g ∈ G` indicates that the moments of order 2` exists. If the covariance matrix

exists (g ∈ G1) then Γ is equal up to multiplicative real positive scalar to the covariance

matrix C̄ of z̄. We note that CN distribution is obtained with g(t) = exp(−1
2
t) (yielding

C = (2π)−d), the scatter parameter Γ in this case being exactly equal to the covariance

matrix C̄.

Similarly, as for the CN distribution, the p.d.f. can be written into natural complex

form. First we note that the augmented scatter,

Γ̂ ≡ 〈Γ〉C =

(
Σ Ω
Ω∗ Σ∗

)
,

is by construction a complex positive definite Hermitian 2d × 2d matrix where the

parameters Σ ∈ PDH(d) and Ω ∈ CS(d) are called as the (complex) scatter matrix

and pseudo-scatter matrix (Publication [IX]), respectively. Proceeding as earlier the

p.d.f. (3.25) can be expressed by complex notations utilizing the augmented model as

fCE(ẑ|Γ̂) = C det(Γ̂)−1/2g(Q(ẑ|Γ̂) ). (3.26)

Herein, for notation convenience, we have absorbed the constant 2d resulting from the

determinant relation (3.18) into the normalizing constant C. Hence, we shall write

z ∼ CEd(Σ,Ω, g).

Observe the following indeterminacy: Γ and g(·) do not uniquely identify the 2d-

variate RES distribution without additional restriction on g(·) or on the scale of Γ.

Indeed, by writing Γ0 = (1/c)Γ and g0(t) = c−dg(t/c) for any c > 0, the density

(3.25) can be written in the form C det(Γ0)
−1/2g0(Q(z̄|Γ0) ). This ambiguity is easily

avoided by restricting the function g in a suitable way, or, by restricting the scale of

the parameter Γ, e.g. that its matrix trace is equal to unity. However, if g ∈ G1, it is

conventional to restrict g by requiring that

C ·
∫ ∞

0

tdg(t)dt =
2 · Γ(d+ 1)

πd
(3.27)

in which case Γ is equal to the covariance matrix C̄, and consequently, Γ̂ is equal to the

augmented covariance matrix Ĉ (so Σ = C and Ω = P). Therefore, if g ∈ G1 satisfies

(3.27) (as is the case for CN distribution), we can write z ∼ CEd(C,P, g). There

are many widely-used CES distributions, however, which do not have finite 2nd-order

moments, e.g. the multivariate complex Cauchy distribution.

3.5.3 Circular case

CES distribution with vanishing pseudo-scatter matrix, Ω = 0, is called circular CES

distribution and denoted CEd(Σ, g) for short. In this case, the p.d.f. (3.26) becomes
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C det(Σ)−1g(2zHΣ−1z). Hence, if we define g0(t) = g(2t), we can write the p.d.f.

(3.26) simply as

fCE(z|Σ) = C · det(Σ)−1g0(z
HΣ−1z).

With the above notation, the circular CN distribution (3.24) for example, is obtained

with g0(t) = exp(−t) (and C = π−d). For notational convenience, we now drop the

subscript, and denote g0(t) simply by g(t). This notation, however, is useful only in

the case of circular CES distributions.

Recall that Σ is proportional to the complex covariance matrix C(z) provided it

exists. Hence MLE’s of the scatter matrix Σ ∈ PDH(d) can provide robust estimators

of the complex covariance matrix C(z). Let z1, . . . , zn be an i.i.d. sample (n > d) from

a circular CES distribution CEd(Σ, g). The MLE of Σ is found by minimizing the

negative of the log-likelihood function,

Ln(Σ) , −
n∏

i=1

log fCE(zi|Σ)

= n log |Σ| −
n∑

i=1

log g(zHi Σ−1zi),

where we have omitted the constant term log(C) since it does not depend on the

unknown parameter Σ. By differentiating Ln(Σ) with respect to Σ by using complex

matrix differentiation rules [74] and equating to zero shows that the MLE is a solution

of the estimating equation

Σ =
1

n

n∑

i=1

ψML(zHi Σ−1zi)ziz
H
i , (3.28)

where

ψML(t) , −g
′(t)

g(t)
(3.29)

is a weight function that depends on the density generator g(·) of the underlying circular

CES distribution and g′(t) = d
dt
g(t) denotes the derivative of g. MLE Σ̂ solves the

estimating equation (3.28) and thus can be interpreted as a weighted covariance matrix.

Note, however, that equation (3.28) is implicit as the weights on the right hand side

depends on Σ. In general, the obtained MLE is robust if the corresponding weight

function ψML(·) descends to zero. This is needed so that small weights are given to

observations zi that are highly outlying in terms of the distance zHi Σ̂−1zi.

� Example 7. In the case of circular CN distribution, g(t) = exp(−t), which

yields ψML ≡ 1. This shows the well-known result that the sample covariance matrix

(SCM) S = 1
n

∑n
i=1 ziz

H
i is the MLE of the parameter Σ (= C in this case). �

� Example 8. d-variate circular t-distribution with ν degrees of freedom (d.f),

denoted z ∼ CTd,ν(Σ), is obtained with g(t) = (1 + 2t/ν)−(2d+ν)/2. The value ν = 1
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Figure 3.1: ψ(x) of MLT(ν) estimators

gives the circular Cauchy distribution and the circular CN distribution is obtained at

the limit as ν → ∞. We note that g ∈ G1 for ν ≥ 3, but for ν < 3, the covariance

matrix C does not exist. Based on (3.29), the MLE of Σ, labelled MLT(ν), is obtained

with

ψML(t) =
2d+ ν

ν + 2t
. (3.30)

Note that MLT(1) is the highly robust estimator corresponding to MLE of Σ for

the complex circular Cauchy distribution, and that MLT(ν) → S as ν → ∞. This

means that the robustness of MLT(ν) estimators decrease with increasing values of ν

(as expected). Figure 3.1 plots the weight function (3.30) of MLT(ν) estimators for

selected values of ν. Note that the larger the value of the d.f. parameter ν is, the

closer is the weight function to the unity weight ψML ≡ 1 corresponding to the SCM

S obtained when ν →∞. �

3.6 Detectors of circularity

In many applications it is not known a priori whether the source signals and/or noise are

circular or non-circular. In such a case, one can resort to the decision (accept/reject) of

a circularity test e.g. to guide the selection of the optimal array processors for further

processing of the data since the optimal detection and estimation techniques are often

different for circular and non-circular cases. Therefore circularity detectors have been
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under active research in the recent literature; see [83, 110, 113–115] and Publications

[VI,VII,X].

