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Abstract—In the Multiple Measurements Vector (MMV)
model, measurement vectors are connected to unknown, jointly
sparse signal vectors through a linear regression model employing
a single known measurement matrix (or dictionary). Typically,
the number of atoms (columns of the dictionary) is greater
than the number measurements and the sparse signal recovery
problem is generally ill-posed. In this paper, we treat the signals
and measurement noise as independent Gaussian random vectors
with unknown signal covariance matrix and noise variance,
respectively. Based on the negative log-likelihood function and
maximum likelihood principle, we then introduce a matching
pursuit covariance learning (CL) algorithm, analogous to popular
orthogonal matching pursuit (OMP). Our numerical examples
demonstrate effectiveness of the proposed CL strategy in sparse
signal recovery where it performs favourably compared to the
state-of-the-art algorithms under a broad variety of settings.

Index Terms—compressed sensing, orthogonal matching pur-
suit, sparse Bayesian learning, sparse signal reconstruction

I. INTRODUCTION

In the multiple measurements vector (MMV) [1] model, the
measurement vectors yi ∈ CN follow the generative model

yl = Axl + el, l = 1, . . . , L, (1)

where A = (a1 · · · aM ) ∈ CN×M is a fixed (known)
overcomplete matrix (M > N ), called the dictionary or
measurement matrix, xl ∈ CM are unobserved source signal
vectors, and el ∈ CN are unobserved zero mean white noise
vectors, i.e., cov(el) = σ2I. The column vectors ai of A are
referred to as atoms. Letting Y = (y1 · · · yL) ∈ CN×L to
denote the matrix of measurement vectors, we can write the
model (1) in matrix form as

Y = AX+E, (2)

where matrices X = (xml) ∈ CM×L and E = (enl) ∈ CN×L

contain the signal and error vectors as columns, respectively.
The signal matrix X is assumed to be K-rowsparse, i.e., at
most K rows of X contain non-zero entries. The rowsupport
of X ∈ CM×L is the index set of rows containing non-zero
elements:

M = supp(X) = {i ∈ [[M ]] : xij ̸= 0 for some j ∈ [[L]]}

where [[M ]] = {1, . . . ,M}. In sparse signal recovery (SSR)
problems, the object of interest is identifying the support M,
given only the data Y, the dictionary A, and the sparsity level
K. See [1]–[6].

The source signal vectors xl are modelled as i.i.d. circular
Gaussian random vectors with independent elements and zero

mean. Additionally, xl-s are assumed statistically independent
of noise vectors el, l = 1, . . . , L, which are also assumed
to have circular Gaussian distribution. Under the above condi-
tions, yl ∼ CNN (0,Σ), where the positive definite Hermitian
(PDH) N ×N covariance matrix Σ = cov(yl) is of the form

Σ = AΓAH + σ2I =

M∑
i=1

γiaia
H
i + σ2I. (3)

where the signal covariance matrix Γ = cov(xl) = diag(γ) is
a diagonal matrix and γ ∈ RM

≥0 is a vector of signal powers
with only K non-zero elements. Hence, M = supp(X) =
supp(γ), and covariance learning (CL-)based support recov-
ery algorithms can be constructed by minimizing the negative
log-likelihood function (LLF) of the data Y, which is given
by (after scaling by 1/L and ignoring additive constants)

ℓ(γ, σ2 | Y,A) = tr((Adiag(γ)AH + σ2I)−1Σ̂)

+ log |Adiag(γ)AH + σ2I|
(4)

where Σ̂ is the sample covariance matrix (SCM),

Σ̂ =
1

L

L∑
l=1

yly
H
l = L−1YYH,

and tr(·) and | · | denote the matrix trace and determinant,
respectively.

