Linear pooling of sample covariance matrices

Esa Ollila

Department of Signal Processing and Acoustics
Aalto University, Finland
http://users.spa.aalto.fi/esollila/

DATAIA Seminar, Dec. 18th, 2020

Al

Aalto University


http://users.spa.aalto.fi/esollila/

Elias Raninen David E. Tyler
Aalto University Rutgers University

2/36



N7 rrze

@ Introduction




Multiple covariance matrices problem

@ We are given independent p-variate measurements on K classes:
X1,1,...,Xn1’1, ey Xl,Ka---aan,K
@ Need to estimate the covariance matrices of the classes:
Sk = E[(xi 6 — pr) (i — 1) ',

where pp, = E[x; 1], for k=1,..., K.
o Each X € SBF ( € set of positive definite matrices)
e Common estimate of Xy, is the sample covariance matrix (SCM):

Nk

Sk = ! > (ki — R) (xi — Ke)

ng — 1 =

fork=1,..., K.
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Multiple covariance matrices problem (cont’d)

o If one assumes equal covariance matrices (X = X)
. one may estimate X via the pooled SCM:

K

ng
Spool = —
pool Z - Sk,
k=1
where n =nqy +ng9 + -+ ng.
@ Challenges:

@ High-dimensionality (possibly p > ny Vk)
@ K large (e.g., multiple classes, and each class has subclasses).
© Non-gaussian data.

e Common solution is to use regularized (shrinkage) estimators.
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Regularized SCM

Regularized SCM (RSCM) estimator:

Sk(a, B) = BS + aTy,

where
@ Ty = 0 is some fixed shrinkage target matrix
e a >0, B> 0 are weights (different for each k)

@ Weights are optimized by minimizing criterions such as
@ Mean squared error E[||Sy(a, ) — i ||3]
@ Metric D(Sk(a, 8), Xi) such as Frobenius, Kullback-Leiber,
Riemannian distance, ...
© Cross validation

or using Bayesian approaches or expected likelihood approach.
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Regularized SCM (cont’d)

Sk(a, B) = BSy + aTy.
But what target T}, to use?
Q@ T, =1 [DLS10, Coll5]
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Regularized SCM (cont’d)

Sk(a, B) = BSk + aTy.
But what target T}, to use?

@ T, =1 [DLS10, Coll5]

0T, — "BV sd a—1-pe [0,1]. [LW04b, CWEH10, OR19]
p
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Regularized SCM (cont’d)

Sk(a, B) = BSk + aTy.
But what target T}, to use?
Q@ T, =1 [DLS10, Coll5]
QT = MI and a=1-p3¢€][0,1]. [LW04b, CWEH10, OR19]
p

© T, =S, and and a=1-— 3. [Frig9, RO18]
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Regularized SCM (cont’d)

Sk(a, B) = BSy + aTy.
But what target T}, to use?
Q@ T, =1 [DLS10, Coll5]

Ty = "Y1 and a—1-pe [0,1]. [LW04b, CWEH10, OR19]
p

T) = Spool and and a =1 — §. [Frig9, RO18]
Highly structured T:

- Single (market-)factor matrix [LWO03]

- Constant correlation matrix [L\WW04a]

- Knowledge aided (KA-)STAP matrix [SLZGO08].
- Generalized banded matrices [LZZ17]
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Double shrinkage SCM

o Step 1: ﬁlk(ﬁ) = 3S; + (1 - B)Spooh B e [0, 1]
Shrink each Sy, towards S0 to get ﬁlk(ﬂ).

tr(Xx(8))
p

o Step 2: 3y (a, B) = aZk(B) + (1 —a) I, ac|0,1].

Then regularize 3;,(3) further towards the scaled identity
matrix to ensure positive definiteness (even for p > . n;).

