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Multiple covariance matrices problem

We are given independent p-variate measurements on K classes:

x1,1, . . . ,xn1,1, . . . , x1,K , . . . ,xnK ,K

Need to estimate the covariance matrices of the classes:

Σk = E[(xi,k − µk)(xi,k − µk)
>],

where µk = E[xi,k], for k = 1, . . . ,K.

Each Σk ∈ Sp×p++ ( ∈ set of positive definite matrices)

Common estimate of Σk is the sample covariance matrix (SCM):

Sk =
1

nk − 1

nk∑

i=1

(xi,k − xk)(xi,k − xk)
>

for k = 1, . . . ,K.
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Multiple covariance matrices problem (cont’d)

If one assumes equal covariance matrices (Σk ≡ Σ)

... one may estimate Σ via the pooled SCM:

Spool =

K∑

k=1

nk
n

Sk,

where n = n1 + n2 + · · ·+ nK .

Challenges:

1 High-dimensionality (possibly p > nk ∀k)
2 K large (e.g., multiple classes, and each class has subclasses).
3 Non-gaussian data.

Common solution is to use regularized (shrinkage) estimators.
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Regularized SCM

Regularized SCM (RSCM) estimator:

Sk(α, β) = βSk + αTk,

where

Tk � 0 is some fixed shrinkage target matrix

α ≥ 0, β ≥ 0 are weights (different for each k)

Weights are optimized by minimizing criterions such as

1 Mean squared error E
[
‖Sk(α, β)−Σk‖2F

]
2 Metric D(Sk(α, β),Σk) such as Frobenius, Kullback-Leiber,

Riemannian distance, ...
3 Cross validation

or using Bayesian approaches or expected likelihood approach.
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Regularized SCM (cont’d)

Sk(α, β) = βSk + αTk.

But what target Tk to use?

1 Tk = I. [DLS10, Col15]

2 Tk =
tr(Sk)

p
I and α = 1− β ∈ [0, 1]. [LW04b, CWEH10, OR19]

3 Tk = Spool and and α = 1− β. [Fri89, RO18]

4 Highly structured Tk:

- Single (market-)factor matrix [LW03]

- Constant correlation matrix [LW04a]

- Knowledge aided (KA-)STAP matrix [SLZG08].

- Generalized banded matrices [LZZ17]
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Double shrinkage SCM

Step 1: Σ̂k(β) = βSk + (1− β)Spool, β ∈ [0, 1]

Shrink each Sk towards Spool to get Σ̂k(β).

Step 2: Σ̂k(α, β) = αΣ̂k(β) + (1−α)
tr(Σ̂k(β))

p
I, α ∈ [0, 1].

Then regularize Σ̂k(β) further towards the scaled identity
matrix to ensure positive definiteness (even for p >

∑
i ni).

[Fri89] used same α and β for each k, and leave-one-out cross
validation for choosing them.

[RO20] uses different α, β for each k and data-adaptive tuning for
parameter selection.
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This work

Define

S(a) =

K∑

i=1

aiSi, ai ≥ 0 ∀i = 1, . . . ,K

or, S(a) = aK+1I +

K∑

i=1

aiSi, ai ≥ 0 ∀i = 1, . . . ,K + 1

Find weights that minimizes the (total) MSE:

a?k = arg min
(ai)≥0

E
[
‖S(a)−Σk‖2F

]
∀k = 1, . . . ,K,

⇔ A? = (a?1 · · ·a?K) = arg min
(aij)≥0

K∑

k=1

E
[
‖S(ak)−Σk‖2F

]
.

Ideally, use Σ̂?
k = S(a?k).

In practise, Σ̂k = S(âk) (where âk ≈ a?k)

.
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Why covariance estimation?