In Publication [X] we derived the generalized likelihood ratio test (GLRT) statistic

assuming complex normal data. The same statistic was derived independently in [110]

and was further studied in [114]. The deficiency of the GLRT of circularity is that

it is sensitive to normality assumption - a feature that is common to most normal-

theory based likelihood ratio (LR-)tests. However, a simple modification of the test, so

called adjusted GLRT of circularity (Publication [VII]), is asymptotically robust with

respect to departures from Gaussianity within the wide class of CES distributions with

finite 4th-order moments. In the univariate case, circularity test based on characteristic

functions were proposed [83], Wald’s type circularity detectors under CES distributions

were considered in [106] whereas [115] considered GLRT of circularity under complex

generalized Gaussian distribution.

3.6.1 GLRT of circularity

In Publication [X] it was shown that the (logarithm of the) GLRT statistic for the

hypothesis HN
0 : P = 0 against the general alternative HN

1 : P 6= 0 assuming that

z1, . . . , zn are i.i.d. from CNd(C,P) is proportional to

`n , −(n− d) ln det(I− %̂%̂∗),

where %̂ ,
( ∑n

i=1 ziz
H
i

)−1 ∑n
i=1 ziz

T
i is the MLE of the circularity matrix %. Same test

statistic was later derived independently in [110]. In Publications [VI,VII] and [107], it

was shown using the general likelihood ratio theory [116] that `n possess an asymptotic

chi-squared distribution with p = d(d+1) degrees of freedom under the null hypothesis.

Same result was shown independently in [114]. We note that the multiplier (n − d)

instead of n in `n serves as a small sample adjustment [114, Sect. VII-B]. The test

that rejects HN
0 whenever `n exceeds the corresponding chi-square (1− α)th quantile

is thus GLRT with asymptotic level α. Note that in the scalar case (d = 1), the test

statistic `n reduces to

`n = −(n− 1) ln(1− |%̂|2), (3.31)

where %̂ is the sample estimate of the circularity quotient %. In this case, the GLRT of

circularity is nothing but the well-know test of sphericity [VI, Section 4].

3.6.2 Adjusted GLRT of circularity

In Publication [VII], assuming that z1, . . . , zn is an i.i.d. random sample distributed as

CEd(C,P , g), g ∈ G2, we considered the hypothesis H0 : P = 0 against the alternative

H1 : P 6= 0. Hence the purpose is to test the validity of circularity assumption when
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sampling from an unspecified (not necessarily normal) CES distribution with finite

4th-order moments.

If z = (xi + yi) ∼ CEd(C,P , g) then one has that γ(xi) = γ(yi), ∀i = 1, . . . , d

and γ(x1) = · · · = γ(xd). i.e. the standardized 4th-order moments (2.2) (and also the

kurtosis) of the real and imaginary parts of z are equal. Hence, let γ denote value of the

common real normalized 4th-order moment of the marginals when z ∼ CEd(C,P , g),

g ∈ G2 and let γ̂ denote any consistent estimate of γ. Then the adjusted GLRT statistic

of circularity,

`n,adj , (3/γ̂) · `n, (3.32)

has the same asymptotic χ2
p-distribution with p = d(d+1) under the more general null

hypothesis H0. Based on the asymptotic distribution, we reject the null hypothesis at

(asymptotic) α-level if the P-value P = 1 − Fχ2
p
(`n,adj) < α. A clever estimate γ̂ of γ

was proposed in Publication [IX]. In the scalar case (d = 1), using the sample estimate

γ̂ proposed in [VII], the adjusted GLRT statistic (3.32) becomes

`n,adj =
(2 + |%̂|2)

γ̂C
· `n

where γ̂C is the sample estimate of the complex standardized 4th-order moment γ(z)

defined in (3.20) and `n is defined in (3.31)

� Example 9. We now investigate the power of the adjusted GLRT test in detect-

ing non-circularity in the scalar case by simulations. The sample z1, . . . , zn is generated

from unit-variance (σ2 = 1) CN distribution. For each generated sample, circularity

coefficient |%| = |τ | is kept fixed. Note that the larger is the circularity coefficient |%|,
the more non-circular is the sample. Figure 3.2 shows the detection performance of

the GLRT test and the adjusted GLRT test at α = 0.05 level (PFA, probability of

false alarm) by depicting the proportion of correct rejections (observed probability of

detection) as a function of |%|. Sample size is n = 1000 and the number of generated

samples (for each fixed |%|) was 1000. Note that at |%| = 0, the probability of rejection

is close to the nominal 0.05 level. In the 2nd example, the setting is the same except

that the sample is from (heavy-tailed) complex t-distribution with ν = 5 degrees of

freedom. Result are also shown in Figure 3.2. The GLRT test is not shown in this

case as its performance becomes worse than a pure guess (due to vulnerability to nor-

mality assumption); see Publication [VII]. In the simulations, we used the GLRTcirc

software [117]. �

3.7 Discussion

Complex random signals play an increasingly important role in array, communica-

tions, and biomedical signal processing and related fields. The wider deployment of
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Figure 3.2: Observed probability of detection when sampling from unit-variance com-
plex normal (left plot) and complex t-distribution with ν = 5 d.f. (right plot) as a
function |%|. Sample size was n = 1000 and number of samples (for each fixed |%|) was
1000.

complex-valued signal processing is often hindered by the fact that concepts, tools and

algorithms for handling complex-valued signals are lacking, or, are simply too scat-

tered in the literature. Due to extensive research in this area during the past few years

(summarized in this section) these obstacles are no-longer existing, or, are at least less

difficult to defeat. We also wish to highlight that circularity is a common hypothesis

that is often assumed for simplicity of derivations. Since optimal methods for circular

and non-circular cases are often different, detection of circularity of the complex-valued

data is a highly important issue. The detectors developed herein are practical and easy

to compute.



Chapter 4

Array signal processing

An important application area where complex-valued distributions and complex pa-

rameter estimation problems arise very naturally is array signal processing.