@ [Fri89] used same « and f3 for each k, and leave-one-out cross
validation for choosing them.

e [RO20] uses different «, 3 for each k and data-adaptive tuning for
parameter selection.
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@ Define
K
S(a):ZaiSi, aiEOVi:1,...,K
=1

K
or, S(a)zaK+1I+Za¢Si, a;>0Vi=1,.... K+1
i=1

e Find weights that minimizes the (total) MSE:
aj = arg min E[||S(a) — Zx|l3] Vk=1,... K,
(ai)=0
K
& A*=(aj ---a)) =argmin Y E[||S(az) — ZklF].

(ai)>0

o Ideally, use 22 = S(aj).
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@ Define

K
S(a):ZaiSi, aiEOVi:1,...,K
=1

K
or, S(a) =aK+1I+ZaiSi, a;>0Vi=1,.... K+1
i=1
e Find weights that minimizes the (total) MSE:
aj = arg min E[||S(a) — Zx|l3] Vk=1,... K,
(ai)=0

K
& A*=(aj ---a)) =argmin Y E[||S(az) — ZklF].
(aij)=0 k=1
o Ideally, use 3% = S(af). In practise, 3, = S(a;) (where &, = a¥).
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Why covariance estimation?

Classification/Clustering

Portfolio selection

e o () o o

e o o () o

. SI=]0 o o e 0
Graphical models e 0 o o0
e o 0 0 o

9/36



Why covariance estimation (con’d)?

Pedestrian detection [TPMO08, JHS13]
Feature vector :

T
z(m,y) = (J"vy? |Im|7 |Iy|’ I:% + Iggv |Im€|7 |Iyy|’ arctan([x|/|ly|)) )

where z,y are the pixel coordinates, I, I, the 1°* intensity derivatives, ...
Covariance descriptor of a region R:

1

Sp =
BT IRI -1

Z (Z((L‘, y) —Z)(Z(ZE, y) _Z)T
(z,y)ER
where zZ = ﬁ Z(x’y)eRz(w,y)

; Sgr-s are used as features for an ML algorithm.
(a) Orig. image  (b) || See [MRO20] for a review.
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© The linearly pooled estimator




LINPOOL estimator

o Denote the scaled MSE of the k'* SCM S}, by
Sk = p~"MSE(Sk) = p'E[||Sk. — Skl
@ Define matrices

A= diag(él, v 75K) and C= (Cij) = (M> S RKXK.

p

@ Theorem: The MSE of S(a) = Zfil a;S; is given by
QLpE[HS(a) -3 = %aT(A +Cla—cja (4const)

and it is a strictly convex quadratic function in a € RX.
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LINPOOL estimator (cont’d)

@ Construct estimates (more on this later)
A = p~L diag(MSE(S), ..., MSE(Sk))
A (23,
C=(¢ -¢g)= (—r( pZ j)> e REXK

@ Solve the (unconstrained) strictly convex quadratic programming

(QP) problem:

1 A A
ay=argmin -a (A+Cla—¢la
acRK 2
=(A+0)!
@ If any ag; < 0, then solve
. _ minimize ja T(A+C) ¢la
subject to a > 0.
@ Output: 3, = S(4), where S(a) = 3K 4;S;. (k=1,...,K)
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Example 1: single class (K = 1) case

@ In the single class case, we just need to find shrinkage parameter

aj = arg min IE[HaSl = ElH%] = (01 + 011)_1011
acR

_ tr(%1)
~ MSE(S;) + tr(2?)

€(0,1)

13/36



Example 1: single class (K = 1) case

@ In the single class case, we just need to find shrinkage parameter

aj = arg min IE[HaSl = ElH%] = (01 + 011)_1011
acR

_ tr(%1)
~ MSE(S;) + tr(2?)

€(0,1)

@ One can show that 3% = a*S; verifies: MSE(3}) = a} - MSE(S)).
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Example 1: single class (K = 1) case

@ In the single class case, we just need to find shrinkage parameter

aj = arg min IE[HaSl = ElH%] = (01 + 011)_1011
acR

_ tr(%1)
~ MSE(S;) + tr(2?)