Portfolio selection Classification/Clustering
The Most Important Applications

graphical models clustering/discriminant analysis

PCA
radar detection

Ilya Soloveychik (HUJI) Robust Covariance Estimation 15 / 47

PCA

The Most Important Applications

graphical models clustering/discriminant analysis

PCA radar detection

Ilya Soloveychik (HUJI) Robust Covariance Estimation 15 / 47

Radar detection

Graphical models

Gaussian graphical model

n-dimensional Gaussian vector

x = (x1, . . . , xn) ∼ N (0,Σ)

xi, xj are conditionally independent (given the rest of x) if

(Σ−1)ij = 0

modeled as undirected graph with n nodes; arc i, j is absent if (Σ−1)ij = 0

1

2

34

5
Σ−1 =




• • 0 • •
• • • 0 •
0 • • • 0
• 0 • • 0
• • 0 0 •




1
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Why covariance estimation (con’d)?

Pedestrian detection [TPM08, JHS+13]
Feature vector :

z(x, y) =
(
x, y, |Ix|, |Iy|,

√
I2x + I2y , |Ixx|, |Iyy|, arctan(Ix|/|Iy|)

)>
,

where x, y are the pixel coordinates, Ix, Iy the 1st intensity derivatives, . . .

features are often computed from images. In this work, the original intensity image I is mapped to a
feature image Φ, which is the same size as I, but each point zi of the feature image is an 8-dimensional
feature vector

zi =

[
x, y, |Ix|, |Iy|,

√
I2x + I2y , |Ixx|, |Iyy|, arctan

|Ix|
|Iy|

]T
. (1)

Here x, y are the pixel coordinates, Ix, Iy are first intensity derivatives, Ixx, Iyy are second derivatives and

the last component arctan |Ix||Iy| captures edge orientations. The directional derivatives can be computed

for example by using the Sobel gradient operator, which is implemented in e.g. Matlab. An illustration
of the feature image Φ is in Figure 2.

Figure 1: Positive examples I ∈ R160×96 from the INRIA data set.
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Figure 2: Features |Ix|, |Iy|,
√
I2x + I2y , |Ixx|, |Iyy| and arctan |Ix||Iy| for the leftmost image in Figure 1.

To describe any image region r which contains S pixels, we can compute the 8× 8 covariance matrix

Cr =
1

S − 1

S∑

i=1

(zi − µ)(zi − µ)T , (2)

where µ = 1
S

∑S
i=1 zi. This matrix captures correlations of different features on the region, and is

therefore different depending on whether the region contains sharp edges or flat surfaces. Illustration of
the covariance descriptors of different example regions is in Figure 3. We note that it is computationally

2

features are often computed from images. In this work, the original intensity image I is mapped to a
feature image Φ, which is the same size as I, but each point zi of the feature image is an 8-dimensional
feature vector

zi =

[
x, y, |Ix|, |Iy|,

√
I2x + I2y , |Ixx|, |Iyy|, arctan

|Ix|
|Iy|

]T
. (1)

Here x, y are the pixel coordinates, Ix, Iy are first intensity derivatives, Ixx, Iyy are second derivatives and

the last component arctan |Ix||Iy| captures edge orientations. The directional derivatives can be computed

for example by using the Sobel gradient operator, which is implemented in e.g. Matlab. An illustration
of the feature image Φ is in Figure 2.

Figure 1: Positive examples I ∈ R160×96 from the INRIA data set.

abs(I
xx

) abs(I
yy

) Orientation

Figure 2: Features |Ix|, |Iy|,
√
I2x + I2y , |Ixx|, |Iyy| and arctan |Ix||Iy| for the leftmost image in Figure 1.

To describe any image region r which contains S pixels, we can compute the 8× 8 covariance matrix

Cr =
1

S − 1

S∑

i=1

(zi − µ)(zi − µ)T , (2)

where µ = 1
S

∑S
i=1 zi. This matrix captures correlations of different features on the region, and is

therefore different depending on whether the region contains sharp edges or flat surfaces. Illustration of
the covariance descriptors of different example regions is in Figure 3. We note that it is computationally

2

(a) Orig. image (b) |Ix|

Covariance descriptor of a region R:

SR =
1

|R| − 1

∑

(x,y)∈R

(z(x, y)− z̄)(z(x, y)− z̄)>

where z̄ = 1
|R|
∑

(x,y)∈R z(x, y)

SR-s are used as features for an ML algorithm.
See [MRO20] for a review.
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LINPOOL estimator

Denote the scaled MSE of the kth SCM Sk by

δk = p−1MSE(Sk) = p−1E[‖Sk −Σk‖2F].