In this section we briefly review the common direction finding (DF) methods and

MDL principle to estimate the number of sources. See [2–5, 89, 118] for in-depth account

on DF methods. The aspect we emphasize is the lack of statistical robustness of the

conventional array processors. Common to most DF methods is the need to estimate

the unknown array covariance matrix. For example, the commonly used beamformers

require the array covariance matrix to measure the power of the beamformer output

as a function of the DOA. In addition, many high-resolution subspace-based DOA

algorithms compute the noise or signal subspaces from the eigenvectors of the array

covariance matrix and exploit the fact that signal subspace eigenvectors and the array

steering matrix span the same subspace. Array covariance matrix is conventionally

estimated from the array snapshots by the SCM. However, as we shall illustrate with

numerous examples, employing a robust scatter matrix such as a robust M-estimators

of scatter adds robustness to the array processor against outliers and noise model

deviations, yet the loss in efficiency when the conventional assumptions hold can be

negligible. Thereby, we put special emphasis on the concept of scatter matrix and its

applications to DF. Note however that there exists other approaches to robust DF as

well; see [11, 119–125] to mention only a few.

4.1 The array model

The array consisting of m sensor elements receives d narrowband incoherent farfield

plane-wave sources from a point source, where m > d. At discrete time t, the array

output z(t) ∈ Cm is a weighted linear combination of the signal waveforms s(t) =

(s1(t), . . . , sd(t))
T ∈ Cd corrupted by additive noise n(t) ∈ Cm, that is,

z(t) = A(θ)s(t) + n(t) (4.1)
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where A = A(θ) is the m×d complex array steering matrix parametrized by the vector

θ = (θi) where θi is the distinct DOA of the ith source (i = 1, . . . , d). Each column

vector ai of A represents a point in known array manifold (array transfer function,

steering vector) a(θ), i.e. ai = a(θi). It is assumed that for any collection of d distinct θi
the matrix A has full column rank. Identifying the steering matrix A is then equivalent

with the problem of identifying the DOA’s. The array manifold in the case of ULA with

half a wavelength interelement spacing is a(θ) =
(
1 e−π sin(θ) · · · e−π(m−1) sin(θ)

)T
.

Let us now drop the time index t for convenience. A common assumption is that the

noise n is zero mean, spatially white (i.e. C(n) = σ2
nI), and independent of the source

vector s that is assumed to have zero mean and possess a full rank d × d covariance

matrix C(s). Starting point for most direction finding (DF) algorithms is the the array

covariance matrix C(z) which under the above assumptions can be represented as

AC(s)AH + σ2
nI. (4.2)

This decomposition of the array covariance matrix to low-rank signal subspace and

full-rank noise subspace is exploited by high-resolution subspace methods [2]. Con-

ventionally the array covariance matrix is estimated from the array snapshots z1 =

z(t1), . . . , zn = z(tn) sampled at discrete time instants t1, . . . , tn by the SCM S ,
1
n

∑n
i=1 ziz

H
i .

The concept underlying the developments in this chapter is statistical robustness,

which refers to robustness in the face of outliers (outliers occur in the array data

e.g. due to measurements errors, or, heavy-tailed, impulsive noise such as man-made

interference) or (slight/large) departures from nominal distributional assumptions. We

wish to point out that in array processing literature, the word robust “robust” more

commonly refers to (e.g. [126–128]):

• Robustness to signal model errors: signals may not be narrowband, they may not

originate from a point source, emitters may not be in the far field and planewave

assumption is not valid.

• Robustness to steering errors: imprecise knowledge of the array response may be

due to uncertainty in array element locations, steering directions and calibration

errors.

• Robustness in the face of insufficient sample support that may lead to rank defi-

cient SCM or inaccurate estimates of the array covariance matrix.

For the last problem, the diagonal loading of the SCM is one of the most popular

techniques to overcome the problem, i.e. to use (S+γI), γ ∈ R, in place of the sample

covariance matrix S, which may not be full rank and hence not invertible. For this

type of robustness studies, see e.g. [126, 129–132] and references therein.
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4.2 Scatter matrix

In many signal processing applications, the covariance matrix C of the output z ∈ Cd

is unknown quantity that needs to be estimated from the sample z1, . . . , zn. The

most commonly used DF methods use the SCM in place of its true unknown quantity.

Although statistical optimality can often be claimed for signal processors using the

SCM under the circular CN assumption, they suffer from the lack of robustness in the

face of outliers and signal or noise modelling errors. Furthermore, their efficiency for

heavy-tailed non-Gaussian and impulsive noise environments are far from optimal. See

e.g. [11, 119–125] for illustrations.

Simple and intuitive approach to robustify signal processors is then to use robust

covariance matrix estimators instead of the conventional non-robust SCM. This ob-

jective leads to introduction of a more general notion of covariance, called the scatter

matrix (Publications [I,II,IV,V]), which is best described as a generalization of the

covariance matrix. Scatter matrix is a well-known concept in real-valued multivariate

analysis; See page 22 for the definition in the real-valued case. Naturally, the concept

of scatter matrix can easily be adapted to complex-valued case. A positive definite

Hermitian d× d matrix C(z) is called a scatter matrix if it is equivariant in the sense

that C(Gz) = GC(z)GH for any nonsingular d × d matrix G. Clearly the covariance

matrix is a scatter matrix, but scatter matrix, by its definition, do not necessarily

require the assumption of finite 2nd-order moments for its existence and is therefore

capable in describing dependencies between complex random variables in more general

settings than the covariance matrix.

More generally, any weighted covariance matrix, defined as

E[ψ( zHC(z)−1z )zzH],

where ψ(·) is any real-valued weighting function on [0,∞) and C(·) is any scatter matrix

(e.g. the covariance matrix) is also a scatter matrix. The conventional covariance

matrix is obtained with unit weight ψ ≡ 1. In the real-valued case, an improved and

well-established idea of the weighted covariance matrices are M-estimators of scatter

[14]. In fact, weighted covariance matrix can be thought of as “1-step M-estimator”.

M-estimators can also be generalized to complex case.

4.2.1 Complex M-estimators of scatter

In the real-valued case one of the first proposals of robust scatter matrix estimators

were M-estimators of scatter due to Maronna [14]. Extension of M-estimators for

complex-valued case were introduced in Publication [V]. As in the real case they can

be defined by generalizing the MLE of the scatter parameter Σ ∈ PDH(d) of circular

CES distribution CEd(Σ, g).
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We generalize the ML estimating equation (3.28), by defining M-estimator of scat-

ter, denoted by Ĉψ, as the choice of C ∈ PDH(k) solving the estimating equation

C =
1

n

n∑

i=1

ψ(zHi C−1zi)ziz
H
i ,

where ψ is any real-valued weight function on [0,∞). Hence M-estimators constitute

a wide class of scatter matrix estimators that include the MLE’s Σ̂ of the scatter

parameter Σ of the circular CES distributions (discussed in Section 3.5.3) as important

special cases. M-estimators can be calculated by a simple iterative algorithm; see

Publications [IV,V] for details.