€(0,1)

e One can show that * = a*S; verifies: MSE(2*) = a* - MSE(S;).
1 1 1 1
= Since 0 < a] < 1, 37 = a7 S; is always more efficient than S;.
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Example 1: single class (K = 1) case

@ In the single class case, we just need to find shrinkage parameter

ay = arg Iﬁin E[HaSl = 21“%:] = (01 + 011)_1011
ac
tr(%%)

= MSES) + oz < OV

@ One can show that 3% = a*S; verifies: MSE(3}) = a} - MSE(S)).

= Since 0 < a¥ < 1, 3% = a%S; is always more efficient than S;.
o Gaussian data: (n; —1)S; ~ Wy(n —1,%4), so
ny — 1
ni+7v/p

MSE(S;) = (tr(21)? 4+ tr(Z})) = af =

n1—1

where v = ptr(X3)/tr(X1)? € [1,p] is a measure of sphericity.
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Example 1: single class (K = 1) case

@ In the single class case, we just need to find shrinkage parameter

aj] = arg min E[HaSl = 21“%:] = (01 + 011)_1011
acR

_ tr(%1)
~ MSE(S;) + tr(2?)

€(0,1)

@ One can show that 3% = a*S; verifies: MSE(3}) = a} - MSE(S)).
= Since 0 < a¥ < 1, 3% = a%S; is always more efficient than S;.

o Gaussian data: (n; —1)S; ~ Wy(n —1,%4), so

ny — 1
ni+7/p

MSE(S;) = (tr(21)? 4+ tr(Z})) = af =

ny — 1
where v = ptr(X3)/tr(X1)? € [1,p] is a measure of sphericity.

3 1
= LINPOOL estimator (for Gaussian data) is 37 = LSL
n1+9/p
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Examples: equal covariance matrices X, = X Vk

@ In this case, C = 11" with ¢ = tr(X?)/p and

=(A+ C)_lck =c(A+c11") ™1

MSE(S;)~
=05 ="+’ = MSE(S
jk — ”2” 244’ Z
@ Remarks:
Q aj, > 0and a};, }\/ISE(Sj)*1
Q@a=--=a;=> E*:Zlea;ksj.

@ If MSE(S;) is large, then the weight for summand S; is small.
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Examples: equal covariance matrices X, = X Vk

@ In this case, C = 11" with ¢ = tr(X?)/p and

=(A+ C)_lck =c(A+c117)11

MSE(S,)~
= af _— = MSE
ik = =2 +a’ Z
@ Remarks:
© aj, > 0 and a};, o« MSE(S;)"

Q@a=--=a;=> ZAJ*:ZJK:la;ij.
@ If MSE(S;) is large, then the weight for summand S; is small.
Q Gaussian data: (n; — 1)S; ~ W(n; —1,X%) Vj, so

TLj—l

MSE(S;) = nt+l—K+~/p

(tr(Z)? +tr(T?)) = a]*-k =
TLj —1

Compare against Spo01 = Zszl %S; (where n. =3, ny).
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LINPOOL estimator with identity shrinkage

o Is £ =31 apS;, aj > 0, positive definite (34 - 0)?
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LINPOOL estimator with identity shrinkage

o Is £ =31 apS;, aj > 0, positive definite (34 - 0)?
@ To account for this, we add I as an additional summand:

K
S(a) :aK+1I+ZaiS¢,
i=1
where a; >0,i=1,...,K, ag41 >0and a= (al,...,aK,aK+1)T.
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LINPOOL estimator with identity shrinkage

o Is £ =31 apS;, aj > 0, positive definite (34 - 0)?
@ To account for this, we add I as an additional summand:

K
S(a) :aK+1I+ZaiS¢,
i=1
where a; >0,i=1,...,K, ag41 >0and a= (al,...,aK,aK+1)T.