Define matrices

∆ = diag(δ1, . . . , δK) and C = (cij) =

(
tr(ΣiΣj)

p

)
∈ RK×K .

Theorem: The MSE of S(a) =
∑K

i=1 aiSi is given by

1

2p
E
[
‖S(a)−Σk‖2F

]
=

1

2
a>(∆ + C)a− c>k a (+const)

and it is a strictly convex quadratic function in a ∈ RK .
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LINPOOL estimator (cont’d)

1 Construct estimates (more on this later):

∆̂ = p−1 diag(M̂SE(S1), . . . , M̂SE(SK))

Ĉ = (ĉ1 · · · ĉK) =

( ̂tr(ΣiΣj)

p

)
∈ RK×K

2 Solve the (unconstrained) strictly convex quadratic programming
(QP) problem:

âk = arg min
a∈RK

1

2
a>(∆̂ + Ĉ)a− ĉ>k a

= (∆̂ + Ĉ)−1ĉk

3 If any âkj < 0, then solve

âk =
minimize 1

2a>(∆̂ + Ĉ)a− ĉ>k a
subject to a ≥ 0.

4 Output: Σ̂k = S(âk), where S(a) =
∑K

i=1 aiSi. (k = 1, . . . ,K)
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Example 1: single class (K = 1) case

In the single class case, we just need to find shrinkage parameter

a?1 = arg min
a∈R

E
[
‖aS1 −Σ1‖2F

]
= (δ1 + c11)

−1c11

=
tr(Σ2

1)

MSE(S1) + tr(Σ2
1)
∈ (0, 1)

One can show that Σ̂?
1 = a?1S1 verifies: MSE(Σ̂?

1) = â?1 · MSE(S1).

⇒ Since 0 < a?1 < 1, Σ̂?
1 = a?1S1 is always more efficient than S1.

Gaussian data: (n1 − 1)S1 ∼ Wp(n− 1,Σ1), so

MSE(S1) =
1

n1 − 1
(tr(Σ1)

2 + tr(Σ2
1))⇒ a?1 =

n1 − 1

n1 + γ/p

where γ = p tr(Σ2
1)/ tr(Σ1)

2 ∈ [1, p] is a measure of sphericity.

⇒ LINPOOL estimator (for Gaussian data) is Σ̂1 =
n1 − 1

n1 + γ̂/p
S1.
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Examples: equal covariance matrices Σk ≡ Σ ∀k

In this case, C = c11> with c = tr(Σ2)/p and

a?k = (∆ + C)−1ck = c(∆ + c11>)−11

⇒ a?jk =
MSE(Sj)

−1

‖Σ‖−2 + a
, a =

K∑

i=1

MSE(Si)
−1.

Remarks:
1 a?jk > 0 and a?jk ∝ MSE(Sj)

−1.

2 a?1 = · · · = a?K ⇒ Σ̂? =
∑K

j=1 a
?
jkSj .

3 If MSE(Sj) is large, then the weight for summand Sj is small.
4 Gaussian data: (nj − 1)Sj ∼ W(nj − 1,Σ) ∀j, so

MSE(Sj) =
1

nj − 1
(tr(Σ)2 +tr(Σ2))⇒ a?jk =

nj−1

n+1−K + γ/p
.

Compare against Spool =
∑K

j=1
nj

n Sj (where n =
∑

i ni).

14/36



Examples: equal covariance matrices Σk ≡ Σ ∀k

In this case, C = c11> with c = tr(Σ2)/p and

a?k = (∆ + C)−1ck = c(∆ + c11>)−11

⇒ a?jk =
MSE(Sj)

−1

‖Σ‖−2 + a
, a =

K∑

i=1

MSE(Si)
−1.

Remarks:
1 a?jk > 0 and a?jk ∝ MSE(Sj)

−1.

2 a?1 = · · · = a?K ⇒ Σ̂? =
∑K

j=1 a
?
jkSj .