The theoretical (population) counterpart, the M-functional of scatter, denoted by

Cψ = Cψ(z), is defined analogously as the solution of an implicit equation

Cψ = E[ψ(zHC−1
ψ z)zzH ].

It is easy to show that M-functional of scatter is equivariant under invertible linear

transformation of the data in the sense required from the scatter matrix. Due to this

equivariance property, M-functional is proportional to the scatter parameter Σ of the

circular CES distribution CEd(Σ, g). In addition, since the scatter parameter Σ is pro-

portional to the underlying covariance matrix C provided it exists, we conclude that

M-functional of scatter is also proportional to the covariance matrix in such instances

(i.e. when g ∈ G1). For example, in many sensor array processing applications, covari-

ance matrix is required only up to a constant scalar and hence M-functionals can be

used to define a robust class of array processors [IV].

Some examples of M-estimators are given next; See [IV,V] for a more detailed

description of these estimators. As explained earlier in Section 3.5.3, robust weight

function should descend to zero.

� Example 10. Huber’s M-estimator, labelled HUB(q), is defined via weight

ψ(x) =

{
1/b, for x ≤ c2

c2/(xb), for x > c2

where c is a tuning constant defined so that q = Fχ2
2k

(2c2) for a chosen q (0 < q ≤ 1)

and the scaling factor b = Fχ2
2(d+1)

(2c2) + c2(1 − q)/d. The choice q = 1 yields ψ ≡ 1,

i.e. HUB(1) correspond to the SCM. In general, low values of q increase robustness but

decrease efficiency at the nominal circular CN model (see Publication [IV]). Figure 4.1

depicts weight function of HUB(q) estimators for selected values of q. �

� Example 11. Tyler’s M-estimator of scatter (Publication [V]) utilizes weight

function

ψ(x) = d/x
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Figure 4.1: ψ(x) function of HUB(q) estimators.

This M-estimator of scatter is also the MLE of the complex angular central Gaussian

distribution [133]. �

MATLAB functions to compute M-estimators is available at [134].

4.3 Beamformers

Beamforming is among the most important tasks in sensor array processing. Conse-

quently, there exists a vast amount of research papers on beamforming techniques, see

e.g. [3, 4, 135] for overviews.

Let us first recall the beamforming principles in narrowband applications. In receive

beamforming, the beamformer weight vector w = w(θ0) ∈ Cm linearly transforms the

output signal z of array of m sensors to form the beamformer output y = wHz with an

aim of enhancing the signal-of-interest (SOI) from look direction (DOA of SOI) θ0 and

attenuating undesired signals (interferers) from other directions. The (look direction

dependent) beam response or gain is defined as

b(θ) , wHa(θ)

where a(θ) is the array response (steering vector) to DOA θ. The modulus squared

|b(θ)|2 as function of θ is called the beampattern or antenna pattern. Then, beamformer

output power

P (θ0) , E[|y|2] = wH
C(z)w (4.3)
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should provide an indication of the amount of energy coming from the fixed look

direction θ0. Plotting P (θ) as a function of the look direction θ is called as the spatial

spectrum. The d highest peaks (local maxima) of the spatial spectrum correspond to

the beamformer DOA estimates of the d sources.

The beamformer weight vector w is chosen with an aim that it is statistically opti-

mum in some sense. Naturally, different design objectives lead to different beamformer

weight vectors. The classical beamformers [3, 4], namely the conventional (delay-and-

sum) beamformer and the Capon MVDR beamformer are reviewed below.

4.3.1 Conventional beamformer

Suppose that a single SOI arrives from an angle θ0. Assuming that the array model

(4.1) holds, the array output is z = a0s+n, where a0 = a(θ0) denotes the array response

for look direction θ0. Then maximizing the output power (4.3) (or, equivalently the

SNR), P (θ0) = E[|s|2]|wHa0|2 +σ2
n‖w‖2, over all weight vectors of the same magnitude

is equivalent to finding the maximizer of |wHa0|2 yielding w = a0 as the optimal weight

vector. Hence the spectrum (4.3) becomes

PBF(θ) , a(θ)HC(z)a(θ). (4.4)

Naturally, when multiple signals are present, they also contribute to the measured

output power at each look direction. Then a local maxima (peak) of the spectrum

can be shifted away from the true DOA of a weak signal by a strong interferer in the

vicinity, or, two closely spaced signals can result in only one peak regardless of the

available data amount or quality.

� Example 12. We consider 5-element ULA with half a wavelength interelement

spacing that receives two independent signals each having 10 dB SNR from 0 and 15

degrees. As can be seen from Figure 4.2, when the antenna array has formed a beam

in the look direction 0o of the SOI, it still exhibits significant gain in the direction

of the signal from 15o. Hence signal at 15o contributes to the measured power at 0o,

resulting in poor angular resolution of average power at 0o as revealed in the spectrum

in Figure 4.2. We note that the spectrum above is idealized since we assumed infinite

data records. The example illustrates that the conventional beamformer has poor

resolution when two closely spaced source signals are present. For a ULA with half a

wavelength interelement spacings, the beamforming resolution limit is approximately

2/m [3]. Hence in this example, it is about 2/5 rad ≈ 22.2o. �

4.3.2 MVDR beamformer

The classical Capon’s [136] MVDR beamformer attempts to overcome the poor reso-

lutions problems associated with the conventional beamformer by choosing the beam-
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Figure 4.2: Antenna beampattern of the the conventional beamformer to the look
direction 0o and the respective spectrum assuming infinite data records for a 5-element
ULA with λ/2 spacings receiving two 10 dB SNR signals from 0o and 15o (dashed
lines).

former weight w ∈ Cm as the minimizer of the output power wHC(z)w while con-

straining the beam response b(θ) along a specific look direction θ0 of the SOI to be

unity. The well-known solution to this constrained optimization problem is

wC(z) ,
C(z)−1a0

aH0 C(z)−1a0

. (4.5)

Observe that Capon’s beamformer weight vector is data dependent whereas the classical

beamformer weight wBF is not, i.e. wC(·) is a statistical functional as its value depends

on the distribution F of z via the covariance matrix C(z). The spectrum (4.3) becomes

PCAP(θ) , [a(θ)HC(z)−1a(θ)]−1. (4.6)

The implicit assumption here is that C(z) is non-singular. Empirically, the MVDR

beamformer is shown to possess superior performance to that of the conventional beam-

former (see also Example below). Note that the MVDR beamformer do not make any

assumption on the structure of the covariance matrix (unlike the subspace-methods of

the next section) and hence can be considered as a “nonparametric method” [3].

