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Thesis outline

Model selection is a fundamental problem in data analysis as it
determines the success/accuracy of what we can learn from data.

Thesis considers the case that the dimension of the parameters space,
N , is much larger than the number of measurements, m.

N � m is a regime opposite to conventional (asymptotic) statistical
settings.

In the linear model, this implies that # of regressors exceeds the # of
observations.

Contributions

1 An extended Fisher Information Criterion (EFIC) is proposed to
improve model selection in high-dim. linear model

2 COM-Lasso estimator is developed for model selection when
multiple measurement vectors are available.

3 Normalized Fused Lasso (NFL) is proposed for change point
detection.
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Model selection in high-dimensional linear model

Measurement y ∈ Rm

Regressor matrix A = (a1 · · · aN ) ∈ Rm×N

An index set I = {i1, . . . , ik}, 1 ≤ i1 < i2 < · · · < ik ≤ N
Set of indices J =

⋃K
k=1{I | |I| = k} up to cardinality K � m.

High-dimensionality: N = md, d > 1.

Model selection problem: Consider a set of competing hypothesis

HI : y = AIxI + σε, {εi}mi=1
iid∼ N (0, 1).

or HI : y ∼ Nm(AIxI , σ
2I)

where σ > (error scale) and xI ∈ R|I| (signal vector) are unknown.
The task is to identify S ∈ J or HS , under the assumption that
y ∼ HS for some S ∈ J .
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Model selection via information criterions

Parameter vector θI = (xI , σ) ∈ R|I| × R+.

Under HI : y ∼ Nm(AIxI , σ
2I), the MLE-s are

σ̂2 =
1

m
‖Π⊥I y‖22, x̂I = A†IxI

where ΠI = AIA
†
I and Π⊥I = I−ΠI denote the orthogonal projector

The −2× log-likelihood function of y ∼ HI :

−2 ln p(y; θ̂I |HI) = m ln ‖Π⊥I y‖22 + const.

General form of information criterions:

Î = arg min
I∈J
{−2 ln p(y; θ̂I |HI) + η(I)}

= arg min
I∈J
{m ln ‖Π⊥I y‖22 + η(I)}

where penalty term η(I) penalizes for overfitting ( η(I) ↑ as |I| ↑).
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Table: The choice of penalty term for a few model selection criteria

3.1. MODEL SELECTION WITH INFORMATION CRITERION 15

• in the Fisher information criterion (FIC), η(I) is chosen as ln det F(θ̂ML
I ),

where F(·) is the Fisher information matrix defied as

F(θI) , −E




∂2 ln p (y; θI |HI)
∂xI∂xTI

∂2 ln p (y; θI |HI)
∂xI∂σ2

∂2 ln p (y; θI |HI)
∂σ2∂xTI

∂2 ln p (y; θI |HI)
∂σ4




and the expectation is taken with respect to p (y; θI |HI) [Kay98]. Here, the
presence of the Fisher information matrix is due to the asymptotic behavior
of the likelihood function. Using the result in Chapter 4, we can say

ln det F(θ̂ML
I ) = ln(m/2)− (|I|+ 2)

[
ln‖Π⊥I y‖22 − lnm

]
+ ln det(AT

IAI),

• in the Bayesian information criterion (BIC), η(I) is chosen as (|I|+ 1) lnm,
which is due to approximating the determinant of the Fisher information by
m|I|+1 [SB12].

Table 3.1 summarizes the choice of penalty terms for a few information criteria
(IC). As can be seen, AIC penalizes the least squares term the least. This suggests
that the size of the model estimated by AIC should be potentially larger than those
estimated by the other criteria. Fig. 3.3 illustrates the numerical evaluation of the
behavior of AIC, BIC and FIC when ai’s are chosen as i.i.d. Gaussian random
vectors from N (0, I), m = 100, N = 10, S = {2, 4, 9} and σ2 = 10−1.2. The
waterfall effect at index four is due to the fact that M3 coincides with the true
model. As we expected, AIC chooses a relatively large model with |Î| = 5.

The basic question we should ask here is how accurate one can estimate the
model using these information criteria. It is shown that both BIC and FIC are
consistent in selecting the true model as m→∞ [Sch78,Boz87]. However, AIC and
RIC do not show such desirable behavior [Woo82]. In fact, it is argued that these
criteria are not theoretically justified to be assessed accordingly [Boz87, And10].
That being said, since our primary goal in this thesis is to find the true model for
high-dimensional linear regression, hereinafter we only consider BIC and FIC as
viable model selection criteria.