The objective is to determine the minimizer of (4) along
with the identification of the support of non-zero source pow-
ers. A popular Bayesian approach, sparse Bayesian learning
(SBL) [7], regards signal powers (γi) as random hyperparam-
eters governed by a hierarchical prior distribution. Popular M-
SBL algorithm [8], [9] employs an empirical Bayes method
to construct an EM algorithm for solving (4). M-SBL method
is computationally demanding, and is known to have slow
convergence, which often prohibits its uses even when the
number of atoms M is only moderately large. Although some
faster fixed point SBL update rules have been proposed (e.g.,
[8, eq. (19)]) these often provide worse performance than the
original slower rule. The greedy CL algorithm proposed in
this paper avoid estimation of X, thus distinguishing itself
from methods such as M-SBL, the simultaneous orthogonal
matching pursuit (SOMP) [2] or the simultaneous normalized
iterative hard thresholding (SNIHT) [6] algorithms, all of
which require iterative updates of the unknown source signal
matrix. Another disadvantage of M-SBL is the assumption that
σ2 is known. Although the M-step of M-SBL can be modified
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for joint estimation of γ and σ2, as mentioned in [7], [10], they
tend to provide poor estimation results, which is also attested
in our numerical studies. Additionally, the estimate of γ is
not necessarily very sparse, but is post-processed by pruning
(setting to zero all but K-largest elements of final iterate γ̂). In
this paper we design a greedy pursuit CL algorithm, called CL-
OMP (cf. Section II) that is analogous to SOMP in the classic
SSR setting with deterministic source waveforms. Simulation
studies (cf. Section III) then validate the effectiveness of the
proposed estimation scheme.

Notations: aM denotes the components of a corresponding
to support set M with |M| = K. For any n ×m matrix A
we denote by AM the n×K submatrix of A restricted to the
columns of A indexed by setM. We use A+ = (AHA)−1AH

to denote the pseudo-inverse of matrix A with full column
rank. We use diag(·) in two distinct contexts: diag(A) denotes
an N -vector comprising the diagonal elements of an N ×N
matrix A, whereas diag(a) signifies an N×N diagonal matrix
with its diagonal elements from the N -vector a.

II. GREEDY PURSUIT COVARIANCE LEARNING

Define

Σ\i =
∑
j ̸=i

γjaja
H
j + σ2I = Σ− γiaia

H
i (5)

as the covariance matrix of yl-s when the contribution from
the ith source signal is removed. Before presenting the CL-
OMP algorithm, we recall the following results which will be
used in the sequel.

Lemma 1. [11] Assume M = K < N . Then the parameters
σ2 > 0 and γ ∈ RK

≥0 that minimize ℓ(γ, σ2|Y,A) in (4) are

σ̂2 =
1

N −K
tr
(
(I−AA+)Σ̂

)
(6)

and
γ̂ = diag(A+(Σ̂− σ̂2I)A+H) (7)

where the latter represents an unconstrained MLE, meaning
it aligns with MLE when the non-negativity constraint is met,
i.e., γ̂ ∈ RK

≥0.

In scenarios where γ̂ in (7) contains negative elements, one
can calculate the constrained solution using [12, Algorithm I].
A more straightforward method involves setting the negative
elements of γ̂ to zero. While this approach does not precisely
yield the MLE, it remains consistent in large samples.

Lemma 2. [13, Appendix B] Consider the conditional like-
lihood of (4) where source powers γj for j ̸= i and the noise
variance σ2 are known. Then the conditional negative log-
likelihood function for the unknown ith source, defined as

ℓi(γ | Y,A, {γj}j ̸=i, σ
2)

= tr((Σ\i + γaia
H
i )

−1Σ̂) + log |Σ\i + γaia
H
i |, (8)

has a unique optimal value

γi = max

(
aHi Σ

−1
\i (Σ̂−Σ\i)Σ

−1
\i ai

(aHi Σ
−1
\i ai)

2
, 0

)
, (9)

where Σ\i is defined in (5).

Lemma 2 will serve as the foundation for developing the
CL-based Orthogonal Matching Pursuit (CL-OMP) algorithm,
presented in algorithm 1. This algorithm follows the generic
matching pursuit strategy similar to the one outlined in [14,
Table 3.1].

Initialization phase. Set k = 0, and γ(0) = 0M×1, σ2(0) =
[tr(Σ̂)/N ]I, and M(0) = supp(γ(0)) = ∅ as initial solutions
of signal and noise powers and the signal support, respectively.
Then Σ(0) = Adiag(γ(0))AH + σ2(0)I = σ2(0)I is the initial
covariance matrix at the start of iterations.