@ The solution is found identically, since now the MSE is
1 1
—E[IS(a) - Sl] = ;a7 (A +C)a-&la,

where
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© Extensions and modifications




LINPOOL estimator with convex combination

o Recall that LINPOOL estimator is Xj, = Y1) 4;S;.
@ A natural modification is to require that the weights sum to 1:

K
174, = Zajk =1
j=1

@ Note: such constraint presumes that the true covariance matrices
share similar scale (tr(%;) ~ tr(3;))
@ This results in the following QP problem:
minimize ia' (A+Cla—c/a
subjectto a>0
1Ta=1.
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LINPOOL estimator using SDP

@ Write B = C + A. Then note that

1 1
2—pE[||S(a) —- 3] = §aTBa —cja (4 const)

1
= §(a — B l¢p)'Bla— B lc) (4 const).

@ It is possible to minimize the MSE under the constraint S(a) = 0 by
solving following semidefinite program (SDP):

minimize ¢

. t (a—B7lcp) "
subject to (a B¢, B-1 =0
S(a) = 0.

e Note: When aj = B~ 'c;, has positive elements, then it is also the
solution to SDP (and the constrained QP) problem.
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LINPOOL estimator for multitarget problems

@ Single class (K = 1) problem, in which we estimate the covariance
matrix 3 from data &} = {x1,...,x,}.

o Let S; denote the SCM based on the data &; and {T,,}}_,,
T,, = 0, our set of target matrices.

@ Then the multitarget (MT-)RSCM is defined as
) M
3 =8S; + Z amTom.
m=1

Q: How to determine the optimal weights 3 and {a,, }M_, ?
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LINPOOL estimator for multitarget problems

@ Single class (K = 1) problem, in which we estimate the covariance
matrix 3 from data &} = {x1,...,x,}.

o Let S; denote the SCM based on the data &; and {T,,}}_,,
T,, = 0, our set of target matrices.

@ Then the multitarget (MT-)RSCM is defined as
) M
3 =8S; + Z amTom.
m=1

Q: How to determine the optimal weights 3 and {ay, }M_, ?
@ Often the target matrices are not fixed, but also based on the data Aj.
= SCM S; can not be considered independent of T-s.

@ We enhance independence and use LINPOOL estimator to construct
a multitarget-style shrinkage estimator.
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The MT-LINPOOL estimator

@ Generate i.i.d. samples X411 ~ N,(0,T,,) for m=1,..., M each
of size L.

@ Compute S; from &} and Sa,...,Sp41 from Xy, ..o, Xyria.
© Compute C and A based on data sets &; and {Xm+1}%:1.
Q a=arg min ja T(A+Cla—¢]a

a>0
Q 21 =a181 4+ a2S2+ ...+ ap+1Sm+1

Note: one may view L as an additional regularization parameter.
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Complex-valued case

@ Our framework is general: the LINPOOL estimator can be
constructed as earlier, but based on SCM-s,

1 &
S = Xi p — Xk ) (Xi p — Xp)"
k nk—liz;( ik — Xk)(Xik —Xx)
of complex-valued observations x;, € CP (k=1,...,K).

Note: ()" denotes the Hermitian transpose.

@ Only estimation of C and A are affected (and this is the topic of the
next section).
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@ Estimation of C and A




Estimation of C and A

@ We needs to estimate the following parameter matrices:
A = p~! diag(E[[|S1 — Su[F], .., B[Sk — ZllF)

C = (cy) = (tr(%z}’)) e RFXK,

o We constuct estimates A and C under the assumption that the class
distributions are (unspecified) elliptical distributions:

{xink}ity e Ep(i, X, gr,)  for each k

(defined on next slide)
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Elliptically symmetric (ES) distributions

x ~ &,(0,X, g) when its pdf is [FKN9O]

f(x) o 2729 (x "2 %),

where
o X €SB is the unknown covariance matrix.

@ g:[0,00) — [0,00) is density generator

@ We assume that ES distribution has finite 4**-order moments.
e Multivariate normal (MVN) : g(t) = exp(—t/2)

@ The ES family also Includes other distributions such as multivariate ¢
(MVT) with v > 2 d.o.f, generalized Gaussian distribution, etc.