3 If MSE(Sj) is large, then the weight for summand Sj is small.
4 Gaussian data: (nj − 1)Sj ∼ W(nj − 1,Σ) ∀j, so

MSE(Sj) =
1

nj − 1
(tr(Σ)2 +tr(Σ2))⇒ a?jk =

nj−1

n+1−K + γ/p
.

Compare against Spool =
∑K

j=1
nj

n Sj (where n =
∑

i ni).

14/36



LINPOOL estimator with identity shrinkage

Is Σ̂k =
∑K

j=1 âjkSj , âjk ≥ 0, positive definite (Σ̂k � 0)?

To account for this, we add I as an additional summand:

S(a) = aK+1I +

K∑

i=1

aiSi,

where ai ≥ 0, i = 1, . . . ,K, aK+1 > 0 and a = (a1, . . . , aK , aK+1)
>.

The solution is found identically, since now the MSE is

1

2p
E
[
‖S(a)−Σk‖2F

]
=

1

2
a>(∆̃ + C̃)a− c̃>k a,

where

C̃ =

(
C η
η> 1

)
and ∆̃ =

(
∆ 0
0> 0

)

where η = (p−1 tr(Σ1), . . . , p
−1 tr(ΣK))>.
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LINPOOL estimator with convex combination

Recall that LINPOOL estimator is Σ̂k =
∑K

j=1 âjkSj .

A natural modification is to require that the weights sum to 1:

1>âk =

K∑

j=1

âjk = 1

Note: such constraint presumes that the true covariance matrices
share similar scale (tr(Σi) ≈ tr(Σj))

This results in the following QP problem:

minimize 1
2a>(∆ + C)a− c>k a

subject to a ≥ 0
1>a = 1.
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LINPOOL estimator using SDP

Write B = C + ∆. Then note that

1

2p
E
[
‖S(a)−Σk‖2F

]
=

1

2
a>Ba− c>k a (+ const)

=
1

2
(a−B−1ck)

>B(a−B−1ck) (+ const).

It is possible to minimize the MSE under the constraint S(a) � 0 by
solving following semidefinite program (SDP):

minimize t

subject to

(
t (a−B−1ck)

>

a−B−1ck B−1

)
� 0

S(a) � 0.

Note: When a?k = B−1ck has positive elements, then it is also the
solution to SDP (and the constrained QP) problem.

17/36



LINPOOL estimator for multitarget problems

Single class (K = 1) problem, in which we estimate the covariance
matrix Σ1 from data X1 = {x1, . . . ,xn}.
Let S1 denote the SCM based on the data X1 and {Tm}Mm=1,
Tm � 0, our set of target matrices.

Then the multitarget (MT-)RSCM is defined as

Σ̂1 = βS1 +

M∑

m=1

αmTm.

Q: How to determine the optimal weights β and {αm}Mm=1 ?

Often the target matrices are not fixed, but also based on the data X1.

⇒ SCM S1 can not be considered independent of Ti-s.

We enhance independence and use LINPOOL estimator to construct
a multitarget-style shrinkage estimator.
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The MT-LINPOOL estimator

1 Generate i.i.d. samples Xm+1 ∼ Np(0,Tm) for m = 1, . . . ,M each
of size L.

2 Compute S1 from X1 and S2, . . . ,SM+1 from X2, . . . ,XM+1.

3 Compute Ĉ and ∆̂ based on data sets X1 and {Xm+1}Mm=1.

4 â = arg min
a≥0

1
2a>(∆̂ + Ĉ)a− ĉ>1 a

5 Σ̂1 = â1S1 + â2S2 + . . .+ âM+1SM+1

Note: one may view L as an additional regularization parameter.
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Complex-valued case

Our framework is general: the LINPOOL estimator can be
constructed as earlier, but based on SCM-s,

Sk =
1

nk − 1

nk∑

i=1

(xi,k − xk)(xi,k − xk)
H,

of complex-valued observations xi,k ∈ Cp (k = 1, . . . ,K).

Note: (·)H denotes the Hermitian transpose.