Table 3.1: The choice of penalty term for a few model selection criteria.

AIC η(I) = 2(|I|+ 1)
BIC η(I) = (|I|+ 1) lnm
RIC η(I) = (|I|+ 1) lnN
FIC η(I) = ln det F(θ̂I)

Akaike IC
Bayesian IC
Risk IC
Fisher IC

F(θ̂I) is the Fisher information matrix evaluated at the MLE θ̂I .

In Chapter 4 it is shown that

ln det F(θ̂I) = c+ ln det(AT
IAI) + (|I|+ 2){ln ‖Π⊥I y‖22 − lnm}

BIC and FIC consistent in selecting the true model as m→∞.

BIC based on approximation: det F(θ̂I) ≈ m|I|+1 for large m.
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Model selection via sparse linear regression

y
m × 1

= A
m × N

x
N × 1

+ ε
m × 1

Known regressor matrix A, unknown sparse signal x, noise ε

S = supp(x) ≤ K � m and m < N

y A x ε
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Lasso [Tibshirani, 1996]

Lasso estimator solves

x̂(λ) = arg min
x∈RN

1

2
‖y −Ax‖22 + λ‖x‖1

x̂(t) = arg min
1

2
‖y −Ax‖22 s.t. ‖x‖1 ≤ t

where λ > 0 is the penalty parameter (1-to-1
with t).

λ controls trade-off between the two terms
(data fidelity vs sparsity).

THE LASSO ESTIMATOR 11
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Figure 2.1 Left: Coefficient path for the lasso, plotted versus the `1 norm of the
coefficient vector, relative to the norm of the unrestricted least-squares estimate ˜.
Right: Same for ridge regression, plotted against the relative `2 norm.
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Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions | 1|+| 2| ≤ t and 2

1 + 2
2 ≤ t2, respectively,

while the red ellipses are the contours of the residual-sum-of-squares function. The
point ̂ depicts the usual (unconstrained) least-squares estimate.
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x2

Lasso provides a modern alternative to model selection: it performs
model selection and parameter estimation simultaneously.

How many variables Lasso picks (how sparse is x̂(λ)) depends on λ.
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Least Angle Regression Algorithm (LARS)

LARS [Efron et al., 2004] finds the pivotal penalty parameter values λk,
where a new variable enters/leaves the active set.

x̂(λ) as a fnc λ is piece-wise linear in each coefficient.
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Least Angle Regression Algorithm (LARS)
LARS [Efron et al., 2004] finds the pivotal penalty parameter values λk,
where a new variable enters/leaves the active set.
EFIC can be used to choose the Lasso estimator on the solution path
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Extended BIC

In BIC expression, one assumed uniform prior for θI .

In N � m case, it is sensible to assign a larger prior for sparse models

p(θI) = Pr(|I| = k) ∝
(
N

k

)−c
where c > 0 is a positive tuning constant.

This gives extended BIC (EBIC) [Chen and Chen, 2008] criterion:

EBIC(I) = BIC(I) + 2c ln

(
N

|I|

)
Pitfalls of EBIC in high-dimensions or high-SNR:

1 poor approximation of det F(θ̂I) by m|I|+1

2 too conservative choise for tuning constant c (> 1− 1/(2d)).
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Extended FIC (EFIC)

Recalling N = md, the authors use the approximation:

ln

(
N

|I|

)
≈ d|I| lnm

This and previous eq. for ln det F(θ̂I) yields the proposed EFIC:

EFIC(I) =(m− |I| − 2) ln ‖Π⊥I y‖22
+ ln det(AT

IAI) + (1 + 2cd)|I| lnm

With little manipulation, one may write it as

EFIC(I) = BIC(I)+2c ·γRIC(I)+ln det(AT
IAI)− (|I|+2) ln ‖Π⊥I y‖22

My interpretation:

−(|I|+ 2) ln ‖Π⊥I y‖22 corrects for the bias in σ̂2 = 1
m‖Π

⊥
I y‖22.

Namely, for large |I|, σ̂2 → 0 as |I|/m→ 1.

c > 0 is the degree of belief in RIC penalty.