� Example 12 (cont’d). The performance improvement of the MVDR over

the conventional beamformer is illustrated in the same environment as in Example 12.

The spectrum in Figure 4.3 shows that the MVDR beamformer successfully resolves

the two sources. Unlike the conventional beamformer, the MVDR beamformer suc-

ceeds because it attenuates the signal from 15o while looking in the direction of the
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Figure 4.3: Antenna beampattern of the MVDR beamformer to the look direction 0o

and the respective spectrum assuming infinite data records for a 5-element ULA with
λ/2 spacings receiving two 10 dB SNR signals from 0o and 15o (dashed lines).

signal from 0o, as revealed by the antenna beampattern depicted in Figure 4.3. Beam-

pattern/spectrum above are idealized since we assumed infinite data records. �

� Example 13. The environment is as in Example 12, but now the sources are

only 10 degrees apart. As can be seen from the spectrum in Figure 4.5, the MVDR

beamformer is no longer able to resolve the two sources, yielding only one broad peak

in the middle of the signal DOA’s. In general, the resolution of the MVDR depends

upon the number of sources and on the SNR. MVDR method also fails if other signals

that are correlated with the SOI are present. �

In the examples above, we assumed infinite data records. In practice, of course, the

DOA estimates for the classical beamformer and Capon’s beamformer are calculated

as the d highest peaks in the estimated spectrums P̂BF(θ) and P̂CAP(θ), where the

true unknown covariance matrix is replaced by its conventional estimate, the SCM.

An intuitive approach in obtaining robust beamformer DOA estimates is to use robust

estimators instead of the SCM in (4.4) and (4.6), e.g. the M-estimators of scatter.

Rigorous statistical robustness and efficiency analysis of MVDR beamformers based on

M-estimators of scatter is presented in Publication [IV].

4.4 Subspace methods

As Example 13 demonstrated, the resolution capability of the MVDR beamformer

is rather limited. Subspace methods can provide higher resolution for closely-spaced

sources. Prior to introducing the methods we review the basic assumptions and intro-
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Figure 4.4: MVDR spectrum assuming infinite data records for a 5-element ULA with
λ/2 spacings receiving two 10 dB SNR signals from 0o and 10o (dashed lines).

duce some terminology.

Assume that the array model (4.1) holds and the array covariance matrix C obtains

the decomposition (4.2). Due to the structure (4.2), the m − d smallest eigenvalues

of C are equal to σ2
n and the corresponding eigenvectors ed+1, . . . , em are orthogonal

to the columns of the steering matrix A. These eigenvectors span the noise subspace

and the eigenvectors e1, . . . , ed corresponding to d largest eigenvalues span the signal

subspace (the column space of A).

The subspace DOA estimation methods are based on different properties of the

signal/noise subspaces. Some subspace methods also impose additional assumptions

on the array geometry (e.g. ESPRIT). Essentially, subspace methods need to solve the

following two problems:

Prob1 Find an estimate Ês of the signal subspace Es =
(
e1 · · · ed

)
and/or estimate

Ên of the noise subspace En =
(
ed+1 · · · em

)
.

Prob2 Find estimate θ̂ of the DOA’s which best optimizes the selected error criterion,

for example, find θ̂ such that distance between subspace A(θ̂) and the estimated

subspace Ês is minimal in some sense.

Commonly, the subspace methods differ only in how they approach Problem 2 since

the estimates of signal and noise subspaces are calculated from the eigenvectors of the

conventional, non-robust SCM. Intuitively speaking, it is evident that solving Prob-

lem 1 reliably, however, is more essential since no matter how clever criterion is used
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Figure 4.5: MUSIC pseudospectrum assuming infinite data records for a 5-element
ULA with λ/2 spacings receiving two 10 dB SNR signals from 0o and 10o (dashed
lines).

or how distances between subspaces are measured in Problem 2, the DOA estimates

will be unreliable if the estimates of the subspaces are unreliable. In other words,

accuracy and efficiency of the subspace method depends largely on the accuracy and

efficiency of the estimates of the noise or signal subspaces. Again, to obtain robust

subspace methods it is sensible to use estimates of noise or signal subspaces based on

eigenvectors of the M-estimators of scatter for example.

4.4.1 MUSIC

The classical MUSIC (multiple signal classification) method [137] is based on the or-

thogonality of the signal and noise subspace and the fact that A and Es span the same

subspace. Due to the orthogonality of the signal and the noise subspace, EH
n a(θ) = 0,

or equivalently, a(θ)HEnE
H
n a(θ) = 0, at the DOA’s θ1, . . . , θd. Then, the MUSIC

method finds DOA estimates as the d highest peaks of

PM(θ) , [a(θ)HÊnÊ
H
n a(θ)]−1

which is called as the MUSIC pseudospectrum. The resolution offered by MUSIC is

much higher than that of conventional beamforming techniques [2].

� Example 13 (cont’d). Figure 4.3 shows that the MUSIC method, unlike

the MVDR beamformer, is able to resolve the two sources. The pseudospectrum is

idealized since we assumed infinite data records. �
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Although MUSIC and subspace methods in general offer higher resolution than the

classical beamformer techniques, yet they also suffer from poor robustness properties.

Clearly, if the noise subspace En is unreliably estimated (e.g. via eigenvectors of the

SCM when the noise is non-Gaussian or impulsive), then the obtained MUSIC DOA

estimators are unreliable. For robust estimation of noise subspace one may use e.g.

eigenvectors of M-estimators of scatter as in Publication [V], or, eigenvectors of the

sample (spatial) sign covariance matrix

1

n

n∑

i=1

(zHi zi)
−1ziz

H
i (4.7)

as in [120].