@ The (circular) complex elliptically symmetric distributions [OTKP12]
can be defined similarly.
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Estimate of MSE

We need the following statistics of x = (z1, ... ,a:p)T ~ Ep( i, 3i, gi)

y tr(37
@ sphericity. ~y; = % € [1,p]
1
tr(>;
@ scale: n; = r(%) >0

o elliptical kurtosis:
% -kurt(zq), real case
K, =
’ - kurt(z1), complex case

Lemma: The MSE of SCM S; when data is from &,(u;, i, gi) is

1 Ky - |
MSE(S;) 2 x (nl 1 + )(p-l-%) + ni%, real case
- =

D 1 HZ
( + ) —i— %, complex case
n;—1
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Estimate of MSE

We need the following statistics of x = (z1, ... ,a:p)T ~ Ep( i, 3i, gi)

tr(X?
e sphericity: v; = % € [1,p] = next slide
1
tr(3;
@ scale: m; = M >0 = 1; = tr(S;)
p

o elliptical kurtosis:
1 L Teripet
LS kurt(zy1), real case IS & kurt(z;)
- kurt(z1), complex case 3

Lemma: The MSE of SCM S; when data is from &,(u;, i, gi) is

( +”)(+ )+ Sy real
MSE(SZ) _ .2>< n@—l b7 ni'ﬁ, €al case

p - 777, 1 K:’L
( + ) —i— %, complex case
n;—1
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Estimate of sphericity

: ) b))
o Define a shape matrix A, = pm.
. tr(Af)
The sphericity measure can then be expressed as v = )
p
@ As an estimator of Ay, we use
A o pz sz sz_/:”k)—r
|xz k— Nk||2
[ = arg min Z 1%k — pl] (spatial median [Bro83])
k=1

o Ay is a scaled (xp) spatial sign covariance matrix [VKOOO].
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Estimate of sphericity

Theorem 2: Under assumption

(A) {xir}ity ~ (0,2, gi) and 4, = o(p) as p — oo
it holds that

E[Ar] = Ax + o( || Agllr).

@ It is easy to show that
Efw(AD] _ p , m—1  u(BAP)

p n n p
—
Th. 2:—v as p—oo

. N (tf([\%) p >
Yk = -
ng — 1 P Nk

is an asymptotically unbiased estimator of .

@ Hence
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Estimate of sphericity

Theorem 2: Under assumption

(A) {xir}ity ~ (0,2, gi) and 4, = o(p) as p — oo
it holds that

E[Ar] = Ax + o( || Agllr).

@ It is easy to show that
Efw(AD] _ p , m—1  u(BAP)

p n n p
—
Th. 2:—v as p—oo

. n tr [\2
Y = i ( (k)—£>—dk

ng — 1 P Nk

@ Hence

is an asymptotically unbiased estimator of ;. We also use correction
term dyj, proposed in [ZPFW14].
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Estimates of ¢;; = tr(X,X,)/p

e i =j: Use &; = 1?4 as an estimator of
r(52)

CZ‘Z‘=—=7]¢2’}/Z‘, i=1,...,K.
p

(where 7; = tr(3;)/p)
o i # j: use ¢; = Mif); tr(A;A;)/p as an estimator of
B tI‘(EiEj) tI'(AiAj)

CGj = ———- =nm————.
ij D )5 D
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© A simulation study




A simulation study: set-up

dimension | # of. classes | sample lengths
300 4 ng =n Vk

o {X;k}i*y < tpv (W, Xg) with degr. of freedom v = 7.
o ;. has an AR(1) structure, (2)ij = ngo" 7!, where
01 =0.3,00=0.4,03=0.5,0,=0.6

and n = tr(Xg)/p=k, k=1,...,K.
e We compute the normalized MSE (NMSE)

12 — Sel3/ 1213
and total NMSE
K A
D IEk = ZkllF/ ISl
k=1

averaged over 1000 MC trials.
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A simulation study: estimators

We use LINPOOL estimator with identity shrinkage:

K
X = Z aikSi + ar1)rl-
i=1
We compare with the MT-RSCM estimators of the form:

K
=1

(

where Tik) > 0 are K target matrices for the kth class.
As the set of target matrices, we use

{Tz(k)}i[il ={I} U{Si}icqu, ...k }\k-
Hence the MT-estimator equals LINPOOL estimator, except for its
choice of weights.
We use LOOCV [THX" 18] method for computing the optimal MT
weights.
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Results: N

LOOCV

MSE

LINPOOL

=050

T om0

s

0
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Results: Total NMSE

-©—-LINPOOL
——LO0OCV

Total NMSE
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NMSE

What about just using plain SCMS-s?

SCM LINPOOL

w

=050

02f T s080 ]

20 30 40 50 60 10 20 30 40 50 6
3 ng

NMSE(S;) ~ 100x NMSE(3)

0
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@ Portfolio optimization




Basic definitions (cont’d)

@ p := # of stocks in the portfolio
@ w; = proportion of total wealth allocated to i*" asset, verifying

p
1= Zwi =w'1.
=1

o r=(ry,...,mp) " := net returns of p assets (at some time t).

o Two key statistics of portfolio net return R = w 'r are

mean return pw =E[R] =w' p
variance (risk) o2, = var(R) = w' Zw.
@ Global minimum variance portfolio (GMVP) allocation strategy:

minimize w' ¥w subjectto 1'w = 1.
weRP

DI
173117
@ See [FP16] for a great reference on financial engineering.

= w, =
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GMVP stock data analysis

Data sets (daily net returns of daily closing prices)

e p = 50 stocks in Hang Seng Index (HSI), 1/2016 - 12/2017.
e p = 45 stocks in Hang Seng Index (HSI), 1/2010 - 12/2011.

Sliding window method

e At day ¢, we use the previous n days to estimate X and w.
e portfolio returns are then computed for the following 20 days.

e Window is shifted 20 trading days forward, new allocations and
portfolio returns for another 20 days are computed.
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GMVP stock data analysis: methods

@ We use MT-LINPOOL method with 2 target matrices:
» The single factor market index model T computed as in [LWO03].
» The constant correlation model T computed as in  [LWO04a]
» MT-LINPOOL-C is same as earlier method but with constraint
that weights a;;, sum to 1, ie., 1 =), a4, = 1.
@ We compare against the following methods developed by finance
experts (Profs. O. Ledoit and M. Wolf):
@ LW-improved [LWO03]: RSCM with shrinkage towards T
@ LW-honey [LW04a]: RSCM with shrinkage towards T¢.
© LWe-analytical [LW20]: nonlinear shrinkage of eigenvalues of
SCM.
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GMVP stock data analysis: results

HSI 2010-2011 (p = 45) HSI 2016-2017 (p = 50)

0.1
40.13 %0.09
S S
3 3
N N
£ 0.8
So.12 g
0.07 ~—
| | |
100 200 300 100 150 200 250

n n

—&— LW-improved —m—  LW-honey = —@— LW-analytical
—— MT-LINPOOL -4 MT-LINPOOL-C

The proposed MT-LINPOOL approach is able to provide the smallest

realised risk results
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What’s cooking

@ The paper is available at ArXiv:
https://arxiv.org/abs/2008.05854

Note: we are currently revising the paper, and extension to
complex-valued data is not (yet!) available in the ArXiv submission.

@ The codes (MATLAB, python) are also available at:
https://github.com/EliasRaninen

@ Also take a look at the related double shrinkage RSCM method:
https://arxiv.org/abs/2011.04315

Coupled regularized sample covariance matrix estimator for multiple
classes, E. Raninen and E. Ollila.

@ Or find out about robust linear shrinkage methods:
https://doi.org/10.1109/TSP.2020.3043952

Shrinking the eigenvalues of M-estimators of covariance matrix, E.
Ollila, D.P. Palomar, F. Pascal, TSP 2020 (early access).
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