10/26



EFIC vs BIC
3.1. MODEL SELECTION WITH INFORMATION CRITERION 21
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Figure 3.4: The comparison between the behavior of extended FIC and BIC versus
the selection of indices of the models provided by the solution path of Lasso. The
setting is σ2 = 10−1, |S| = 5, m = 100 and N = dmde, for d = 1.3. Label six
corresponds to the true model.

What Goes Wrong With EBIC
It is shown that under some asymptotic identifiability condition, EBIC defined as

−2 ln p(y; θ̂
ML
I |HI) + (|I|+ 1) lnm+ 2ć ln

(
N

|I|

)

is consistent in selecting the true model as m→∞ if the constant ć > 0 is properly
chosen [CC08].

Theorem 3.1.1. Suppose that

min
I∈{I||I|≤|S|,I6=S}

‖Π⊥IASxS‖22
lnm →∞

as m→∞. Then, the EBIC’s estimate satisfies Î = S with a probability converging
to one, if ć obeys ć > 1− 1/(2d).

Unfortunately, the empirical performance of EBIC for practical size m is
unsatisfactory. This is due to the conservative choice of ć > 1− 1/(2d). Moreover,
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EFIC vs EBIC22 CHAPTER 3. BACKGROUND
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Figure 3.5: The empirical probability of {Î = S} versus m when A has an
uncorrelated structure. Here, µ = 0, σ2 = 10−0.3, |S| = 5 and N = dmde for
d = 1.3.

EBIC approximates det(F(θ̂ML
I )) by m|I|+1; as it was mentioned previously, such

an approximation is not appropriate when the signal to noise ratio is high [SB12].
To overcome these issues, we propose the extended version of FIC defined as

Î = arg min
I∈J

−2 ln p(y; θ̂
ML
I |HI) + ln det(F(θ̂ML

I )) + 2cd|I| lnm.

The choice of the constant c is discussed in detail in Chapter 4. We show
theoretically and experimentally that our choice of c yields high rate of success
in model selection for practical size m. Further, we will show that EFIC’s estimate
fulfills

Pr{Î = S} → 1 as σ → 0,
Pr{Î = S} → 1 as m→∞.

Fig. 3.5 illustrates the empirical probability of successfully estimating the model
over 500 Monte Carlo trials versus m. Here, rows of A are chosen as i.i.d.
multivariate Gaussian random vectors from N (0, I), σ2 = 10−0.3, |S| = 5 and
N = dmde for d = 1.3. The constant ć is set to one as it is recommended in [CC08].
Here, due to the computational restriction, we have replaced J with the solution set
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Computation of EFIC

It is not computationally feasible to go through set {HI : I ∈ J } of
competing hypothesis (|J | = O(NK)).

Instead authors consider only K hypothesis with index sets

I1 ⊂ I2 ⊂ · · · ⊂ IK .

The index sets are found from Lasso path at pivotal values
λ1 > λ2 > · · · > λK (computed by LARS algorithm):

Ik = supp(x̂(λk)), k = 1, . . . ,K

where λ1 = ‖ATy‖∞ ⇒ x̂(λ1) = 0 and I1 = {∅} and generally:

|I1| = 0, |I2| = 1, . . . , |IK | = K − 1

(given no predictor leaves the active set in λ ∈ (λ0, λK ].
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Small correlations between predictors
4.4. EMPIRICAL RESULTS 55
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Figure 4.6: The empirical probability of {Î = S} versus ln(1/σ2) when A has a
correlated structure. Here, µ = 0.25, m = 200, |S| = 5 and N = dmde for d = 1.3.

EFIC, the success rate of EBIC always stays below 0.95. This indicates that EBIC
is inconsistent in finding S as σ → 0. Fig. 4.4 also shows that COBIC achieves
Pr(I = S) = 1 at a very slow pace. Finally, note the unsatisfactory performance of
SR-Lasso. This is because SR-Lasso requires a larger m than Lasso to achieve the
same performance in estimating models.

Next, we examine the effect of the correlation in the structure of A on the
performances of the model selection criteria. Fig. 4.5 illustrates the empirical
probability of correct model selection versus m over 500 Monte Carlo trials when
µ = 0.25. Here, the rest of the setting is identical to the corresponding uncorrelated
case. As can be seen, EFIC’s and Lasso-oracle’s performances are identical and
both achieve Pr{Î = S} = 1 for m ≥ 200. Note that based on Algorithm
1, the performance of EFIC is tied to the solution set of Lasso. Thus, EFIC
cannot outperform Lasso-oracle. Predictively, due to the correlation between ai’s,
Lasso-oracle requires relatively larger number of measurements to achieve ideal
model selection. The numerical simulation again shows that the performance of
EBIC improves very slowly for m ≥ 200. Interestingly, the performance gap
between Lasso-σ and Lasso-oracle is tightened. Finally, SR-Lasso performs rather
poorly which indicates that SR-Lasso is more sensitive to the correlation in the
structure of A than Lasso.