� Example 14. Four independent random signals, QPSK, 16-PSK, 32-QAM and

BPSK signal of equal power σ2
s , are impinging on an k = 8 element ULA with λ/2 spac-

ing from DOA’s −10o, 15o, 10o and 35o. We consider two different noise environments.

In the first setting, noise n has circular Gaussian distribution CNm(σ2
nI), and in the

second setting noise has circular Cauchy distribution (recall Example 8) CTm,1(σ
2
nI).

Note that the Cauchy distribution does not have finite variance and σ2
n is the scale pa-

rameter of the distribution. In both simulation settings, the generalized signal to noise

ratio (SNR) is 10 log10(σ
2
s/σ

2
n) = 20dB and the number of snapshots is n = 300. Recall

that the Cauchy distribution does not have finite variance. Hence σ2
n in the Cauchy

distribution case does not represent the variance but the squared scale parameter of

the distribution. Hence the name generalized SNR. The number of signals (d = 4) is

assumed to be known a priori. We then estimated the noise subspace En from eigen-

vectors of the SCM, sample sign covariance matrix (4.7) and MLT(1) estimator (recall

Example 8). Typical MUSIC spectrums associated with different estimators are shown

in Figure 4.6 for both the Gaussian and Cauchy noise settings. All the estimators are

able to resolve the four sources correctly in the Gaussian noise case: in fact, the dif-

ferences in the spectrums are very minor, i.e. they provide essentially the same DOA

estimates. In the Cauchy noise case, however, MUSIC based on the classical sample

estimator (i.e. the SCM) is not able to resolve the sources. The robust estimators,

the sign covariance matrix and the MLT(1) estimator however yield reliable estimates

of the DOA’s. Based on the sharpness of the peaks, MLT(1) estimator is performing

better than the sample sign covariance matrix. �

4.4.2 Subspace fitting

There are plenty of subspace methods in addition to MUSIC, see e.g. [2, 3], such as

subspace fitting methods. For example, in weighted signal subspace fitting (SSF) ap-

proach [2], one finds DOA’s via criterion function

θ̂ = arg min
θ

Tr[Π⊥
A
ÊsYÊH

s ],
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Figure 4.6: MUSIC spectrums when the noise subspace is estimated using SCM (first
row), sample sign covariance matrix (second row) and MLT(1) estimator (third row)
in circular Gaussian (first column) and Cauchy (second column) noise. Sources are
independent random QPSK, 16-PSK, 32-QAM and BPSK signals that arrive at 8-
element ULA from DOA’s −10o, 15o, 10o and 35o. The number of snapshots is n = 300.
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where Π⊥
A

= I−A(AHA)−1AH is a projection matrix onto the noise subspace and Y

is some weighting matrix. The estimated optimal weighting matrix Ŷopt is a diagonal

matrix, whose diagonal elements are certain functions of the estimated eigenvalues of

the array covariance matrix. Hence, reliable and accurate estimation of DOA’s via

weighted SSF approach requires robust estimation of the signal subspace and eigenval-

ues of the covariance matrix. These can be obtained, for example, using eigenvectors

and eigenvalues of robust M-estimators instead of the SCM.

4.4.3 Subspace DOA estimation for noncircular sources

We now describe the Root-MUSIC-like method presented in [138]. Assume that the

signal s and noise n in the array model (4.1) are uncorrelated with zero-mean. The

method further requires the following additional assumptions

Mu1 Array is ULA (in order to facilitate using polynomial rooting).

Mu2 Noise n is 2nd-order circular and spatially white, i.e. C(n) = σ2
nI and P(n) = 0.

Mu3 Sources signals si, i = 1, . . . , d are uncorrelated: C(s) = diag(σ2
1 , . . . , σ

2
d) and

P(s) = diag(τ1, . . . , τd).

Under these assumptions,

C(z) = AC(s)AH + σ2
nI, P(z) = AP(s)AH ,

where as earlier A = A(θ) denotes the array response matrix. Further assume that

Mu4 P(s) = C(s)Φ, where Φ = diag(eφ1, . . . , eφd).

Assumption Mu4 means that circularity coefficient of the sources are equal to unity,

i.e. |%(si)| = 1 for i = 1, . . . , d, which implies that the transmitted source signals si
must be real-valued, such as AM or BPSK modulated signals, or the real part Re(si)

of the transmitted signal is a linear function of the imaginary part Im(si). If Mu1-Mu4

holds, then the augmented covariance matrix is

C(ẑ) =

(
A

A∗Φ∗

)
C(s)

(
A

A∗Φ∗

)H

+ σ2
nI. (4.8)

Then by computing the eigenvalue decomposition C(ẑ) one may find d dimensional sig-

nal subspace and 2m− d dimensional orthogonal noise subspace. Thus Root-MUSIC-

like direction finding algorithm can be designed; see [138] for details. By exploiting

the noncircularity property one obtains extra degrees of freedom since noncircular-

ity allows resolving more sources than sensors. Again, in the face heavy-tailed noise

or outlying observations, a robust estimate of the array covariance matrix C(z) and
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pseudo-covariance matrix P(z) can be used instead of the conventional non-robust

sample estimators. We wish to point out, however, that the assumptions stated above

are not necessary for all subspace DOA estimation methods for non-circular sources;

see e.g. [87].

4.5 Estimating the number of sources

An equally important problem to the DOA estimation is the estimation of the number

of sources. The subspace based methods introduced in the previous section usually

assume that the number of source signals is known a priori. In practise, the number

of sources d is often not known and needs to be estimated from the data. There are

several criteria that can be used, see e.g. [139] for an overview. The commonly used

Minimum Description Length (MDL) based information theoretic criterion [18], obtains

the estimate d̂ for the number of signals d as an integer p ∈ {0, 1, . . . , m − 1} which

minimizes the criterion [19]

MDL(p) , − log





(∏m
i=p+1 li

)1/(m−p)

1
m−p

∑m
i=p+1 li





(m−p)n

+
1

2
p(2m− p) logn,

where l1, l2, . . . , lm denote the eigenvalues of the SCM arranged in descending order.

An interesting alternative approach to MDL is the bootstrap-based detector proposed

in [140]. Instead of using the eigenvalues of SCM, it is desirable for purposes of reliable

estimation in non-Gaussian noise to employ eigenvalues of some robust estimator of

covariance, e.g. M-estimator of scatter, instead of the SCM. We demonstrate this via

simulation study.

