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Thesis outline

m Model selection is a fundamental problem in data analysis as it
determines the success/accuracy of what we can learn from data.

m Thesis considers the case that the dimension of the parameters space,
N, is much larger than the number of measurements, m.

m N > m is a regime opposite to conventional (asymptotic) statistical
settings.

m In the linear model, this implies that # of regressors exceeds the # of
observations.

Contributions

An extended Fisher Information Criterion (EFIC) is proposed to
improve model selection in high-dim. linear model

COM-Lasso estimator is developed for model selection when
multiple measurement vectors are available.

Normalized Fused Lasso (NFL) is proposed for change point
detection.
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Background



Model selection in high-dimensional linear model

m Measurement y € R™

m Regressor matrix A = (a; --- ay) € R™N

m Anindexset Z = {i1,...,ix}, 1 <ip <ig<---<ix <N

m Set of indices J = Uszl{I| |Z| = k} up to cardinality K < m.
m High-dimensionality: N =m¢, d > 1.

Model selection problem: Consider a set of competing hypothesis

Hr:y = Arxz + o€, {e}ity @J\/’(O, 1).
or 'HZ Ly ~ Nm(AIXI,UQI)
where o > (error scale) and x7 € R (signal vector) are unknown.

The task is to identify S € J or Hs, under the assumption that
y ~ Hgs for some S € J.
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Model selection via information criterions

m Parameter vector 7 = (x7,0) € RZI x R,
m Under Hz: y ~ Ny (Azrxz,o?I), the MLE-s are

N

1 R
5% = —|Igyl}, %z =Alxs
m
where Il = AIA; and H% = I — II7 denote the orthogonal projector
m The —2x log-likelihood function of y ~ Hz:
—21n p(y; 0z[Hz) = mn ||Tizy |5 + const.
m General form of information criterions:
= arg min {—2Inp(y; 67H1) + n(T)}

= argmin {mn Imzy 3 +n(Z)}

where penalty term 7(Z) penalizes for overfitting ( n(Z) 1 as |Z| 1).
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Table: The choice of penalty term for a few model selection criteria

AkakeIC [ AIC | n(Z) = 2([Z] + 1)

BayesianIC | BIC | n(Z) = (|Z| + 1) Inm
RkIC [ RIC | n(Z) = (Z|+1)In N
Fisher IC FIC | n(Z) =Indet F(6;)

F(6;) is the Fisher information matrix evaluated at the MLE .
In Chapter 4 it is shown that

Indet F(07) = ¢ + Indet(ALA7) + (|Z| + 2){In |TlFy]||3 — Inm}

BIC and FIC consistent in selecting the true model as m — oc.

BIC based on approximation: det F(6;) ~ m/ZIt1 for large m.
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Model selection via sparse linear regression

y = A x + €

mx 1 mXxX N N x1 m X 1

m Known regressor matrix A, unknown sparse signal x, noise €

B S=supp(x) < K<mandm< N

»

y

I T I
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Lasso [Tibshirani, 1996]

m Lasso estimator solves
1
%(\) = arg min ||y — Ax||? + \||x
(A) = arg min S |ly 12+ Allxll
1
%(t) = argmin [y - Ax|3 st x| <t
where A > 0 is the penalty parameter (1-to-1
with ¢).

m )\ controls trade-off between the two terms
(data fidelity vs sparsity).

m Lasso provides a modern alternative to model selection: it performs
model selection and parameter estimation simultaneously.

m How many variables Lasso picks (how sparse is x(\)) depends on A.
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Least Angle Regression Algorithm (LARS)

m LARS [Efron et al., 2004] finds the pivotal penalty parameter values A,
where a new variable enters/leaves the active set.

m x(A) as a fnc X is piece-wise linear in each coefficient.
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Least Angle Regression Algorithm (LARS)

m LARS [Efron et al.,, 2004] finds the pivotal penalty parameter values A,
where a new variable enters/leaves the active set.

m EFIC can be used to choose the Lasso estimator on the solution path
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Chapter 4:Extended Fisher Information Criterion



Extended BIC

m In BIC expression, one assumed uniform prior for 8.

m In N > m case, it is sensible to assign a larger prior for sparse models

o) =r(z =0y o (3 )

where ¢ > 0 is a positive tuning constant.
m This gives extended BIC (EBIC) [Chen and Chen, 2008] criterion:

N
EBIC(Z) = BIC(Z) 4 2¢In <|I]>
m Pitfalls of EBIC in high-dimensions or high-SNR:

poor approximation of det F(QI) by mlZI+1
too conservative choise for tuning constant ¢ (> 1 — 1/(2d)).
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Extended FIC (EFIC)

m Recalling N = m¢, the authors use the approximation:

)
n ~dlZ|lnm
(\Il

m This and previous eq. for Indet F(QI) yields the proposed EFIC:

EFIC(Z) =(m — |Z] - 2) n [Tz |3
+Indet(ATAz) + (14 2¢cd)|Z|Inm

m With little manipulation, one may write it as
EFIC(Z) = BIC(Z) +2¢-Yric(Z) +Indet (AL A7) — (|Z|+2) In | TTFy ||2

m My interpretation:

s —(|Z| +2) In ||TI+ y||2 corrects for the bias in 6% = L ||[IIFy|[3.
Namely, for large |Z|, 6% — 0 as |Z|/m — 1.
m ¢ > 0 is the degree of belief in RIC penalty.
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EFIC vs BIC
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Figure 3.4: The comparison between the behavior of extended FIC and BIC versus

20

the selection of indices of the models provided by the solution path of Lasso. The
setting is 02 = 1071, |S| = 5, m = 100 and N = [m?], for d = 1.3. Label six
corresponds to the true model.
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EFIC vs EBIC
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Figure 3.5: The empirical probability of {Z = S} versus m when A has an
uncorrelated structure. Here, u = 0, 02 = 107%3, |S| = 5 and N = [m?] for
d=13.
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Computation of EFIC

m It is not computationally feasible to go through set {Hz:Z € J} of
competing hypothesis (|7| = O(NK)).

m Instead authors consider only K hypothesis with index sets
hCIlyC- - Clg.

The index sets are found from Lasso path at pivotal values
A1 > Ay > -+ > Ak (computed by LARS algorithm):

I = supp(X(\g)), k=1,...,K
where A\ = ||ATy|looc = %(A\1) =0 and Z; = {0} and generally:
1T =0,|Ts| = 1,...,|Ix| = K — 1

(given no predictor leaves the active set in A € (Ao, Ax].
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Figure 4.6: The empirical probability of {Z = S} versus In(1/02) when A has a
correlated structure. Here, = 0.25, m = 200, |S| =5 and N = [m?] for d = 1.3.
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Theoretical contributions

The authors consider the cases:
oc—0
m — 00

Restricted eigem}aluev property: The normalized matrix A satisfies the restricted
eigenvalue property if any restricted sub-matrix AL A7 obeys

I C.
min Amil}(A%AI) 2 mmv
|Z|<2K Inm
for some constant Ciin > 0. Here, A in(+) denotes the minimum eigenvalue of the

corresponding matrix.
Theorem 4.2.1. Let m be the fized number of measurements and assume that
N =m?. Then, under the restricted eigenvalue property, the estimate of (4.9), I,

obeys =38 with a probability approaching one as o — 0.
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Theorem 4.2.2. Suppose that the matriz A € R™N | with N = m?, satisfies the
restricted eigenvalue property. Moreover, assume that the columns of A fulfill

las |5 = Q(m®) (4.15)

for some constant a > 0. Then, the EFIC’s estimate obeys 7 =8 with probability
one as m — oo, if ¢ is chosen such that

>1— 4 E
¢ 2d " d’
m The authors propose to use
a 2
= 1 _ — —
¢ 2d T d

where d =In N/Inm > 1 as N = m¢?.

m The parameter a computed in practise using norms of ||a;||?
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Chapter 5: Covariance Matching Based Model
Selection



Model
L complex-valued measurement vectors:
y(t) = Ax(t) +€(t), t=1,...,L

Assumptions:
each x(t) € C™ is K-sparse with common support S = supp(x(t)),
t=1,...,L.
signal xs(t) is random, with [xs(t)]; Z‘réfij\/’(O,pj,j), JjeS.
noise €(t) is random, with €(t) ~ N;,(0,X).

unknown noise covariance matrix 3 can linearly parametrized such
that

vec(X) = Qh

for some known matrix Q € C™* %+ (1Qli,; € {0,1,£5}) and h € R,
where Kk < m? — |S].
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Under the Asssumptions 1-4, it holds that
y(t) ~ Nim(0,R)

where
s R=APAY +% (pos. def. m x m matrix)
m P =diag(pi1,...,pnnN) st pii =0 for i € SC.
= p = vec(P) € RY’ is K-sparse.