Fig. 4.6 shows the empirical probability of Î = S versus ln 1/σ2 over 5000 Monte
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Theoretical contributions

The authors consider the cases:

1 σ → 0

2 m→∞

4.2. PERFORMANCE ANALYSIS OF EFIC FOR THE LINEAR
REGRESSION 41

9 in [FR13] that the minimal restricted eigenvalue of Ã is bounded away from zero,
even if N grows exponentially with m.

Having this stated, we need to lower bound the minimal eigenvalues of all
restricted sub-matrices of at most size 2K. Now, inspired by [MY09], we introduce
our slightly more general assumption in comparison with what is traditionally
assumed, such as e.g. the restricted isometry property in [CT05], as we allow the
minimal restricted eigenvalues to slowly converge to zero.
Restricted eigenvalue property: The normalized matrix Ã satisfies the restricted
eigenvalue property if any restricted sub-matrix ÃT

I ÃI obeys

min
|I|≤2K

Λmin(ÃT
I ÃI) ≥ Cmin

lnm ,

for some constant Cmin > 0. Here, Λmin(·) denotes the minimum eigenvalue of the 
corresponding matrix. 

4.2 Performance Analysis of EFIC for the Linear

Regression

Desirably, a statistical inference method provides the true unknown parameter in
an asymptotic regime. To examine the asymptotic properties of EFIC, we evaluate
the probability of (4.9) selecting the correct model as σ → 0, as well as when
m→∞.

Deterministic Optimality Conditions for EFIC
Prior to investigating the asymptotic properties of EFIC, we first present the
sufficient non-asymptotic conditions, under which EFIC selects the true model.
Later, in Theorem 4.2.1 and 4.2.2, we show that these conditions are satisfied with
high probability in the corresponding asymptotic regimes.

Lemma 4.2.1. Let S ∈ J be the true model and suppose that I 6= S denotes any
other competing subset in J . Additionally, assume that the matrix A satisfies the
restricted eigenvalue property. Then, for a particular realization of ε, the minimizer
of (4.9) obeys Î = S, if

I1 : ln ‖Π
⊥
S ε‖2(m−|S|−2)

2

‖Π⊥I ε‖2(m−|I|−2)
2

< Υ(I)− ln σ2∆, I ∈
K⋃

k=|S|+1

I̊k,

I2 : ln

(
σ2‖Π⊥S ε‖22

)(m−|S|−2)

‖Π⊥I y‖2(m−|I|−2)
2

< Υ(I), I ∈
K⋃

k=0
Ĭk,

42 CHAPTER 4. EXTENDED FISHER INFORMATION CRITERION

where ∆ =
∣∣|I| − |S|

∣∣ and

Υ(I) = ln det(AT
IAI)

det(AT
SAS)

+
(
|I| − |S|

)
(1 + 2cd) lnm.

Proof. The strict minimizer of (4.9) coincides with the subset S if g(S) < g(I) for
any I ∈ J \ S. Thus, using (4.10), it is sufficient to show that

(m− |S| − 2) ln‖Π⊥S y‖22 + ln det(AT
SAS)

+ (1 + 2cd)|S| lnm < (m− |I| − 2) ln‖Π⊥I y‖22
+ ln det(AT

IAI) + (1 + 2cd)|I| lnm (4.12)

is equivalent to the I1 and I2 inequalities. In this regard, by the definition of the
projection matrix, we have ΠIASxS = ASxS for I ∈ I̊k. Thus,

Π⊥I y = Π⊥I (ASxS + σε)
= σΠ⊥I ε, ∀ I ∈ I̊k. (4.13)

Moreover,
Π⊥S y = σΠ⊥S ε. (4.14)

If (4.13) and (4.14) are inserted into (4.12), then, with some straightforward
manipulations, we obtain I1. Next, use (4.14) and (4.12) to obtain I2. Also
note that, because of the restricted eigenvalue property, AT

IAI and AT
SAS are

full-rank and therefore ln det(·) is finite.