Main Iteration phase consists of the following steps:
1) Sweep: Compute the errors

ϵi = min
γ≥0

ℓi(γ | Y,A, {γ(k)
j }j ̸=i, σ

2(k)) (10)

for each i ∈ [[M ]] \ M(k) using its unique optimal value as
given by Lemma 2:

γi = max
(aHi (Σ(k))−1(Σ̂−Σ(k))(Σ(k))−1ai

(aHi (Σ
(k))−1ai)2

, 0
)
. (11)

The sweep stage is comprised of lines 2 and 3 in algorithm 1.
2) Update support: Find a minimizer, ik of ϵi: ∀i ̸∈ M(k),

ϵik ≤ ϵi, and update the supportM(k+1) =M(k)∪{ik}. This
step corresponds to line 4 in algorithm 1.

3) Update provisional solution: compute

(ĝ, σ̂2) = argmin
g,σ2

ℓ(g, σ2 | Y,AM(k+1)),

where ℓ is the LLF defined in (4). These solutions are obtained
from Lemma 1 and calculated in lines 5 − 7 in algorithm 1,
respectively. The obtained signal power is constrained to be
non-negative, which is not exactly the MLE. Alternative option
is to compute the true MLE (the constrained solution) using
[12, Algorithm I].

4) Update the covariance matrix: Compute Σ(k+1) =
AM diag(ĝ)AH

M + σ̂2I. This stage is implemented by line
8 in algorithm 1.

5) Stopping rule: stop after K iterations, and otherwise
increment k by 1 and repeat steps 1)-4).

Note that the sweep stage gives (after some simple algebra)
the following value for the error ϵi in (10):

ϵi = c+ log(1 + γia
H
i Σ

−1ai)− γi
aHi Σ

−1Σ̂Σ−1ai

1 + γiaHi Σ
−1ai

(12)

where we have for simplicity of notation written Σ = Σ(k) and
where c denotes an irrelevant constant that is not dependent
on γi. Thus without loss of generality, we set c = 0. Then
using that γi is given by (11) we can write

1 + γia
H
i Σ

−1ai = 1 +
aHi Σ

−1(Σ̂−Σ)Σ−1ai

(aHi Σ
−1ai)2

aHi Σ
−1ai

= 1 +
aHi Σ

−1Σ̂Σ−1ai − aHi Σ
−1ai

aHi Σ
−1ai

=
aHi Σ

−1Σ̂Σ−1ai

aHi Σ
−1ai
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in the case that γi > 0. Substituting this into the denominator
of the last term in (12), we obtain

ϵi = log(1 + γia
H
i Σ

−1ai)− γia
H
i Σ

−1ai. (13)

If γi = 0, then ϵi = 0. This explains line 3 in algorithm 1.
In the provisional solution update, one finds the minimizer

of ℓ(γ, σ2 | Y,AM) where for notational simplicity we have
written M =M(k+1) for the current support with |M| = k.
Thus the problem to be solved is

minimize
γ∈Rk

≥0
,σ2>0

tr((AM diag(γ)AH
M + σ2I)−1Σ̂)

+ log |AM diag(γ)AH
M + σ2I|.

Taking the derivative of this equation w.r.t. γi and setting it to
zero, gives the likelihood equation:

0 = aHi Σ
−1(Σ̂−Σ)Σ−1ai ∀i ∈M.

This in turn implies that in the next iteration γi in (11) will
take value γi ≈ 0 for i ∈ M. Thus it is unlikely that the
atoms that have been already selected will be chosen again
in the next iterations. This explains the name of this greedy
pursuit algorithm: the method is similar to conventional OMP
[15] or SOMP [2] where no atom is ever chosen twice in the
sweep stage.