Only estimation of C and ∆ are affected (and this is the topic of the
next section).
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Estimation of C and ∆

We needs to estimate the following parameter matrices:

∆ = p−1 diag(E[‖S1 −Σ1‖2F], . . . ,E[‖Sk −Σk‖2F])

C = (cij) =

(
tr(ΣiΣj)

p

)
∈ RK×K .

We constuct estimates ∆̂ and Ĉ under the assumption that the class
distributions are (unspecified) elliptical distributions:

{xi,k}nk
i=1

iid∼ Ep(µk,Σk, gk) for each k

(defined on next slide)
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Elliptically symmetric (ES) distributions

x ∼ Ep(0,Σ, g) when its pdf is [FKN90]

f(x) ∝ |Σ|−1/2g
(
x>Σ−1x

)
,

where

Σ ∈ Sp×p++ is the unknown covariance matrix.

g : [0,∞)→ [0,∞) is density generator

We assume that ES distribution has finite 4th-order moments.

Multivariate normal (MVN) : g(t) = exp(−t/2)

The ES family also Includes other distributions such as multivariate t
(MVT) with ν > 2 d.o.f, generalized Gaussian distribution, etc.

The (circular) complex elliptically symmetric distributions [OTKP12]
can be defined similarly.
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Estimate of MSE

We need the following statistics of x = (x1, . . . , xp)
> ∼ Ep(µi,Σi, gi) :

sphericity: γi =
p tr(Σ2

i )

tr(Σi)2
∈ [1, p]

⇒ next slide

scale: ηi =
tr(Σi)

p
> 0

⇒ η̂i = tr(Si)

elliptical kurtosis:

κi =

{
1
3 · kurt(x1), real case
1
2 · kurt(x1), complex case

⇒ κ̂i =

{
1
3 · k̂urt(x1)
1
2 · k̂urt(x1)

Lemma: The MSE of SCM Si when data is from Ep(µi,Σi, gi) is

MSE(Si)

p
= η2i ×





( 1

ni − 1
+
κi
ni

)
(p+ γi) +

κi
ni
γi, real case

( 1

ni − 1
+
κi
ni

)
p+

κi
ni
γi, complex case
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Estimate of sphericity

Define a shape matrix Λk = p
Σk

tr(Σk)
.

The sphericity measure can then be expressed as γk =
tr(Λ2

k)

p
.

As an estimator of Λk, we use

Λ̂k =
p

nk

nk∑

i=1

(xi,k − µ̂k)(xi,k − µ̂k)
>

‖xi,k − µ̂k‖2

µ̂k = arg min
µ

nk∑

i=1

‖xi,k − µ‖ (spatial median [Bro83])

Λ̂k is a scaled (×p) spatial sign covariance matrix [VKO00].
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Estimate of sphericity

Theorem 2: Under assumption

(A) {xi,k}nk
i=1 ∼ Ep(0,Σk, gk) and γk = o(p) as p→∞

it holds that
E[Λ̂k] = Λk + o(‖Λk‖F).

It is easy to show that

E[tr(Λ̂2
k)]

p
=

p

nk
+
nk − 1

nk

tr(E[Λ̂]2)

p︸ ︷︷ ︸
Th. 2:→γ as p→∞

Hence

γ̂k =
nk

nk − 1

(
tr(Λ̂2

k)

p
− p

nk

)

−dk

is an asymptotically unbiased estimator of γk.

We also use correction
term dk proposed in [ZPFW14]

.
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Estimates of cij = tr(ΣiΣj)/p

i = j: Use ĉii = η̂2i γ̂i as an estimator of

cii =
tr(Σ2

i )

p
= η2i γi, i = 1, . . . ,K.

(where ηi = tr(Σi)/p)

i 6= j: use ĉij = η̂iη̂j tr(Λ̂iΛ̂j)/p as an estimator of

cij =
tr(ΣiΣj)

p
= ηiηj

tr(ΛiΛj)

p
.
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A simulation study: set-up

dimension # of. classes sample lengths

300 4 nk = n ∀k

{xi,k}nk
i=1

iid∼ tp,ν(µk,Σk) with degr. of freedom ν = 7.