Model Selection as σ → 0
As mentioned before, it is of course desirable that EFIC selects the true model for
high signal to noise ratio data. This motivates us to examine the performance of
EFIC as σ → 0.

Theorem 4.2.1. Let m be the fixed number of measurements and assume that
N = md. Then, under the restricted eigenvalue property, the estimate of (4.9), Î,
obeys Î = S with a probability approaching one as σ → 0.

Proof. Based on Lemma 4.2.1, the minimizer of (4.9) coincides with S if I1 and I2
are satisfied. Having this stated, we begin by showing that as σ → 0 the inequality
I1 holds with a probability approaching one. In this regard, consider the event of
the form

ÅI : ρ(I) < eΥ(I)/σ2∆, I ∈ I̊k

for |S|+ 1 ≤ k ≤ K, where ρ(I) is defined by

ρ(I) = ‖Π
⊥
S ε‖2(m−|S|−2)

2

‖Π⊥I ε‖2(m−|I|−2)
2

.
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44 CHAPTER 4. EXTENDED FISHER INFORMATION CRITERION

Model Selection as m→∞
In the following, we state our second main result which presents the asymptotic
behavior of EFIC as m→∞.

Theorem 4.2.2. Suppose that the matrix A ∈ Rm×N , with N = md, satisfies the
restricted eigenvalue property. Moreover, assume that the columns of A fulfill

‖ai‖22 = Ω(ma) (4.15)

for some constant a > 0. Then, the EFIC’s estimate obeys Î = S with probability
one as m→∞, if c is chosen such that

c > 1− a

2d + 1
d
.

Proof. The proof of Theorem 4.2.2 consists of three main parts. We start by finding
the asymptotic behavior of Υ. Then, we establish the probability of I1 happening
as m→∞ and, finally, we do the same for I2.

The asymptotic behavior of Υ(I): Normalize the columns of AI as ÃI =
AIW−1

I,I , where WI,I is a diagonal matrix with the diagonal elements defined
by wii = ‖ai‖2 for i ∈ I. Now using the properties of the determinant function, we
have

ln det
(
AT
IAI

)
= ln det(W2

I,I) + ln det(ÃT
I ÃI)

=
∑

i∈I
lnw2

ii +
|I|∑

i=1
ln Λi(ÃT

I ÃI),

where Λi(·) denotes the i-th eigenvalue of the corresponding matrix. Then, observe
that, by Gerschgorin’s Theorem,

|Λi(ÃT
I ÃI)− 1| ≤

∑

j∈I,j 6=i
|ãTi ãj | ≤ |I| − 1.

Therefore, because of (4.15), we can say

ln det(AT
IAI) =

∑

i∈I
lnw2

ii(1 + o(1)) (4.16)

as m → ∞. Now, after inserting (4.16) into Υ(I) and some straightforward
simplifications, we conclude that for I ∈ I̊k

Υ(I) =
[∑

i∈I\S
lnw2

ii

]
(1 + o(1)) + ∆(1 + 2cd) lnm

≥ ∆(1 + a+ 2cd) lnm (1 + o(1)) , (4.17)

The authors propose to use

c = 1− a

2d
+

2

d

where d = lnN/ lnm > 1 as N = md.

The parameter a computed in practise using norms of ‖ai‖?
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Model

L complex-valued measurement vectors:

y(t) = Ax(t) + ε(t), t = 1, . . . , L

Assumptions:

1 each x(t) ∈ Cm is K-sparse with common support S = supp(x(t)),
t = 1, . . . , L.

2 signal xS(t) is random, with [xS(t)]j
iid∼ N (0, pj,j), j ∈ S.

3 noise ε(t) is random, with ε(t) ∼ Nm(0,Σ).

4 unknown noise covariance matrix Σ can linearly parametrized such
that

vec(Σ) = Qh

for some known matrix Q ∈ Cm2×κ ([Q]i,j ∈ {0, 1,±j}) and h ∈ Rκ,
where κ ≤ m2 − |S|.

17/26



Under the Asssumptions 1-4, it holds that

y(t) ∼ Nm(0,R)

where

R = APAH + Σ (pos. def. m×m matrix)

P = diag(p1,1, . . . , pN,N ) s.t. pi,i = 0 for i ∈ Sc.
⇒ p = vec(P) ∈ RN2

+ is K-sparse.

Consequently r = vec(R) becomes

r = (A⊗A)p + Qh

COM-Lasso idea:

use covariance matching (COMET) [Ottersten et al., 1998] principle to
estimate p and h.