Algorithm 1: CL-OMP algorithm
Input : Y, A, K
Initialize: Σ̂ = L−1YYH, Σ = [tr(Σ̂)/p]I, M = ∅

1 for k = 1, . . . ,K do
2 γ = (γi)M×1, γi ← max

(
aH
i Σ

−1(Σ̂−Σ)Σ−1ai

(aH
i Σ

−1ai)2
, 0
)

3 ϵ = (ϵi)←
(
log(1+γia

H
i Σ

−1ai)−γiaHi Σ
−1ai

)
M×1

4 M←M∪ {ik} with ik ← argmini ̸∈M ϵi

5 σ2 ← 1
N−k tr

(
(I−AMA+

M)Σ̂
)

6 γM ← max
(
diag

(
A+

M(Σ̂− σ2I)A+H
M
)
, 0
)

7 γM∁ ← 0

8 Σ← A diag(γ)AH + σ2I

Output : M, γ, σ2

III. SIMULATION STUDIES

A. Simulation setting

We compare the performance of CL-OMP algorithm against
the traditional greedy SSR algorithms, the SOMP [2, Algo-
rithm 3.1] and the SNIHT [6, Algorithm 1]. Both SOMP and
SNIHT algorithms are designed for MMV model, and return
an estimated support M of K-rowsparse signal matrix given
the measurement matrix Y, the dictionary A, and the desired
rowsparsity level K.

We also compare with other CL algorithms designed for
solving (4). We note that comparison to M-SBL is challenging
as it assumes that σ2 is known. However, update rules for σ2

can be integrated into the EM algorithm by replacing the M-
step with a joint maximization over σ2 and γ, resulting in
the addition of the σ2 update [8, Eq. (21)] to the M-step. In
[8], it was noted that joint estimation can result in severely
biased estimates of σ2, thereby affecting the accuracy of γ
estimate. Consequently, the authors in [8] recommend using
alternatives such as grid search or other heuristics to estimate
σ2. For fair comparison, we report values of M-SBL that
utilize the true σ2, denoted as M-SBL-σ2, while the version
that jointly estimates both σ2 and γ is termed M-SBL. We also
compare with coordinatewise optimization (CWO) method of
[16, Algorithm 1]. This algorithm also assumes that the noise
power σ2 in the LLF (4) is known. Hence we denote the
method as CWO-σ2, where again the suffix σ2 is used to
indicate that the method has oracle knowledge of σ2. Naturally,
M-SBL-σ2 and CWO-σ2 are not realisable in practise in our
scenario as σ2 is unknown and their performance is only
shown as benchmark for best possible performance.

In our simulations, the matrix A is a Gaussian random
measurement matrix, i.e., the elements of A are drawn
from CN (0, 1) distribution and the columns are unit-norm
normalised as is common in compressed sensing. To form
the K-rowsparse source signal matrix X ∈ CM×L, support
M = supp(X) is randomly chosen from {1, . . . ,M} with-
out replacement for each Monte-Carlo (MC-)trial. The noise
E ∈ CN×L have elements that are i.i.d. circular complex
Gaussian with unit variance (i.e., σ2 = 1).

As performance measure we use the empirical probability of
exact recovery, PER = 1

T

∑T
t=1 I

(
M̂(t) =M(t)

)
, where I(·)

denotes the indicator function, and M̂(t) denotes the estimate
of the true signal support M(t) for tth MC trial. The number
of MC trials is T = 2000, the number of atoms is M = 256,
and the sparsity level is K = 4. The dimensionality of the
measurements N or the number of measurement vectors L
may vary. LetM = {i1, . . . , iK} be the true support set where
K = 4, and let σ2

1 = γi1 denote the power of the 1st Gaussian
source signal. Define the SNR of the first non-zero source
sequence as 10 log10 σ

2
1/σ

2. For the second, third, and fourth
Gaussian sources, we set their SNR levels to be 1 dB, 2 dB,
and 4 dB lower than that of the first source, respectively.