� Example 15. 8-element ULA with half a wavelength interelement spacing

receives two uncorrelated Gaussian signals with equal power 20 dB from DOA’s θ1 =

−5o and θ2 = 5o. The components of the additive noise n are modelled as i.i.d. with

complex symmetric α-stable (SαS) distribution [119] with dispersion γ = 1 and values

α ranging from α = 1 (complex Cauchy noise) to α = 2 (complex Gaussian noise).

Simulations results are based on 500 Monte Carlo runs with n = 300 as the sample

size. Figure 4.7 depicts the relative proportion of correct estimation results using MDL

criterion, when the eigenvalues are obtained from SCM and robust MLT(1), HUB(0.9)

and HUB(0.5) estimators (recall Example 7 and Example 8). The performance of the

classical MDL employing the SCM is poor: it is able to estimate the number of signals

reliably only for α = 2, i.e. the Gaussian case. However, the robust M-estimator are

able to estimate the number of sources reliably for large range of α-values. Among the

robust M-estimators, MLT(1) has the best performance. �
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Figure 4.7: Simulation results for estimation of number of sources using the MDL
criterion based on the SCM, HUB(0.9), HUB(0.5) and MLT(1)-estimators. There are
d = 2 Gaussian source signals in SαS distributed noise for 1 ≤ α ≤ 2. The number of
sensors is d = 8 and number of snapshot is n = 300.

4.6 Discussion

Common to most DF methods is the need to estimate the unknown array covariance

matrix. Moreover, they often require covariance matrix C only up to a constant scalar,

and hence replacing the covariance matrix by a robust scatter matrix estimator provides

a robust DF approach. Several examples were provided to illustrate the utility of this

approach. The examples illustrated that DF methods based on scatter matrices, such

as robust M-estimators have highly reliable performance regardless of the heavy-tailed

nature of the noise distribution while having similar behaviour (resolution, accuracy)

in nominal Gaussian conditions. Similar performance was observed when estimating

the number of signals by MDL principle and robust scatter matrices.





Chapter 5

Conclusions

5.1 Summary

Array and multichannel signal processing are key technologies in wireless communi-

cations systems. Other application areas include radar, sonar and biomedicine. In

this thesis new statistical procedures for array and multichannel signal processing were

developed. Specifically, this thesis addressed the problem of independent component

analysis, sensor array signal processing and fundamentals of complex-valued signal

processing.

Complex-valued ICA model has attained increased interest recently as it is needed

for source separation of complex-valued data arising e.g. in magnetic resonance imaging

or antenna array signal processing of communications and radar signals. In this thesis

we proposed two new classes of demixing matrix estimators for complex-valued ICA,

called DOGMA (Publication [II]) and GUT (Publication [I]). The proposed methods

are generalizations of Cardoso’s FOBI [12] and Eriksson and Koivunen’s SUT [13, 81]

methods, respectively, which are included as special cases. Important benefit of the

methods are their versatility as distinct estimators within the same class can have

largely different statistical (robustness, efficiency) properties. Hence one can choose

an estimator from the class that yields the best results to the specific application

at hand. Another important benefit is that one can devise robust ICA estimators by

choosing the required matrix-valued statistics properly. For example, a robust DOGMA

demixing matrix estimator is obtained by choosing a pair of robust scatter matrices,

e.g. robust M-estimators of scatter. The importance of robust estimation in ICA

was amply demonstrated in Section 2.4 and Section 2.5. Both DOGMA and GUT are

algebraic methods essentially requiring only a simple eigenvector decomposition. Hence

numerical calculation and implementation of these methods is straightforward which

is a remarkable benefit when compared to other ICA methods which are often based

on optimization of a nonlinear function. Besides the aforementioned contributions to

complex-valued ICA, we also derived a simple closed form expression of the Cramér-Rao
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bound (CRB) for the demixing matrix estimation in real-valued ICA, thus filling an

important gap that was still existing in the theoretical foundations of ICA. Usefulness

of the derived bound was also shown with a simulation study.

Complex random signals arise naturally in many signal processing fields either di-

rectly (e.g. modulated signals in communications) or indirectly (e.g. spectral rep-

resentations of real signals). Recently, there has been an increased awareness that

simplistic adaptation of techniques developed for random real-valued signals to the

complex-valued case may not be adequate, may lead to suboptimal results, or in-

tractable calculations. Unfortunately, even fundamental results and tools for handling

complex-valued random signals are scattered in the open literature.

In this thesis (Publications [VI-X]) useful tools, statistics and estimators/detectors

were introduced and developed for proper processing of complex-valued signals. For

example, we established properties of a measure of circularity of a complex random

variable (called the circularity quotient) and derived the generalized likelihood ratio

test (GLRT) of circularity under Gaussianity and an adjusted GLRT of circularity

which is valid within the more general class of CES distributions. Detecting circularity

is amongst the most important issues in complex-valued signal processing since opti-

mal estimation methods and performance bounds are often different for circular and

non-circular cases. Also some fundamental theory of complex-valued signal process-

ing were developed. For example, a novel complex-valued extension of Taylor series

was introduced and complex-valued cumulants were derived in a mathematically rigor-

ous manner. In addition, the unconstrained and constrained CRB for complex-valued

parameter estimation were derived and properties of an important class of complex

multivariate distributions, called the CES distributions, were studied.

In the area of array signal processing, the work in Publications [IV,V] focused on

robust beamforming, high-resolution DOA estimation and estimation of the number

of sources. The conventional methods for these tasks rely heavily on the sample co-

variance matrix and often perform poorly in the face of outliers or if the noise and

interference appearing in the measurements are non-Gaussian. The noise observed

in real-world measurements can significantly deviate from the Gaussian assumption.

Hence it is advisable to devise robust array processors that perform reliably also under

non-Gaussian environments or in the presence of outliers. The robust methods devel-

oped were based on the concept of scatter matrix. Specifically, Maronna’s celebrated

M-estimators of scatter were extended to the complex-valued case and theoretical ro-

bustness and asymptotic results of scatter matrix based MVDR beamformers were

derived. M-estimators are fast to compute by a simple iterative algorithm and hence

easier to implement and apply successfully than many other robust methods in the

literature (e.g. the computationally demanding SAGE algorithm [121, 122]). If the

computation time is an important issue in the application at hand one can resort to k-

step M-estimators of scatter where the iterative algorithm to compute the M-estimator



5.2 Future work 73

is stopped after k (for k small, e.g. k = 3) iterations. Experimental results showing

reliable performance were given on all of the presented methods.