Σk has an AR(1) structure, (Σk)ij = ηk%
|i−j|, where

%1 = 0.3, %2 = 0.4, %3 = 0.5, %4 = 0.6

and ηk = tr(Σk)/p = k, k = 1, . . . ,K.

We compute the normalized MSE (NMSE)

‖Σ̂k −Σk‖2F/‖Σk‖2F
and total NMSE

K∑

k=1

‖Σ̂k −Σk‖2F/‖Σk‖2F

averaged over 1000 MC trials.
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A simulation study: estimators

We use LINPOOL estimator with identity shrinkage:

Σ̂k =

K∑

i=1

âikSi + â(K+1)kI.

We compare with the MT-RSCM estimators of the form:

Σ̃k =

K∑

i=1

ãikT
(k)
i + ã(K+1)kSk.

where T
(k)
i � 0 are K target matrices for the kth class.

As the set of target matrices, we use

{T(k)
i }Ki=1 = {I} ∪ {Si}i∈{1,...,K}\k.

Hence the MT-estimator equals LINPOOL estimator, except for its
choice of weights.
We use LOOCV [THX+18] method for computing the optimal MT
weights.
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Results: NMSE

LOOCV LINPOOL
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Results: Total NMSE
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What about just using plain SCMS-s?

SCM LINPOOL

NMSE(Sk) ≈ 100× NMSE(Σ̂k)
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Basic definitions (cont’d)

p := # of stocks in the portfolio
wi := proportion of total wealth allocated to ith asset, verifying

1 =

p∑

i=1

wi = w>1.

r = (r1, . . . , rp)
> := net returns of p assets (at some time t).

Two key statistics of portfolio net return R = w>r are

mean return µw = E[R] = w>µ

variance (risk) σ2w = var(R) = w>Σw.

Global minimum variance portfolio (GMVP) allocation strategy:

minimize
w∈Rp

w>Σw subject to 1>w = 1.

⇒ wo =
Σ−11

1>Σ−11
.

See [FP16] for a great reference on financial engineering.
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GMVP stock data analysis

Data sets (daily net returns of daily closing prices)

• p = 50 stocks in Hang Seng Index (HSI), 1/2016 - 12/2017.

• p = 45 stocks in Hang Seng Index (HSI), 1/2010 - 12/2011.

Sliding window method

• At day t, we use the previous n days to estimate Σ and w.

• portfolio returns are then computed for the following 20 days.

• Window is shifted 20 trading days forward, new allocations and
portfolio returns for another 20 days are computed.
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GMVP stock data analysis: methods

We use MT-LINPOOL method with 2 target matrices:

I The single factor market index model TF computed as in [LW03].
I The constant correlation model TC computed as in [LW04a]
I MT-LINPOOL-C is same as earlier method but with constraint

that weights âik sum to 1, i.e., 1 =
∑

i âik = 1.

We compare against the following methods developed by finance
experts (Profs. O. Ledoit and M. Wolf):

1 LW-improved [LW03]: RSCM with shrinkage towards TF

2 LW-honey [LW04a]: RSCM with shrinkage towards TC .
3 LW-analytical [LW20]: nonlinear shrinkage of eigenvalues of

SCM.
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GMVP stock data analysis: results

The proposed MT-LINPOOL approach is able to provide the smallest
realised risk results
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What’s cooking

The paper is available at ArXiv:

https://arxiv.org/abs/2008.05854

Note: we are currently revising the paper, and extension to
complex-valued data is not (yet!) available in the ArXiv submission.

The codes (MATLAB, python) are also available at:

https://github.com/EliasRaninen

Also take a look at the related double shrinkage RSCM method:

https://arxiv.org/abs/2011.04315

Coupled regularized sample covariance matrix estimator for multiple
classes, E. Raninen and E. Ollila.

Or find out about robust linear shrinkage methods:

https://doi.org/10.1109/TSP.2020.3043952

Shrinking the eigenvalues of M-estimators of covariance matrix, E.
Ollila, D.P. Palomar, F. Pascal, TSP 2020 (early access).
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