Consequently r = vec(R)) becomes
r=(A®A)p+Qh

COM-Lasso idea:

m use covariance matching (COMET) [Ottersten et al., 1998] principle to
estimate p and h.

m Utilize the fact that p is K-sparse and non-negative (non-neg. Lasso).
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COM-Lasso method

m Maprin C™ to f in R™ (Hermitian symmetry reduces the

unknowns):
f=Tr=T{(A®A)p+ Qh}

where f contains the m? real-valued unknowns of r

m Estimate is f = Tr, where

L
P=vee(R), R==3 y(tly®”
t=1

il
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COM-Lasso method

m Maprin C™ to f in R™ (Hermitian symmetry reduces the

unknowns):
f=Tr=T{(A®A)p+ Qh}

where f contains the m? real-valued unknowns of r

m Estimate is f = Tr, where

i = vec(R),

h \

L
m Since R is a Wishart matrix, one has that

cov(vec(R (RT ®R)

N=1
I'=L-cov(f) =T(RT @ R)TH

(and estimate I' = T(R'T ® R)T*)
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m The COMET principle finds p and h as minimizers of

n(p.h) = (£ HTE(E- D)
=[P~ (k - (A @ A)p - Qb)lf;
m Minimizing 1(p, h) for fixed p yields the (conditional) minimizer
h = h(p) = (I"'*TQ)'T*T(¢ — (A A)p)
m Then authors then solve p as minimizer of
Mmin(P) = 7(p, h(p)) = ||z — ®p]3

where z and ® are functions of I' and & (and known matrices T, A
and Q) and p is K-sparse and non-negative.
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m The COMET principle finds p and h as minimizers of
n(p,h) = (£~ £)'T7(F 1)
= ||E7*T(f — (A® A)p — Qh)|;
m Minimizing n(p, h) for fixed p yields the (conditional) minimizer
h = h(p) = (I"'*TQ)'T*T(¢ — (A A)p)
m Then authors then solve p as minimizer of
Mmin(P) = n(p, h(p)) = ||z — ®plI3

where z and ® are functions of I' and & (and known matrices T, A
and Q) and p is K-sparse and non-negative.

= find p by non-neg. Lasso, where EFIC is derived for model selection.
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m The COMET principle finds p and h as minimizers of
n(p,h) = (£ —£)'T7(f - f)
= ||E7*T(f — (A® A)p — Qh)|;

m Minimizing 1(p, h) for fixed p yields the (conditional) minimizer

~ A~

h = h(p) = (I"'*TQ)'T*T(¢ — (A A)p)
m Then authors then solve p as minimizer of

Mmin(P) = n(p, h(p)) = ||z — ®plI3
where z and ® are functions of I' and & (and known matrices T, A
and Q) and p is K-sparse and non-negative.
= find p by non-neg. Lasso, where EFIC is derived for model selection.

# of hypothesis is narrowed down by inspecting only pivotal values at
non. neg. Lasso path using the modified LARS algorithm.
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Figure 5.1: The empirical probability of {f = S} versus m when A has an
uncorrelated structure, i.e. g = 0, and ¥ = ¢2I. Here, |S| = 20, 0% = 10,
N = [(m? — 1)) for d = 1.2 and L = 4mInm.

21/26



Chapter 6: Change Point Detection for Piecewise
Constant Signals With Fused Lasso



When NFL Is not NFL

If the desired signal is piecewise constant over neighboring values,
then Fused Lasso [Tibshirani et al, 2005] can be used to encourage
smoothness of the estimates.

Noisy measurements y(t) of the piecewise constant signal m*(t):
y(t) = m*(t) + oe(t)

where m*(t) has change points at K locations s1 < s3 < ... < Sg
and the signal remains constant atleast for two consecutive samples.

The authors show that FL is inconsistent in detecting the true change
points.

On the contrary, the proposed normalized fused Lasso (NFL) is
consistent (when o — 0) in detecting change points.
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Figure 6.1: The solution of FL, ! (¢), is cluttered with small steps when o = 0.1.
The small box in the left top corner magnifies the intermediate level of 7" (¢) and
mNFL(t) (y(t) is eliminated for the sake of visibility).

23/26



Fused Lasso

m FL solves

N
H—mgmm*ﬂy m|3+ X |m(t) —m(t - 1)
t=2

= ||Dml|;

for some penalty parameter A > 0.

m An alternative (Lasso-type) formulation of FL is [Rojas and Wahlberg,
2014]:

£7 = argmin{ Z|l5 — Ax|3 + Al }

x€RN -1

where A € RVX(N=1) yerifies a5 = % —1,i<jand a;; = %
otherwise, and y is mean centered version of y.

m Solutions are related by Xt = Dmft
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Normalized fused Lasso

m The proposed NFL solves

*NFL — arg mln{*Hy AxH2 + A1 }
XERN 1

where A is normalized version of A having unit norm columns.

Theorem 6.2.1. Assume that for a particular realization of € there is a Ap > 0
such that

AL I + A, AL AL sgn(x5)]oo < Ap, (6.12)
mig |2 > [loALe - X (AZAs) ™" sen(X5)]sos (6.13)

where the matriz ATS = (ALAs)'AL is the Moore-Penrose pseudo-inverse of As

and HS denotes the orthogonal projection matriz defined as HS =1I- ASAL

Then, XNFL| obtained by solving (6.9) with X = ), satisfies supp(XNFL) = S and

sen(X3") = sgn(x).
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