5.2 Future work

An important topic for the future work is to extend the theory presented in [VIII]

for the univariate case for complex random vectors. Indeed the concepts and results

of [VIII], such as R-linear functions, Taylor’s R-theorem, complex cumulants can be

generalized rather directly to the vector case also.

Another topic for future work is developing robust and non-parametric approaches

for detecting circularity. The drawback of the proposed GLRT of circularity is its

sensitivity to outliers and violations of Gaussian data assumption. The adjusted GRLT

of circularity provides a remedy for the latter, but the former problem remains. There

exists a demand for a robust and nonparametric tests of circularity. Robustness is

desired especially in communications applications since the additive noise is often non-

Gaussian and impulsive, e.g. man-made interference in out-door urban channels as

well as interference in indoor channels.

For almost all ICA estimators the form of the asymptotic covariance matrix is

unresolved. One notable exception is the deflation-based FastICA estimator for which

the asymptotic covariance matrix was derived recently in [37, 38]. In our future work we

plan to derive the asymptotic covariance matrices for the DOGMA and GUT family of

estimators and the CRB theory for the complex-valued ICA model. Some preliminary

definitive results have already been obtained.

So far almost all ICA research have focused on estimation, but almost nothing

exists on testing. This is mainly due to the fact that the limiting distribution (i.e.

asymptotic normality and covariance matrix) of most demixing matrix estimators are

unresolved. This knowledge could be used to construct (asymptotically valid) tests

about the structure of the mixing or demixing matrix, for example testing for H0:

aij = 0 against H1: aij 6= 0 (i.e. that the jth source does not contribute (have

statistically significant effect) to the ith observed variable). Such tests can have many

potential applications; see e.g. [45]. Constructing (preferably robust) tests for such

problems is one direction for future work.





Bibliography

[1] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Tech-

niques. Prentice-Hall, 1993, 512 pages.

[2] H. Krim and M. Viberg, “Two decades of array signal processing: the parametric

approach,” IEEE Signal Processing Mag., vol. 13, no. 4, pp. 67–94, 1996.

[3] P. Stoica and R. Moses, Introduction to spectral analysis. Upper Saddle River:

Prentice-Hall, 1997.

[4] G. M. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and adaptive signal

processing. Boston: Artech house, 2005, 816 pages.

[5] H. L. Van Trees, Detection, Estimation and Modulation theory, Part IV: Opti-

mum array processing. New York: Wiley, 2002, 1456 pages.

[6] P. Comon, “Independent component analysis—a new concept?” Signal Process-

ing, vol. 36, pp. 287–314, 1994.

[7] J. F. Cardoso, “High-order contrasts for independent component analysis,” Neu-

ral Computation, vol. 11, no. 1, pp. 157–192, 1999.

[8] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. New

York: Wiley, 2001, 504 pages.

[9] A. Cichocki and S.-I. Amari, Adaptive Blind Signal and Image Processing. New

York: Wiley, 2002, 586 pages.

[10] D. Middleton, “Man-made noise in urban environments and transportation sys-

tems: Models and measurements,” IEEE Trans. Commun., vol. 21, pp. 1232–

1241, 1973.

[11] D. B. Williams and D. H. Johnson, “Robust estimation of structured covariance

matrices,” IEEE Trans. Signal Processing, vol. 41, no. 9, pp. 2891–2905, 1993.

[12] J. F. Cardoso, “Source separation using higher order moments,” in Proc. IEEE

Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP’89), Glasgow,

UK, 1989, pp. 2109–2112.



76 BIBLIOGRAPHY

[13] J. Eriksson and V. Koivunen, “Complex-valued ICA using second order statis-

tics,” in Proc. IEEE Workshop on Machine Learning for Signal Processing

(MLSP’04), Sao Luis, Brazil, 2004.

[14] R. A. Maronna, “Robust M-estimators of multivariate location and scatter,” Ann.

Statist., vol. 5, no. 1, pp. 51–67, 1976.

[15] P. R. Krishnaiah and J. Lin, “Complex elliptically symmetric distributions,”

Comm. Statist. - Th. and Meth., vol. 15, pp. 3693–3718, 1986.

[16] A. van den Bos, “The multivariate complex normal distribution - a generaliza-

tion,” IEEE Trans. Inform. Theory, vol. 41, no. 2, pp. 537–539, 1995.

[17] B. Picinbono, “Second order complex random vectors and normal distributions,”

IEEE Trans. Signal Processing, vol. 44, no. 10, pp. 2637–2640, 1996.

[18] J. Rissanen, “Modeling by the shortest data description,” Automatica, vol. 14,

pp. 465–471, 1978.

[19] T. Wax and T. Kailath, “Detection of signals by information theoretic criteria,”

IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, no. 2, pp. 387–392, 1985.

[20] J. Eriksson and V. Koivunen, “Identifiability, separability and uniqueness of lin-

ear ICA models,” IEEE Signal Proc. Letters, vol. 11, no. 7, 2004.

[21] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York: Springer, 2002,

502 pages.

[22] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Independent component anal-

ysis based on higher-order statistics only,” in Proc. IEEE Workshop on Statistical

Signal and Array Processing, Corfu, Greece, 1996.

[23] ——, “An introduction to independent component analysis,” Journal of Chemo-

metrics, vol. 14, pp. 123–149, 2000.

[24] M. Davies, “Identifiability issues in noisy ICA,” IEEE Signal Processing Lett.,

vol. 11, no. 5, pp. 470 – 473, 2004.

[25] R. J. Muirhead, Aspects of Multivariate Statistical Theory. New York: Wiley,

1982, 704 pages.

[26] N. Delfosse and P. Loubaton, “Adaptive blind separation of independent sources:

A deflation approach,” Signal Processing, vol. 45, pp. 59–83, 1995.

[27] J.-F. Cardoso, “Blind signal separation: statistical principles,” Proceedings of the

IEEE, vol. 9, no. 10, pp. 2009–2025, 1998.



BIBLIOGRAPHY 77

[28] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent compo-

nent analysis,” Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997.

[29] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent compo-

nent analysis,” IEEE Trans. Neural Networks, vol. 10, no. 3, pp. 626–634, 1999.

[30] http://www.cis.hut.fi/projects/ica/fastica.

[31] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,”

IEE Proceedings-F, vol. 140, no. 6, pp. 362–370, 1993.
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