Utilize the fact that p is K-sparse and non-negative (non-neg. Lasso).
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COM-Lasso method

Map r in Cm2
to f in Rm2

(Hermitian symmetry reduces the
unknowns):

f = Tr = T{(A⊗A)p + Qh}

where f contains the m2 real-valued unknowns of r

Estimate is f̂ = Tr̂, where

r̂ = vec(R̂), R̂ =
1

L

L∑
t=1

y(t)y(t)H

Since R̂ is a Wishart matrix, one has that

cov(vec(R̂)) =
1

L
(R> ⊗R)

Γ = L · cov(f̂) = T(R> ⊗R)TH

(and estimate Γ̂ = T(R̂> ⊗ R̂)TH)
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The COMET principle finds p and h as minimizers of

η(p,h) = (f − f̂)>Γ̂−1(f − f̂)

=
∥∥Γ̂−1/2T(r̂− (A⊗A)p−Qh

)∥∥2
2

Minimizing η(p,h) for fixed p yields the (conditional) minimizer

ĥ = ĥ(p) = (Γ̂−1/2TQ)†Γ̂−1/2T(r̂− (A⊗A)p)

Then authors then solve p̂ as minimizer of

ηmin(p) = η(p, ĥ(p)) = ‖z−Φp‖22

where z and Φ are functions of Γ̂ and r̂ (and known matrices T, A
and Q) and p is K-sparse and non-negative.

⇒ find p̂ by non-neg. Lasso, where EFIC is derived for model selection.

# of hypothesis is narrowed down by inspecting only pivotal values at
non. neg. Lasso path using the modified LARS algorithm.
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Figure 5.1: The empirical probability of {Î = S} versus m when A has an
uncorrelated structure, i.e. µ = 0, and Σ = σ2I. Here, |S| = 20, σ2 = 10,
N = d(m2 − 1)de for d = 1.2 and L = 4m lnm.

Next, we assess the performance of support recovery when Σ is a diagonal
matrix. Figs. 5.3 and 5.4 illustrate the empirical probability of support recovery
versus m when the diagonal elements of Σ are normalized random positive integers
such that tr(Σ) = 10m. These numerical simulations show that the performance of
COM-Lasso-oracle is nearly identical for the same µ. This implies that COM-Lasso
properly takes the nuisance parameter h into account. Moreover, when µ = 0, the
performance gap between EFIC and COM-Lasso-oracle is rather small. As can be
seen, Fig. 5.3 shows that Pr{Î = S} worsens for (5.13)-oracle and SPICE when
Σ has a diagonal structure. Continuing, Fig. 5.4 shows that SPICE performs
poorly when µ = 0.5. Again, (5.13)-oracle completely fails to estimate the true
support when a∗i’s are strongly correlated. Finally, COM-Lasso-EFIC outperforms
COM-Lasso-λ both when µ = 0 and when µ = 0.5.

5.4 Summary

Many real life applications involve support recovery of a high-dimensional linear
data model corrupted with a random noise. In situations that the signal to noise
ratio is low and the noise is correlated, the currently available methods do not have
satisfactory performance. To overcome this issue, we have developed a non-negative
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When NFL is not NFL

If the desired signal is piecewise constant over neighboring values,
then Fused Lasso [Tibshirani et al, 2005] can be used to encourage
smoothness of the estimates.

Noisy measurements y(t) of the piecewise constant signal m∗(t):

y(t) = m∗(t) + σε(t)

where m∗(t) has change points at K locations s1 < s2 < . . . < sK
and the signal remains constant atleast for two consecutive samples.

The authors show that FL is inconsistent in detecting the true change
points.

On the contrary, the proposed normalized fused Lasso (NFL) is
consistent (when σ → 0) in detecting change points.

22/26



6.1. FROM FUSED LASSO TO NORMALIZED FUSED LASSO 85

20 40 60 80 100 120 140 160 180 200

1

1.5

2

2.5

3

t

am
pl
itu

de

m∗(t)
y(t)
m̂FL(t)
m̂NFL(t)

120 130 140 150 160

1.9

2

Figure 6.1: The solution of FL, m̂FL(t), is cluttered with small steps when σ = 0.1.
The small box in the left top corner magnifies the intermediate level of m̂FL(t) and
m̂NFL(t) (y(t) is eliminated for the sake of visibility).