B. Results

The upper panel of Figure 1 displays the PER rates when the
number of measurement vectors is fixed (L = 16) while the
dimensionality of measurements N grows (N = 8, 16, 32 to
N = 64). As can be noted, CL-OMP has the best performance
for all N and SNR levels. For example, at SNR = 5dB and
N = 32, the PER rates are 60.1%, 47.2%, 54.8%, 32.8%,
57.45% and 56.55% for the CL-OMP, SOMP, SNIHT, M-
SBL, M-SBL-σ2 and CWO-σ2, respectively. Note that M-SBL
(which estimates σ2 in M-step) has 25% drop in accuracy
compared with M-SBL-σ2 (that uses true σ2) illustrating the
instability of estimating γ and σ2 jointly in the EM algorithm.
It can also be noted that the performance of M-SBL deterio-
rates as N increases. SNIHT has better performance compared
to SOMP, yet SOMP gradually improves, approaching the
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Fig. 1. Comparison of PER rates of different sparse recovery algorithms under a variety of SNR levels when the sources are Gaussian (top panel) and
non-Gaussian (bottom panel) and the number of measurements increases from N = 8 to N = 64; K = 4, M = 256, L = 16 and dictionary is a Gaussian
measurement matrix.
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Fig. 2. Comparison of PER rates of different sparse recovery algorithms under a variety of SNR levels when the sources are Gaussian and the number of
snapshots increases from L = 16 to L = 256; N = 16, K = 4, M = 256, and the dictionary is a Gaussian measurement matrix.

performance level of SNIHT as the number of measurements
N increases. When comparing M-SBL-σ2 and CWO-σ2 we
notice that M-SBL-σ2 often has slight advantage over CWO-

σ2 but this comes with extra computational burden.

Next, we explore the impact of the Gaussianity of source
signals on method performances. We let the signal sequences
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xil possess a fixed amplitude γi = |xil|2 > 0 for all
l = 1, . . . , L, where γi > 0 for i ∈ M and γi = 0
otherwise. The phases of source signals are generated as
random variables from a uniform distribution on [0, 2π), i.e.,
Arg(xil) ∼ Unif(0, 2π). In other words, {xil}Ll=1 for i ∈M
is an i.i.d sample from a uniform distribution on the complex
circle of fixed radius γi. The bottom panel of Figure 1 depicts
the performance in this scenario. A comparison between the
upper and bottom panel figures reveals that the performance
of all CL methods (CL-OMP, M-SBL or CWO) remain
consistent even with non-Gaussian sources. This illustrates
some robustness of the CL-methods against the violation of
the Gaussianity assumption of source signals.

In the next study, dimensionality N is fixed (N = 16), while
the number of measurement vectors L varies. Otherwise the
setting is as earlier. Again we note from Figure 2 that CL-
OMP uniformly outperforms the other methods for all SNR
levels and sample lengths. Consider, for instance, the scenario
with L = 256 and a very low SNR of 1 dB. In this case, CL-
OMP stands out as the only method achieving a perfect 100%
PER rate. Meanwhile, SNIHT and SOMP exhibit PER rates of
81.6% and 47.8%, respectively. The PER rates for M-SBL, M-
SBL-σ2 and CWO-σ2 are 86.8%, 97.8%, 99.0%, respectively.
Overall (for all values of L) CL-OMP is distinctively more
robust to low SNR than conventional greedy methods, the
SOMP and the SNIHT. CL-OMP is also consistently better
than M-SBL-σ2 and CWO-σ2 which are the only methods
that have oracle knowledge of the noise power σ2. Another
interesting observation is that as L increases the performance
gap between the CL methods and the traditional greedy pursuit
methods (the SNIHT and SOMP) becomes slightly larger. This
can be due to the fact that as L increases the SCM Σ̂ better
estimates the true covariance matrix Σ giving an additional
boost to CL methods. We repeated the simulation for non-
Gaussian sources scenario, but the results were similar as for
Gaussian sources case, and are omitted.

IV. CONCLUSIONS

In this paper, we proposed a matching pursuit CL algorithm.
Our simulation studies demonstrated that the proposed CL-
OMP method outperforms traditional SSR methods, the SOMP
and the SNIHT, often with a large margin. Especially, when N
or L are small, the SNIHT and the SOMP performed poorly
compared to CL methods. Remarkably, CL-OMP also out-
performed the CWO(-σ2) and M-SBL(-σ2) algorithms which
minimize the LLF in (4) under the assumption that σ2 is
known.

There are many open questions to be addressed in future
works. For example, estimation of number of sources K or
addressing the non-Gaussian scenarios. A journal version [17]
of this paper also considers the source localization problem
where the method performs favourably compared to compet-
ing methods. There are also several applications where the
proposed CL-OMP can be useful. For instance, it can be
used as atom selection method in coupled dictionary learning
algorithm [18]. These explorations are left as future works.
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