The Failure of the fused Lasso
FL exploits the temporal sparsity of the discrete derivative of the piecewise constant
signals using `1 regularization [TSR+05]. FL aims at striking an appropriate
trade-off between reducing the measurement noise and the piecewise constant
structure by solving

m̂FL = arg min
m∈RN

{1
2‖y−m‖22 + λ‖Dm‖1

}
, (6.3)

where y ∈ RN is the measurement vector constructed as y = [y(1), . . . , y(N)]T , the
matrix D ∈ R(N−1)×N defined by

D =




−1 1 0 . . . 0
0 −1 1 0 . . . 0

. . .
0 . . . 0 −1 1




acts as the difference operator and λ > 0 is the regularization parameter, which
implicitly controls the number of detected change points. Unfortunately, in a
general setting for m∗(t), FL fails at detecting the true change points. This is
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Fused Lasso

FL solves

m̂FL = arg min
m∈RN

1

2
‖y −m‖22 + λ

N∑
t=2

|m(t)−m(t− 1)|︸ ︷︷ ︸
= ‖Dm‖1

for some penalty parameter λ > 0.

An alternative (Lasso-type) formulation of FL is [Rojas and Wahlberg,

2014]:

x̂FL = arg min
x∈RN−1

{1

2
‖ỹ −Ax‖22 + λ‖x‖1

}
where A ∈ RN×(N−1) verifies ai,j = j

N − 1, i ≤ j,and ai,j = j
N

otherwise, and ỹ is mean centered version of y.

Solutions are related by x̂FL = Dm̂FL.
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Normalized fused Lasso

The proposed NFL solves

x̂NFL = arg min
x∈RN−1

{1

2
‖ỹ − Ãx‖22 + λ‖x‖1

}
where Ã is normalized version of A having unit norm columns.

88
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where the ∞-norm of a matrix is the largest absolute row sum. Exploiting (6.8)
and the expression for wii, the absolute row sum of W−1

Sc,ScBWS,S for Br, r 6=
{1,K + 1} can be written as

(
1− k

sr − sr−1

)
g(sr−1)

g(sr−1 + k) + k

sr − sr−1

g(sr)
g(sr−1 + k) ,

where the function g(·) is defined as g(a) =
√
a(N − a) for 0 < a ≤ N . By a

straightforward manipulation, it becomes
(
g(sr−1) + [g(sr)− g(sr−1)] k

sr − sr−1

)

g(sr−1 + k) .

Note that the irrepresentable condition is trivially satisfied for the cases r = 1 and
K + 1. Then showing ‖W−1

Sc,ScBWS,S‖∞ < 1 is equivalent to proving

g(sr−1) + [g(sr)− g(sr−1)] z
sr − sr−1

< g(sr−1 + z) (6.11)

for 2 ≤ r ≤ K, where z is a continuous variable such that z ∈ [1, sr − sr−1 − 1]. We
know that g(sr−1 + z) is a concave function with respect to z, whereas the left-hand
side of (6.11) is affine in z. We also know that these two functions intersect at z = 0
and z = sr − sr−1. Now the conclusion follows from the concavity of g.

Observe that ν = ‖W−1
Sc,ScBWS,S‖∞ determines the sensitivity of NFL to

noise. This effect has been studied previously in the general framework of Lasso
[CP09,Wai09]. In the next section, we study this sensitivity in detail to analyze
the performance of NFL.

6.2 Performance Analysis of NFL

The next theorem is inspired by Lemma 3.4 in [CP09], and provides deterministic
sufficient conditions under which NFL accurately detects change points.

Theorem 6.2.1. Assume that for a particular realization of ε̃ there is a λp > 0
such that

‖σÃT
ScΠ⊥S ε̃ + λpÃT

ScÃ
†T
S sgn(x̃∗S)‖∞ < λp, (6.12)

min
i∈S
|x̃∗i | > ‖σÃ†S ε̃− λp

(
ÃT
S ÃS

)−1 sgn(x̃∗S)‖∞, (6.13)

where the matrix Ã†S = (ÃT
S ÃS)−1ÃT

S is the Moore-Penrose pseudo-inverse of ÃS
and Π⊥S denotes the orthogonal projection matrix defined as Π⊥S = I− ÃSÃ†S .
Then, x̂NFL, obtained by solving (6.9) with λ = λp, satisfies supp(x̂NFL) = S and
sgn(x̂NFL

S ) = sgn(x̃∗S).
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